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1. Introduction

Throughout this paper A denotes a complex, unital Banach algebra with
the minimum requirement that A be semiprime, that is xAx = {0} implies
x = 0 holds for all x ∈ A. It is obvious that any semisimple Banach algebra is
also semiprime. We call an element a ∈ A spatially rank one if a is rank one
in the sense of J. Puhl ([12], Definition 2.2):

(1.1) a ∈ A is spatially rank one if and only if aAa ⊆ Ca, and a 6= 0.

One motivation for Puhl’s definition is the fact that (and this is easy to prove)
for T ∈ A = B (X) , the algebra of bounded linear operators on a Banach space
X, we have that dimR (T ) = 1 if and only if (1.1) holds.

For further examples of Banach algebras with spatially rank one elements
see [12]. We shall denote the collection of spatially rank one elements by F1.
Since Puhl’s paper, other authors (see list of references) have contributed to
the topics of rank one and finite elements (for which rank one elements are
the building blocks) yielding some characterizations and at least one different
definition of rank one elements ([8], Definition 2.2):

(1.2)
a ∈ A is said to be spectrally rank one if and only if

a 6= 0 and x ∈ A ⇒ # σ (xa) \ {0} ≤ 1,
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where σ denotes the spectrum and # the number of elements in the given set.
If G1 is the collection of spectrally rank one elements then, since F1 absorbs
nonzero products in A and the elements of F1 have at most one nonzero point
in their spectra ([12], Lemma 2.7, Lemma 2.8), it follows that F1 ⊆ G1. In
general this inclusion may be strict; if A is semiprime but not semisimple let
a ∈ Rad (A), a 6= 0. If axa = λa for some 0 6= λ ∈ C, then ax

λ is an idempotent
whence σ

(
ax
λ

)
= {0, 1} which is impossible. So we cannot have a ∈ F1. But

clearly Rad (A) ⊆ G1 and hence it follows that F1 6= G1. Harte ([8], Theorem
4) now continues to show that F1 = G1 precisely when A is semisimple. An
earlier paper by T. Mouton and H. Raubenheimer [9] also gives a spectral
characterisation of F1 in the case where A is semisimple ([9], Theorem 2.2):

(1.3)
a ∈ F1 if and only if
the conditions b ∈ A and
s0, s1 ∈ C, 0 6= s0 6= s1 6= 0



 ⇒ σ (b + s0a) ∩ σ (b + s1a) ⊆ σ (b) .

In fact, Mouton and Raubenheimer’s arguments actually imply Harte’s result,
but their method uses an analytical property of the spectrum ([1], Theorem
3.4.25) as opposed to Harte’s essentially algebraic technique. The set G1 was
also studied in [13] where it was shown ([13], Theorem 1) that G1 is a closed
multiplicative ideal in A. In yet another paper, by J.A. Erdos, S. Giotopoulos
and M.S. Lambrou, incidentally completed in the same year as Puhl’s article,
another notion of rank one is introduced [6]:

(1.4)
An element u 6= 0 of a semisimple Banach algebra, is said to be
rank one if and only if u has an image of rank one in some faithful
representation of A.

They showed ([6], Theorem 6) that this definition is equivalent to requiring
that u be a single element of A, that is, aub = 0 implies au = 0 or ub = 0, and
that u acts compactly on A, that is, the map a 7−→ uau is compact. Rather
surprisingly, Erdos shows in [5] that the condition, u being single alone, is
enough to ensure the above-mentioned equivalence to (1.4) in the C∗-algebra
case. Using a topological idea to derive a simplified form of minimal ideals,
we give, as a corollary, a particularly easy proof of the equivalence of (1.1)
and (1.4). A minimal left ideal J 6= {0} of A is a left ideal such that {0} and
J are the only left ideals contained in J. Minimal right ideals are defined in a
similar way. Minimal ideals are important in the study of rank one elements
because of their relationship to minimal idempotents, which are defined to
be idempotents belonging to F1. For a discussion on minimal ideals see [3],
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Chapter IV. With respect to spatially rank one elements, it is easy to see that
a ∈ F1 if and only if there exists a unique linear functional fa on A such that
fa (x) a = axa for all x ∈ A. Moreover, it follows easily that σ (a) = {0, fa (1)}
([12], Lemma 2.8). The complex number fa (1) is called the trace of a and is
denoted tr (a) . Note that for a ∈ F1 it might very well happen that tr (a) = 0
and, in fact, every quasinilpotent a ∈ F1 is nilpotent with a2 = 0. The above
scenario is, however, not possible for commutative algebras. Puhl extends the
trace to finite elements (all finite sums of elements in F1) in a natural way
such that the trace has the expected properties ([12], Theorem 4.5). For more
and recent results on these matters see [2] and [7]. We define Exp(A) , the
group of generalised exponentials in A, by

Exp (A) =

{
n∏

i=1

exi : xi ∈ A, n ∈ N
}

.

It can be shown ([1], Theorem 3.3.7) that Exp(A) is the connected component
of A−1 (the invertible elements of A) containing the identity. By exp (A) we
mean the set of exponentials of A, that is exp (A) = {ex : x ∈ A} . If A is not
commutative then it is possible ([10], p. 230–231) that exp (A) 6=Exp(A) . We
use rσ (x) to denote the spectral radius of x ∈ A. By an idempotent we always
mean a nontrivial idempotent. If A is a Banach algebra and B is a subset of
A then, as usual, B denotes the closure of B in A.

2. The structure of rank one elements

For semiprime A with F1 6= ∅ we partition F1 into two disjoint subsets; F0
1

denotes the nilpotent elements of F1 and F1
1 the non–nilpotent elements of F1.

Note that in the commutative case F0
1 = ∅. For if u ∈ F1 with u2 = 0 then

uA u = {0} which contradicts the semiprime condition imposed on A. On
the other hand, if F1 6= ∅ then the semiprime condition guarantees that F1

1 is
never empty. The following lemma is instrumental in many of the forthcoming
results.

Lemma 2.1. Let A be a semiprime Banach algebra with F1 6= ∅.

(i) If u ∈ F1
1 , v ∈ A with uv ∈ F1

1 then uv can be written as uv = αexue−x

where 0 6= α ∈ C and x ∈ A. A similar statement holds for vu ∈ F1
1 .

(ii) If u ∈ F0
1 then there exists v ∈ exp (A) such that uv and vu ∈ F1

1 .
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Proof. (i) The rank 1 elements u
tr(u) and uv

tr(uv) are both idempotents sat-
isfying

u

tr (u)
=

uvu

tr (uv) tr (u)
,

uv

tr (uv)
=

u2v

tr (u) tr (uv)

and hence (
u

tr (u)
− uv

tr (uv)

)2

= 0

so that

rσ

(
u

tr (u)
− uv

tr (uv)

)
= 0.

It follows from ([14], Lemma 3.1) that

uv = α
(
exue−x

)

for some x ∈ A and α = tr(uv)
tr(u) .

(ii) If u ∈ F0
1 then u2 = 0 but, since A is semiprime, there is x ∈ A such

that uxu = u. If we choose λ ∈ C with |λ| > rσ (x) then it follows by the
holomorphic functional calculus that −λ + x ∈ exp (A) . Thus

0 6= [u (−λ + x)]2 = u (−λ + x) ∈ F1
1 .

We are now in a position to identify the connected components of F1 in
terms of Exp (A) .

Theorem 2.2. Let A be a semiprime Banach algebra with F1 6= ∅.
(i) If u ∈ F1 then the connected component of F1 containing u is the set

KF1
u = Exp (A) u Exp (A) .

(ii) If u ∈ F1 then u belongs to the centre of A if and only if

KF1
u = Cu \ {0} .

Proof. (i) Using the idea that for a, b ∈Exp(A) with

a =
k∏

i=1

exi , b =
n∏

i=1

eyi , n ≥ k
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g (t) =
n∏

i=1

etxi+(1−t)yi , xi = 0 for i > k, t ∈ [0, 1]

is a path in Exp(A) connecting a and b, it follows that KF1
u is arcwise connec-

ted. We show KF1
u is maximal connected in F1. Let u ∈ F1 and let (rn u sn) be

a sequence in KF1
u such that rn u sn → v ∈ F1. If v ∈ F1

1 then, by continuity
of the trace, we may assume (rn u sn) ⊆ F1

1 . So for n sufficiently large

rσ

(
rn u sn

tr (rn u sn)
− v

tr (v)

)
< 1

and hence by ([14], Lemma 3.1) we have v ∈ KF1
u . If v ∈ F0

1 then the above
argument does not apply directly. Using Lemma 1(ii), there is a ∈ exp (A)
such that va ∈ F1

1 . Since rn u sna → va it follows by the first argument that
va ∈ KF1

u and hence that v ∈ KF1
u . This proves KF1

u closed in F1. On the
other hand, if (vn) is a sequence in F1\KF1

u and vn → r u s ∈ KF1
u then

r−1vns−1 → u and, using the same argument above, it follows that vn ∈ KF1
u

for n sufficiently large, which is a contradiction. This proves that KF1
u is open

in F1 and hence KF1
u is maximal connected in F1.

(ii) Suppose u ∈ F1 belongs to the centre of A. From (i) it follows that
KF1

u = u Exp(A) . By the observation preceding Lemma 2.1, u ∈ F1
1 . Hence

if uv ∈ uExp(A) then also uv ∈ F1
1 and so in view of Lemma 2.1(i) we have

that

uv = αw−1uw = αu where v, w ∈ Exp (A) and 0 6= α ∈ C.

By homogenity in v we have

KF1
u = Cu \ {0} .

Suppose, on the other hand, that KF1
u reduces to Cu \ {0} . If u ∈ F0

1 then
by Lemma 2.1(ii) there is v ∈ exp (A) such that uv ∈ F1

1 . But also, uv ∈ KF1
u

and thus uv = αu, 0 6= α ∈ C. This is a contradiction since (uv)2 = α2u2 = 0
implies uv ∈ F0

1 . So we must have u ∈ F1
1 . Now since

w−1uw

tr (u)
∈ KF1

u , w ∈ Exp (A)

it follows that for each w ∈Exp(A) there is 0 6= α ∈ C such that

w−1uw

tr (u)
= αu.
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Moreover, since the left hand side is an idempotent, we must have α = 1
tr(u)

for each w. From ([14], Corollary 3.5) it follows that u
tr(u) and hence u, is

central.

Recall that a left ideal J is a minimal left ideal in A if and only if J = Au
where u is some element of F1. The following corollary may effect a significant
simplification of minimal ideals in view of the fact that Exp(A) ⊆ A−1.

Corollary 2.3. Let A be a semiprime Banach algebra with F1 6= ∅.
Every minimal left ideal J of A has the form

J = Exp (A) u ∪ {0} with u ∈ F1.

Similarly, every minimal right ideal has the form

J = u Exp (A) ∪ {0} with u ∈ F1.

Proof. Since a left ideal J ⊆ A is minimal if and only if J = Au where u ∈
F1 it suffices to prove that Au =Exp(A) u ∪ {0} for u ∈ F1. Since A is
connected it follows from Theorem 2.2 that

(2.1) Exp (A) uExp (A) = Au A− {0}

and hence that

(∗) Exp (A) uExp (A) u ∪ {0} = Au Au.

Since A is semiprime, u ∈ F1 and Exp(A)+ Exp(A) = A we have that

(∗∗) uExp (A) u ∪ {0} = uA u = Cu.

Combining (∗) and (∗∗) we obtain Exp(A) u ∪ {0} = Au. The proof for a
minimal right ideal follows along the same lines.

The equivalence of (1.1) and (1.4) for semisimple A follows almost trivially.

Corollary 2.4. Let A be a semisimple Banach algebra with F1 6= ∅.
Then u ∈ F1 if and only if u is a single element of A and u acts compactly
on A. Thus, for semisimple A, the rank one definitions (1.1), (1.2) and (1.4)
are equivalent.
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Proof. Because of ([6], Theorem 4) we have that u single and u acting
compactly imply u ∈ F1. If u ∈ F1 then the Bolzano–Weierstrass Theorem
implies u acts compactly on A. Also, if aub = 0 for some a, b ∈ A and au 6= 0
then Corollary 2.3 implies au = vu for some v ∈Exp(A) . This means that
vub = 0 and hence ub = 0. So u is single.

Remark. For a ∈ A−1 the connected component of A−1 containing a is
given by

KA−1

a = Exp (A) a.

But since Exp(A) is a normal subgroup of A−1 we may write

KA−1

a = Exp (A) a = aExp (A) = Exp (A) a Exp (A) .

Consideration of algebras of matrices shows that even in the simplest of non-
commutative cases we may have

KF1
u 6= Exp (A)u 6= uExp (A) 6= KF1

u for u ∈ F1.

Proposition 2.5 is Theorem 2.2 in [2] for rank one elements in the setting of
semiprime Banach algebras. We provide a simple direct proof in this case.

Proposition 2.5. If A is a semiprime Banach algebra with u ∈ F1 then
KF1

u ∩ F1
1 is dense in KF1

u .

Proof. Let x ∈ KF1
u be nilpotent. Since A is semiprime we may choose a ∈

A such that ax ∈ KF1
u and ax ∈ F1

1 . If (λn) is a sequence in C with λn 6= 0 and
λn → 0, then (λna + 1)x → x. Since (λna + 1)x 6= 0 we have (λna + 1)x ∈
KF1

u (Corollary 2.3) for each n and since [(λna + 1)x]2 = λ2
n (ax)2 + λnxax 6=

0, it follows that ((λna + 1)x) ⊆ KF1
u ∩ F1

1 .

In view of Theorem 2.2, we observe that if we use the idea in Proposition
2.5 then we even have:

Proposition 2.6. Let A be semiprime with F1 6= ∅ and let u ∈ F1
1 . Then

KF1
u = exp (A) u exp (A) \ {0} .

In particular if KF1
u contains no nilpotent elements then

KF1
u = exp (A) u exp (A) .
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Proof. We may assume u is idempotent for otherwise, replace u by u
tr(u) .

Let aub ∈ KF1
u . If au, ub ∈ F1

1 then by Lemma 2.1(i) au = αexue−x and
ub = βeyue−y, α, β ∈ C and x, y ∈ A. So, since u ∈ F1, aub = γexue−y for
some 0 6= γ ∈ C. Thus

aub = ex+λ
2 u e−y+λ

2 where eλ = γ,

and hence
aub ∈ exp (A) u exp (A) .

If au ∈ F0
1 let (λn) ⊆ C, λn 6= 0 be a sequence with λn → 0. Now for each n

[(λn + a) u]2 = λ2
nu + λnau

since au ∈ F0
1 and a ∈Exp(A) . Note that λ2

nu + λnau 6= 0 for each n since
u2 6= 0. Thus we have

(λn + a) u → au with each (λn + a)u ∈ F1
1 .

Appealing to Lemma 2.1(i) again

(λn + a) u = αnexnu e−xn with αn ∈ C and xn ∈ A.

Similarly if ub ∈ F0
1 then

u (λn + b) = βneynu e−yn with βn ∈ C and yn ∈ A.

As in the first part of the proof

aub = lim
n→∞ exn+ γn

2 ue−yn+ γn
2

where (γn) is some sequence in C. So we have

aub ∈ exp (A) u exp (A) \ {0} .

If A is a semiprime Banach algebra with F1 6= ∅ is it possible that every
idempotent belongs to F1? Obviously this holds for C2 and a few calculations
show that also M2 (C) possesses this property. We can use the component
structure, and in particular the fact that distinct components are orthogonal,
to show that these examples are the only semiprime Banach algebras with this
property.
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Theorem 2.7. Let A be a semiprime Banach algebra. Then the following
are equivalent:

(i) A contains a minimal idempotent p such that 1− p is also minimal.

(ii) Every idempotent p ∈ A is minimal.

(iii) A is isomorphic to C2 or A is isomorphic to M2 (C) .

Proof. (iii) ⇒ (ii) . A standard computation shows C2 and M2 (C) have
every idempotent minimal.
(ii) ⇒ (i) . Trivial.
(i) ⇒ (iii) . Let p and 1− p both belong to F1. Then we have that ([3], §30.6
and §30.7) implies that Ap is a maximal and a minimal left ideal of A. So
if A is not semisimple then Rad(A) ⊆ Ap =Exp(A) p ∪ {0} , which implies
p ∈ Rad(A) . But this is absurd and we conclude that A is semisimple. If p is
central then we may write

A = pAp⊕ (1− p) A (1− p) = Cp⊕ C (1− p)

which proves dim (A) = 2. From the Wedderburn–Artin Theorem it follows
that A is isomorphic to C2. Suppose p is not central. We show that dim (Ap) =
2 = dim (A (1− p)) . If KF1

p 6= KF1
1−p then for any v, w ∈Exp(A) we have

(1− p) vp = 0 = vp− pvp and pw (1− p) = 0 = pw − pwp.

Since v, w ∈Exp(A) were arbitrary in Exp(A) it follows that KF1
p = Cp \ {0} .

But, using Theorem 2.2(ii), this means that p is central, which contradicts
our assumption. So we must have KF1

p = KF1
1−p. Let x ∈ Ap, x 6= 0.

From Corollary 2.3 we have that x = vp for some v ∈Exp(A) . We can
now write vp = w (1− p) u where w, u ∈Exp(A) . Multiplying the above
equation throughout by 1 − p on the left and by p on the right we obtain
vp = λup + γp where λ, γ ∈ C. Since p is not central we may assume that
{up, p} is linearly independent, for otherwise we may prove there is a linearly
independent set {pw, p} (w ∈ Exp (A)) in pA. We claim {up, p} is a basis for
Ap =Exp(A) p ∪ {0} . Let v′ ∈Exp(A) . Then since v′p = v′v−1vp we have
that

Ap = Exp (A) w (1− p) u ∪ {0} .

So, for nonzero xp = aw (1− p) u, a ∈Exp(A) it follows

(1− p) xp = (1− p) aw (1− p) up
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implies that xp = α1up + α2p for some α1, α2 ∈ C. Thus dim (Ap) = 2.
Now, using a similar idea, we may prove that 1 ≤ dim (A (1− p)) ≤ 2. If
dim (A (1− p)) = 1 then dim (A) = 3 which is impossible since A is semisimple
and noncommutative. Thus dim (A (1− p)) = 2. Since A = Ap⊕ A (1− p) it
follows from the Wedderburn–Artin Theorem that A is isomorphic to M2 (C) .

Although it is constructive in the second part of the above proof to find a
basis for Ap, one can directly conclude that dimA ≤ 4; if x is invertible, then
in view of xp and x (1− p) being rank one and

A ⊆ xAx = xpAxp + xpAx (1− p) + x (1− p) Axp + x (1− p) Ax (1− p) ,

it follows from ([6], Theorem 4) that dimA ≤ 4.
The last part of the proof of Theorem 2.7 suggests that the semiprime

condition cannot be omitted. Indeed, if A is the nonsemiprime unital subal-
gebra of M2 (C) consisting of matrices with the lower left entries equal to zero
then A contains a minimal idempotent p such that 1− p is also minimal, but
dim (A) = 3.

Let us suppose now that A is semiprime with F1 6= ∅ but that A is not
semisimple. As we have mentioned earlier, F1  G1, since Rad(A) \ {0} ⊆ G1

and Rad(A)∩F1 = ∅. Of course there may be other elements (besides Rad(A))
that belong to G1 but not to F1. In fact, as we shall see (Theorem 2.10(v)),
these elements constitute an important subset of G1.

Lemma 2.8. Let A be a semiprime Banach algebra such that A is not
semisimple and suppose a /∈ Rad (A). Then a ∈ G1 if and only if, given any
x ∈ A, there is a unique λ ∈ C such that axa− λa ∈ Rad (A).

Proof. Let a ∈ G1 with a /∈ Rad (A). If B = A/Rad (A) and ẋ denotes the
coset element of B under the canonical homomorphism then, since σA (x) =
σB (ẋ) for each x in A and F1 = G1 in B ([8], Theorem 4), the existence of λ
follows. If λ1 6= λ also satisfies axa−λ1a ∈ Rad (A), then (λ− λ1) a ∈ Rad (A)
implies a ∈ Rad (A) which contradicts our assumption. On the other hand, if
for x ∈ A arbitrary, there is a unique λ ∈ C such that axa−λa ∈ Rad (A), then
we have σ

(
(xa)2−λxa

)
= {0} . By the Spectral Mapping Theorem α ∈ σ (xa)

must satisfy α2 − λα = 0 and hence #σ (xa) \ {0} ≤ 1. Thus a ∈ G1.

Thus, the elements of G1 that belong to neither F1 nor Rad (A) are exactly
those a ∈ A for which, given x ∈ A, there exist a unique λ ∈ C such that
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axa − λa ∈ Rad (A) with at least one x0 ∈ A satisfying ax0a − λ0a 6= 0.
Note that, using Lemma 2.8, we have A contains an invertible a ∈ G1 iff
A/Rad (A) ∼= C. Of course, by the Gelfand-Mazur Theorem, A contains an
invertible a ∈ F1 iff A ∼= C. If A is semisimple then F1 and G1 coincide so
that the component of G1 containing u ∈ G1 is the set

KG1
u = Exp (A) u Exp (A) .

Suppose again A is semiprime but not semisimple. Let a 6= 0, a ∈ Rad (A).
Now if u ∈ A is any other element of G1, then for t ∈ [0, 1] and x ∈ A arbitrary
we have from ([15], p. 3) that

σ
(
x (tu + (1− t) a)

)
= σ (txu)

which shows that the line with end points u and a belongs to G1. We have the
following:

Proposition 2.9. If A is semiprime but not semisimple and u ∈ G1 then
KG1

u = G1, so that G1 is connected.

For a semiprime A which is not semisimple we call an element of G1 that
neither belongs to F1 nor to Rad (A), quasispatially rank one. The set of
quasispatially rank one elements is denoted by H1.

Theorem 2.10 gives the relationships between the disjoint constituent parts
F1, H1 and Rad (A)\{0} of G1. We first give an example of a semiprime
Banach algebra which is not semisimple such that F1 = ∅ but H1 6= ∅.

Let A be the Banach space of all complex functions that are defined and
continuous on the closed unit disc, D, in C and analytic on its interior. The
norm on A is the usual sup norm, ||f || = supλ∈D |f(λ)|, but multiplication is
defined by convolution

f ∗ g (λ) =
∫ λ

0
f (λ− µ) g (µ) dµ

=
∫ 1

0
f (λ (1− s)) g (λs) λ ds.

Now A is a commutative Banach algebra which is semiprime but not
semisimple ([11], p. 507–508), and in fact A = Rad (A). If A1 is the unital
Banach algebra obtained as the result of formally adjoining a unit element to
A, then it’s easy to see that F1 = ∅ but H1 6= ∅ in A1.
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Theorem 2.10. Let A be a semiprime Banach algebra such that A is not
semisimple and suppose F1 6= ∅. Then

(i) F1 ∩ Rad (A) = {0}.
(ii) F1 · Rad (A) = Rad (A) · F1 = {0}.
(iii) F1 and Rad (A) \ {0} are closed in G1 and hence H1 is open in G1 with

H1 6= ∅.
(iv) Rad (A) \ {0}+ F1 ⊆ H1.

(v) H1 is dense in G1.

Proof. (i) We already have F1 ∩ Rad (A) = ∅. If (un) is a sequence
in F1 converging to an element u ∈ Rad (A), then, since A is semiprime,
we can find a sequence of idempotents converging to a radical element. But
this contradicts the continuity of the spectrum on Rad (A), hence F1∩
Rad (A) = ∅.
(ii) It suffices to prove F1 ·Rad (A) = {0} . Let u ∈ F1 and r ∈ Rad (A), r 6= 0.
If ur 6= 0 then ur ∈ F1 and ur ∈ Rad (A) which is impossible by (i).
(iii) Obviously Rad (A) \ {0} is closed in G1. Let (un) be a sequence in F1

such that un → u ∈ G1. It follows from (ii) that u /∈ Rad (A). So if u /∈ F1

then u ∈ H1 and by the comments following Lemma 2.8 there are x0 ∈ A and
λ0 ∈ C such that ux0u − λ0u = r ∈ Rad (A), r 6= 0. Now unx0un = λnun

where (λn) is a convergent sequence in C, say λn → λ ∈ C. It follows that
λu − λ0u = r. Since r 6= 0, λ 6= λ0 which means u ∈ Rad (A). But this is
impossible by (i) so F1 is closed in G1. Clearly we have now that H1 is open
in G1 and moreover, if H1 = ∅ then this would contradict Proposition 2.9, so
H1 6= ∅.
(iv) Let r ∈ Rad (A) \ {0} and u ∈ F1. Now u + r ∈ G1 ([15], p. 3) and
certainly u + r /∈ Rad (A). If u + r ∈ F1 then, (using (ii)), given any x ∈ A
there is λ such that uxu + rxr = λu + λr. But corresponding to x there is
λx ∈ C such that uxu = λxu. If λx 6= λ then u ∈ Rad (A) which is impossible
and if λx = λ then rxr = λr. But if the latter instance occurs for every x ∈ A
then we would have r ∈ F1 which is absurd. So we conclude u + r ∈ H1.

(v) If u ∈ F1 and r ∈ Rad (A) \ {0} , then by (iv) the interior of the line
segment joining u and r belongs to H1. Thus H1 is dense in G1.

With respect to Theorem 2.10 it would be interesting to know in which
cases (if any) one can have equality in (iv). Also note that if F1 6= ∅ is replaced
by F1 = ∅ in Theorem 2.10, then either H1 = ∅ or H1 is dense in G1.
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We finally observe that the perturbation theory for F1 ([8], Theorem 5)
carries verbatimly over to G1.

Proposition 2.11. If A is semiprime, if a ∈ A and if d ∈ G1, then

acc σ (a + d) ⊆ σ (a)ˆ

where acc σ (a + d) denotes the set of accumulation points of σ (a + d) and
σ (a)ˆ denotes the polynomially convex hull of σ (a) .

Proof. If d ∈ G1 in A then the coset element ḋ in A/Rad (A) belongs to F1.
Since the spectrum is invariant under the canonical homomorphism x 7−→ ẋ
the result follows by consideration of ([8], Theorem 5).
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