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Piazza Aldo Moro, Roma, Italia

e-mail: castillo@unex.es

AMS Subject Class. (2000): 46B25, 46A16, 46B08 Received December 13, 2002

p-summable sequences in E[τ ]

We follow the notation of [7,10]. In particular, if E[τ ] is a locally convex
space (in short l.c.s.), σ(E, E∗), µ(E,E∗) and β(E,E∗) will denote, respecti-
vely, the weak, Mackey and strong topology corresponding to the dual pair
〈E, E∗〉. If U is a neighbourhood of 0 in E[τ ], EU denotes the Banach space
associated to U and φU : E → EU denotes the corresponding quotient map.

Definition 1. Let E[τ ] be an l.c.s. and let 1 ≤ p < +∞. A sequence
(xn) in E is said to be p-summable if, for each τ -continuous seminorm q,∑

n q(xn)p < +∞.

The space of p-summable sequences shall be denoted by lp(E[τ ]). Elemen-
tary properties of these spaces can be found in [6, 7, 9]. The conjugate number
of p is the number p∗ such that p + p∗ = pp∗ ; if p = 1 we agree that p∗ = ∞;
and, in this case, lp∗ has always to be understood as c0.

The choice τ = σ(E, E∗) is especially interesting. In this case we speak
of weakly-p-summable sequences. The notion of weakly-p-summable sequence
only depends upon the dual pair 〈E, E∗〉.

Lemma 2. A sequence (xn) ∈ lp(E[σ(E, E∗)]) if and only if there is a
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β(E∗, E)-neighborhood U of 0 such that

sup
x∗∈U

∑
n

|〈x∗, xn〉|p < +∞.

Proof. The sufficiency is evident. To see the necessity, define the applica-
tions

Tn : E∗ −→ lp

x∗ −→ (〈x∗, x1〉, 〈x∗, x2〉, . . . , 〈x∗, xn〉, 0, . . . ),

which are clearly σ(E∗, E)-continuous. Since (xn) is weakly-p-summable, the
sequence (Tnx∗) is bounded for all x∗ ∈ E∗. Thus, being the strong topology
barrelled, ∩n∈NT−1

n (Blp) is a β(E∗, E)-neighborhood of 0.

A weaker form of Lemma 2 is usually established replacing “β-neighbo-
rhood” by “τ - equicontinuous set” in Lemma 2 (see, e.g.,[6]). A simple cha-
racterization of weakly-p-summable sequences of E[τ ] is given by the following

Lemma 3. Let 1 ≤ p < +∞. Let (xn) be a sequence in a locally convex
space E[τ ]. The following statements are equivalent:

1. The sequence (xn) belongs to lp(E[σ(E, E∗)]);

2. For each ϕ ∈ l∗p, the series
∑

n ϕnxn is τ -Cauchy;

3. For each τ -continuous seminorm q there exists a constant Cq ≥ 0 such
that

q
( ∑

n∈∆

ϕnxn

) ≤ Cq‖ϕ‖lp∗ ,

for any finite set ∆ ⊂ N;

4. For each τ -neighborhood U of 0, the sequence (φU (xn))n belongs to the
space lp(EU [σ(EU , E∗

U )]).

Proof. 1 ⇒ 3. If q denotes a τ -continuous seminorm,

q
( ∑

n∈∆

ϕnxn

)
= sup

x∗∈U◦q

∣∣〈x∗,
∑

n∈∆

ϕnxn〉
∣∣

≤ sup
x∗∈U◦q

( ∑

n∈∆

|〈x∗, xn〉|p
)1/p‖ϕ‖lp∗ ,

≤ Cq‖ϕ‖lp∗ .
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The equivalence 3 ⇔ 4 is evident. That 3 ⇒ 2 is very easy. That 2 ⇒ 1
is clear: since 2 implies that, for all x∗ ∈ X∗ and all (ϕn) ∈ lp∗ , the series∑

nϕn〈x∗, xn〉 converges, hence (〈x∗, xn〉) ∈ lp.

Remark 1. Therefore, a sequence (xn) belongs to lp(E[σ(E,E∗)]) if and
only if the set

convp*(xn) =
{ ∑

n∈∆

θnxn : ∆ ⊂ N , finite and (θn) ∈ Bl∗p

}
,

that shall be called the p∗-convex hull of (xn), is bounded. Thus, all topologies
having the same bounded sets as σ(E, E∗) have the same weakly-p-summable
sequences. Notice that convp*(xn) is an absolutely convex set, hence its closure
is the same no matter which compatible topology one uses. When p = 1, then
we set

conv∞(xn) =
{ ∑

n∈∆

θnxn : ∆ ⊂ N , finite and |(θn)| ≤ 1
}

.

Remark 2. Since the notion of weakly-p-summable sequence depends only
upon the dual pair, it is possible to replace “τ -Cauchy” in 2 by “σ(E, E∗)-
Cauchy”. Moreover, if E[τ ] is quasi-complete, then condition 2 can be replaced
by

2’. For each ϕ ∈ lp∗ ,
∑

n ϕnxn is τ -convergent,

obtaining thus an identification

L(lp∗ , E[τ ]) = lp(E[σ(E, E∗)]

in the form xn = Ten. The dependence upon the dual pair makes it perhaps
more correct refer properties to the Mackey topology. Thus, if E[µ] is quasi-
complete, one has

L(lp∗ , E[µ]) = lp(E[σ(E, E∗)] = L(lp∗ , E[τ ]).

Remark 3. A question of some interest by its own finds an answer in this
context: recall that if (xn) is a bounded sequence in a Banach space such
that for all x∗ of a dense subset of x∗, lim〈x∗, xn〉 = 0, then (xn) is weakly
null. Will this be still true for weakly-p-summable sequences? The answer
is no: just consider, for instance, the space l2; the sequence (en) is weakly-1-
summable for the topology σ(l2, l1), l1 is dense in l2, but the sequence (en) is
not weakly-1-summable in l2 with respect to the norm topology.
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Remark 4. On a dual space E∗, weakly-p-summable and weakly*-p-
summable sequences do not necessarily coincide. Weakly-p-summable se-
quences are obviously weakly*-p-summable; to obtain the converse one would
need, following Lemma 2, that β(E∗∗, E)|E = β(E, E∗). Hence, the two no-
tions coincide on duals of barrelled, quasi-complete or semi-reflexive spaces.

Definition 4. We say that an application T : E[τ ] → F [ρ] is p-convergent,
or briefly T ∈ Cp(τ, ρ), if it induces an application between the sequence spaces

Tind : lp(E[τ ]) → c0(F [ρ]).

When p = +∞ then it is understood that the induced application acts
from c0(E[τ ]) into c0(F [ρ]).

Obviously, when T is (τ, ρ)-continuous then it belongs to Cp(τ, ρ). Thus,
it is only interesting to know what happens when T is not continuous. The
main example is the action of the identity id : E[σ(E, E∗)] → E[τ ], when τ is
another topology compatible with the duality 〈E, E∗〉.

Definition 5. We shall say that E[τ ] ∈ Cp, 1 ≤ p ≤ +∞, or that E[τ ] is
a Cp-space, if the formal identity id :E[σ(E, E∗)] → E[τ ] is p-convergent.

Remark 5. The property C∞ is usually called the Schur property.

It is clear that subspaces and arbitrary products of Cp-spaces are again
Cp-spaces. Since bounded sets in locally convex sums are actually contained
in convex hulls of the images of bounded sets in a finite number of factors,
Remark 1 yields that a locally convex sum of Cp- spaces is a Cp-space. Quo-
tients of Cp-spaces need not be Cp-spaces (quotients of l1 for example). Recall
that a property P is said to be a three-space property if whenever Y and X/Y
have P then X has P.

Proposition 6. In the class of metrisable spaces, to be a Cp-space is a
three-space property.

Proof. Let (Un) be a fundamental sequence of neighbourhoods of 0 for a
metrisable space F ; we assume that Um + Um ⊂ Um−1. Let E and F/E be,
respectively, a subspace and the corresponding quotient space, and assume
that E and F/E are Cp- spaces. Let (xn) be a weakly-p-summable sequence
in F. It is clearly enough to obtain a convergent subsequence. If Q : F → F/E
denotes the quotient map, (Q(xn)) is a weakly-p-summable sequence in F/E
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and, therefore, convergent to 0. This means that, for all m there exists N(m)
such that Q(xn) ⊂ Q(Um). Thus, for each m there exists N(m) so that if
n ≥ N(m) it is possible to find yn,m ∈ E such that xn − yn,m ∈ Um.

By diagonalisation, and relabelling the indexes if necessary, a new sequence
(yn) can be obtained such that xn−yn ∈ 2−nUn, for all n of some subsequence.
The sequence (yn) is as weakly-p-summable in E as (xn) was in F : observe
that the set convp*((yn)n) is bounded, since given a neighborhood Um with
m ≥ M and scalars θi with |θi| ≤ 1 one has

M+N∑

M+1

θi(xi − yi) ∈
M+N∑

M+1

θi

2i
Ui ⊂ 1

2M
UM ⊂ UM .

Thus, the sequence (yn) is convergent to 0, and so is (xn).

Remark 6. The ideal Cp of p-converging operators in Banach spaces, defi-
ned as those transforming weakly-p-summable sequences into convergent ones,
was introduced and studied in [1, 2]. The ideal Cp is intermediate between
the ideals C1 = U of unconditionally converging operators (those transfor-
ming weakly-1-summable sequences into summable sequences) and the ideal
C∞ of completely continuous or Dunford-Pettis operators (those transforming
weakly convergent sequences into convergent sequences). Perhaps the most
natural examples of such operators are the identities of the spaces lp.

Proposition 7. id(lp) ∈ Cr for all r < p∗.

Proof. Let (xn) be a weakly-r-summable sequence in lp. If it is norm null,
we have finished. If not, an application of the Bessaga-Pelczynski selection
principle yields a subsequence equivalent to certain blocks of the canonical
basis of lp (recall here that two sequences (xn) and (yn) are called equivalent
if there is an isomorphism between their closed spans T : [xn] → [yn] such that
Txn = yn). Since blocks of the canonical basis of lp are weakly-p∗-summable,
but not weakly-r-summable when r < p∗, the proof is complete.

It is worth introducing here the Grothendieck space ideal defined by the
ideals Cp: a l.c.s. E[τ ] ∈ Groth(Cp) if it can be written as a projective limit
of Cp-operators between the associated Banach spaces. For instance, any
projective limit of subspaces of lp belongs, for all r < p∗, to Groth(Cr); any
Schwartz space belongs, for all 1 ≤ r ≤ +∞, to Groth(Cr). It is also clear
that if E[τ ] ∈ Groth(Cp) then E[τ ] ∈ Cp, and an interesting question is under
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which hypotheses the converse is also true. We shall show that this is not
always the case:

Examples. Let λp be Köthe’s example of a Fréchet-Montel non Schwartz
echelon space of order p, 1 < p < +∞, (see [8, 10]). Since weakly convergent
sequences are convergent in Fréchet- Montel spaces, λp ∈ Cr for all r. Since
λp is a projective limit of the spaces lp, by Proposition 3 λp ∈ Groth(Cr) for
all r < p∗. However, one can show (see the proof of Proposition 7) that every
Cp∗-operator on lp is compact; since λp is not a Schwartz space, we conclude
that λp ∈ Groth(Cr) for all r < p∗, but not to Groth(Cp∗). There exists a
modification of this example [8]: a Fréchet-Montel non Schwartz echelon space
or order 0, which yields a counterexample for p=1.

The Grothendieck space ideal Groth(Cp) has the same stability properties
as the smallest class of Cp-spaces. Moreover,

Proposition 8. Groth(Cp) is a three-space class.

Proof. Let E be a locally convex space, and let F be a closed subspace
and E/F the corresponding quotient space with quotient map Q : E → E/F.
Assume that both E and E/F belong to Groth(Cp). The proof is easy procee-
ding this way: Let U be a neighborhood of 0 in E. Since E/F is in Groth(Cp),
there exists some neighborhood V ⊂ U such that the linking map

FV → FU

is in Cp. Then, select another neighborhood W ⊂ V such that the linking
map

(E/F )Q(W ) → (E/F )Q(V )

is in Cp. Let now (xn) be a weakly-p-summable sequence in EW . Its image
in (E/F )Q(W ) is also weakly-p-summable and thus lim pQ(V )(xn + F ) = 0.
Choosing elements (yn) in F such that pV (xn − yn) ≤ 2−n the estimate
sup pW (

∑
n θnxn) < ∞ (the supremum taken over all finite combinations with

(θn) in the unit ball of lp∗) yields that the sequence of the images of (yn) is
weakly-p-summable in EV . Hence lim pU (yn) = 0, and lim pU (xn) = 0.

Proposition 9. Let 1 ≤ p < +∞ and let E[τ ] be a quasi-complete l.c.s.
Then E[τ ] ∈ Cp if and only if all continuous operators from lp∗ into E[τ ] are
compact.
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Proof. Necessity (the case p=1 will be treated apart): Let p > 1 and
let T be a continuous operator T : lp∗ → E[τ ]. Given any bounded sequence
(xn) in lp∗ , a point x and a subsequence (xm) exist such that (xm − x) is
weakly-p-summable (as in the proof of Proposition 7). Therefore, the sequence
(T (xm−x))m is weakly-p-summable in E[τ ], and thus it must be τ -convergent
to zero. This means that T (Blp∗ ) is a relatively sequentially compact set,
which in a quasi-complete space means relatively compact.

Case p = 1 (lp∗ = c0): Let T be a continuous operator, T : c0 → E[τ ]. Since
E[τ ] ∈ C1, for every τ -neighborhood U of 0 the composition φUT belongs to
C1(c0, EU ) and must be compact. The operator T is necessarily compact.

Sufficiency (the case p = 1, lp∗ = c0, is also covered by this argument): Let
(xn) be a weakly- p-summable sequence of E. Since E[τ ] is quasi- complete,
the spaces of operators L(lp∗ , E[τ ]) and lp(E[σ(E, E∗)]) can be identified; thus,
xn = Ten for some continuous operator T : lp∗ → E[τ ] which, by hypothesis,
is compact. So, (xn) is τ - convergent.

Remark 7. Regarding Remark 2 and Proposition 9, the Proposition 7 is,
essentially, a reformulation of the result known as Pitt’s theorem: All opera-
tors lp → lq are compact if and only if p > q.

The topology µp

It is clear that the formal identity id : E[σ(E, E∗)] → E[τ ] belongs to Cp

for all p when τ = σ(E, E∗). If τ is replaced by a finer topology, the index p
surely decreases. This observation originates the following definition.

Definition 10. Let E[τ ] be a locally convex space and let 1 ≤ p < +∞.
We shall denote by µp the topology of the uniform convergence on the p∗-
convex hull of the weakly*-p-summable sequences of E∗.

Recall that for quasi-complete spaces E and 1 ≤ p < +∞ it makes no
difference to consider the p∗-convex hull of weakly*-p-summable sequences of
E∗ (see Remark 4). For p = +∞ the topology µ∞ is the topology of the
uniform convergence on the absolutely convex hull of weakly* null sequences
in E∗. It is clear that σ(E, E∗) ≤ µp(E,E∗) ≤ µq(E,E∗) ≤ µ∞(E, E∗),
for 1 ≤ p ≤ q < +∞. In barrelled or, more generally, in spaces having
quasi-complete duals (in some compatible topology) the topologies µp are
compatible: The first assertion directly follows from Lemma 2. To see that
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µp(E, E∗) ≤ µ(E,E∗), one needs to verify that the p∗-convex hull of a weakly-
p-summable sequence in E∗ is σ(E∗, E)-relatively compact. If the space, say,
E∗[µ] is quasi-complete, then the closure of that set is the continuous image
of the unit ball of lp∗ as described in the Remark 2. It is, therefore, weakly
compact. The proof for p = 1 is a consequence of this. In barrelled spaces the
topology µ∞ is compatible since the absolutely convex hull of weakly* null
sequences is a relatively weakly* compact set.

If E[τ ] does not satisfy any of the hypotheses, then the topologies could be
not compatible: consider, for instance, the space l2 endowed with the Mackey
topology µ(l2, ϕ), where ϕ is the countable dimensional space. It turns out
that µ(l2, ϕ) is not compatible with µ2(l2, ϕ) which turns out to be the norm-
topology. Also, µ∞(c0, ϕ), the norm topology, is not compatible with µ(c0, ϕ).

Two interesting properties of the µp-topologies are contained in the follo-
wing proposition.

Proposition 11. Let E[τ ] be a barrelled locally convex space and let
1 < p < +∞. The topology µp is the strongest locally convex compatible
topology on E such that E[µp] can be written as a projective limit of subspaces
of lp . Therefore E[µp] ∈ Groth(Cr) for r < p∗.

Proof. A weakly-p- summable sequence (x∗n) of E∗ induces a µp-continuous
application from E → lp in the form: x → (〈x∗n, x〉) : in fact, the Banach
spaces associated to µp are isometric to subspaces of lp since

( ∑
n

|〈x∗n, x〉|p)
1
p = sup

θ∈Blp∗

∣∣ ∑
n

θn〈x∗n, x〉∣∣

= sup
θ∈Blp∗

∣∣〈∑nθnx∗n, x〉∣∣ = p(conv
p* (x∗n))◦(x).

On the other hand, if ρ is another compatible topology on E such that E[ρ]
can be written as a projective limit of subspaces of lp then ρ ≤ µp, as we now
show: Let U be a ρ-neighborhood of 0. Using appropriate identification it is
possible to assume that EU is a subspace of lp, which gives a quotient map
lp∗ → E∗

U◦ . This implies that U◦ ⊂ convp*(x∗n) for some weakly-p-summable
sequence of E∗. Therefore {convp*(x∗n)}◦ ⊂ U and our assertion is proved.

Remark 8. The space E[µ∞] can be written as a projective limit of sub-
spaces of c0, which does not imply that E[µ∞] ∈ C1 since the norm topology
coincides with µ(c0, l1) on c0.
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Remark 9. An interesting question is to give conditions to guarantee that
µp is the strongest compatible locally convex topology having the property
Cr for all r < p∗. Note that µ2 in l1 is not the strongest compatible locally
convex topology such that weakly-r-summable sequences, r < 2, are norm-
null. Such topology is precisely the Mackey topology, strictly stronger than
µ2 since many absolutely convex weakly compact sets of l∞ are not of the
kind conv2(x∗n). This also shows that the topology µ1 does not admit the
nice description of the Proposition 11: µ1 is not the strongest locally convex
topology on l1 making the space a projective limit of l1, since µ1 ≤ µ2 < µ.

Spaces of p-summable sequences

Observe that the space lp(E[τ ]) carries a natural topology induced by τ ,
that we shall call N , defined by the seminorms

NU ((xn)) = ‖(pU (xn))‖lp ,

where U is a τ -neighborhood of 0. It is easy to verify that N has a fundamental
system of associated Banach spaces isometric to lp(EU ), where U runs through
a fundamental system of τ -neighbourhoods of 0.

There are some operators on the space lp(E[τ ]) endowed with the N -
topology worth of being called natural: either operators lp(E[τ ]) → E[τ ]
projecting a finite number of coordinates or operators lp(E[τ ]) → lp having
the form (xn) → 〈fn, xn〉n for some sequence (fn) contained in the polar of
some τ -neighbourhood of 0.

We shall characterise weakly-p-summable and N -null sequences in terms
of their continuous images by natural operators. This characterisations can
be considered extension of classical results about weakly null and norm null
sequences in vector sequence Banach spaces [10].

Proposition 12. Let 1 ≤ r ≤ +∞. A bounded sequence of lp(E[τ ])[N ]
is weakly-r-summable if and only if every natural operator transforms it into
a weakly-r-summable sequence.

Proof. The only if is obvious. Firstly observe that, when E is a Banach
space, then lp(E)[N ]∗ is isometric to lp∗(E∗). Moreover, if h∗ is an element
of l∞(E∗), it induces a projection H : lp(E)[N ] → lp by means of H(f)(k) =
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〈h∗(k), f(k)〉. Thus, given g∗ ∈ lp∗(E∗) one has
∑

n

|〈g, fn〉|r =
∑

n

∣∣ ∑

k

‖g∗(k)‖E∗〈‖g∗(k)‖−1g∗(k), fn(k)〉∣∣r

=
∑

n

∣∣〈(‖g(k)‖)lp∗ , (‖g(k)‖−1g(k)fn(k))lp

〉∣∣r

< +∞.

The proof for an arbitrary space E[τ ] easily follows from the representation
of lp(E[τ ])[N ] as a projective limit of lp(EU ).

Remark 10. The space lp plays no especial role and can be replaced by
any Banach sequence space having an unconditional basis (ek). The vec-
tor sequence space λ(X) is then defined as the space of sequences (xn) ⊂
X such that

∑
n ‖xn‖en is in λ. The norm of λ(X) is given by ‖(xn)‖ =

‖∑
n ‖xn‖en‖λ.

For projective tensor products with an lp space we have an analogous
result. Since natural operators include in this case the projections onto obvious
copies of either lp or E[τ ], we state the result in these terms. Once more, we
make the proof for Banach spaces.

Proposition 13. A bounded sequence of lp⊗̂πE[τ ] (resp. c0⊗̂πE[τ ]) is
weakly-r-summable if and only if every continuous projection onto lp (resp.
c0) and every continuous projection onto E[τ ] transform it into a weakly-r-
summable sequence.

Proof. Let X be a Banach space. It is folklore that the space lp⊗̂πX can be
represented as a sequence space (see [3] for details) and so we will do. Let (an)
be a non weakly-r-summable sequence in lp⊗̂πX having weakly-r-summable
projections. There must be some θ ∈ lr∗ and a sequence (Ni) of naturals
such that, if Ii denotes the set {Ni + 1, ..., Ni + 1} and Pi : lp⊗̂πX → lp⊗̂πX
denotes the projection over the indices of Ii then

π
(
Pi(

∑
n

θnan)
)

> i + 1.

Find elements zi ∈ (lp⊗̂πX)∗ = L(lp, X∗) with |zi| ≤ 1 such that

π
(
Pi(

∑

k

θnan)
)

=
∣∣〈Pi

(∑

k

θnan
)
, zi〉

∣∣.
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It is not difficult to see that if Qi : lp → lp denotes the projection over
the indices of Ii then |〈Pi(

∑
n θnan), ziQi〉| > i + 1. Arguments in the proof

of [3, Thm. 1] show that the operator B : lp⊗̂πX → lp defined by B(y) =
(〈Piy, ziQi〉) is a continuous projection, which yields a contradiction with

i + 1 ≤ ∣∣〈Pi

( ∑
n

θnan
)
, ziQi〉

∣∣ =
∣∣∑

n

θn〈Pia
n, ziQi〉

∣∣

=
∣∣∑

n

θnB(an)(i)
∣∣ ≤ ∥∥ ∑

n

θnB(an)
∥∥

lp
< ∞.

Remark 11. Another characterisation of weakly-r-summable sequences in
projective tensor products has been mentioned to us by J.A. López Molina.
We omit the proof.

Proposition 14. A bounded sequence of lp⊗̂πX is weakly-r-summable,
1 ≤ r < +∞, if and only if it is pointwise weakly-r-summable in X and every
strongly p∗-summable sequence of x∗ (in the sense of Cohen) transforms it
into a weakly-r- summable sequence of l1.

Passing to convergent sequences, one has

Proposition 15. A bounded sequence of elements of lp(E[τ ])[N ] is
convergent to zero if and only if every natural operator transforms it into
a sequence convergent to zero.

Proof. We make once more the proof for Banach spaces. We prove that if
all continuous projections of a sequence (fn) converge to zero then

lim
N→∞

sup
n

∞∑

k=N

‖fn(k)‖p = 0,

which clearly implies the result.
Assume not. Then it is possible to find an ε > 0 and two sequences, (ni)

and (Ni), of integers such that

Ni+1∑

k=Ni+1

‖fni(k)‖p > ε.

Find norm one elements x∗(i, k) ∈ X∗ such that 〈x∗(i, k), fni(k)〉 = ‖fni(k)‖,
and form the element (y∗(k)) ∈ l∞(X∗) defined by y∗(k) = x∗(i, k), if Ni <



220 j.m.f. castillo, m.a. simoes

k ≤ Ni+1, and y∗(k) = 0 otherwise. The sequence (y∗(k)) defines a natural
operator P : lp(X) → lp by means of P (fn) = (〈y∗(k), fn(k)〉)k. Since the set
{P (fn)}n is relatively compact in lp, one has:

lim
N→∞

sup
n

∞∑

k=N

|P (fn)(k)|p = 0,

which is in contradiction with

sup
n

∞∑

k=N

|P (fn)(k)|p ≥
Ni+1∑

k=Ni+1

‖fni(k)‖p > ε.

The proof for c0(X) is analogous.

The same arguments of Proposition 13 used as in Proposition 15 yield:

Proposition 16. A bounded sequence of lp⊗̂πE[τ ] (resp. c0⊗̂πE[τ ]) is
convergent to zero if and only if every continuous projection onto lp (resp.
c0) and every continuous projection onto E[τ ] transforms it into a sequence
convergent to zero.

Propositions 12 and 15 together yield that weakly-r-summable sequences
in lp(E[τ ])[N ] are convergent if and only if the same happens in lp and E[τ ];
thus

Proposition 17. The space lp(E[τ ])[N ] is a Cr-space if and only if E[τ ]
and lp are Cr-spaces (i.e., if and only if E[τ ] is a Cr-space and r < p∗). In
other words, if E[τ ] is quasi-complete and every continuous linear operator
from lr into E and from lr into lp is compact, then every continuous linear
operator from lr into lp(E[σ(E,E∗)])[N ] is compact.

Analogously, it is not difficult to verify the following.

Proposition 18. The space lp(E[τ ])[N ] belongs to Groth(Cr) if and only
if E[τ ] and lp belong to Groth(Cr) (i.e., if and only if E[τ ] is belongs to
Groth(Cr) and r < p∗).

Remark 12. For any compatible locally convex topology ω in E, a locally
convex topology in lp(E[σ(E,E∗]) can be defined by means of the seminorms

qU ((xn)) = sup
x∗∈U◦

(∑
n

|〈x∗, xn〉|p
)1/p

,
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where U is an ω-neighborhood of zero. The analogue of Proposition 18, ho-
wever, could fail: if l2[weack] denotes l2 endowed with the weak σ(l2, l2)
topology, consider the space l2(l2[weak]) endowed with the topology inheri-
ted from the norm topology of l2; that topology makes l2(l2[weak]) a Banach
space, usually denoted by lw2 (l2). The identification of Remark 2 becomes
isometry and lw2 (l2) = L(l2, l2). Thus, one sees that although l2 has property
Cr for all r < 2, lw2 (l2) has not even property C1 since it contains copies of
l∞ (e.g., the subspace of diagonal operators). Of course, l2(l2[weak]) endowed
with its own µ2 topology is a Cr-space for all r < 2, but a description of the
µp-topologies in the spaces lwp (X) is, at this moment, unknown to us.

Propositions 14 and 16 together yield:

Proposition 19. The space lp⊗̂πE[τ ] is a Cr-space if and only if E[τ ]
and lp are Cr-spaces (i.e., if and only if E[τ ] is a Cr-space and r < p∗). In
other words, if E[τ ] is quasi-complete and every continuous linear operator
from lr into E and from lr into lp is compact, then every continuous linear
operator from lr into lp⊗̂πE[τ ] is compact.

Proposition 20. The space lp⊗̂πE[τ ] belongs to Groth(Cr) if and only
if E[τ ] and lp belong to Groth(Cr) (i.e., if and only if E[τ ] is belongs to
Groth(Cr) and r < p∗).

These results extend those in [3].

This paper is dedicated to the memory of Klaus Floret. We knew him
since a long time, and will treasure the moments shared with him for
longer yet.
We discussed a lot with him for years about the contents of this paper.

We never became co-authors because although he liked some things here
enclosed, he disliked others; and, as everybody who was fortunate enough
to have meet him knows, he only accepted things done his own way.
We had nice times quarreling; but now that the story is over, we’ll miss

Klaus Floret.
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