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1. INTRODUCTION

It is well-known the important role that the Hormander spaces B, j play
in the theory of linear partial differential operators (see [10], [11]). In [§]
and [18] an interpolation theory for these spaces can be found, in [26] dif-
ferent (local) Hormander spaces are represented by sequence spaces, and in
[16] new results about B} spaces are obtained and these spaces are exten-
ded to the vector-valued setting. On the other hand, in [3] Bjorck, by using
Beurling’s ultradistributions, studies questions of existence, approximation
and interior regularity of solutions of linear partial differential equations with
constant coefficients in more general spaces than those of Hormander (we call
these spaces “Hormander-Beurling spaces”). In this paper we extend these
Hormander-Beurling spaces to the vector-valued setting studying some of their
properties. In Section 2 we collect some basic facts about vector-valued ultra-
distributions. In Section 3 we calculate the dual of the space By j (E) without
supposing that E’ posseses the Radon-Nikodym property (by using finitely
additive E'-measures of bounded p'-variation). We also generalize a Favini’s
result about interpolation of Hormander spaces, and we use the Goulaouic’s
procedure to interpolate some classes of countable projective limits of vector-
valued Hormander-Beurling spaces. In Section 4 we prove that the spaces
B,k (E) and Bgo,k (E) have the property of approximation by cutting.

NOTATION. The linear spaces we use are defined over C. Let E and F be
locally convex spaces. Then Ly (E, F) (resp. L.(E,F)) is the locally convex

tThe results of this research paper belong to the doctoral thesis currently being carry
out by the author under the supervision of Prof. Joaquin Motos.
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space of all continuous linear operators equipped with the bounded (resp.
precompact) convergence topology. If E = F we write £, (E) (resp. L. (E)).
E®F (resp. E®,F) denotes the completion of the injective (resp. projective)
tensor product of ¥ and F'. We write £ — F'if E is a linear subspace of F' and

the canonical injection is continuous. We replace — by i) if E is also dense in
F'. The topological dual of E is denoted by E’ and is given the strong topology
so that E' = L, (E,C). C™, D, S, D' and S’ have the usual meaning (see [20]).
In the E-valued case we write C™ (E), D (E), S(E), D' (E) and S’ (E) (see
[21]). Let 1 < p < o0, k : R* — ]0,00[ a Lebesgue measurable function,
and FE a Banach space. Then L, (FE) is the set of all measurable Bochner
functions f : R* — E for which || f[|, = (Jgn I f (2115, da:)l/p is finite (if
p = oo we assume ||f||,, = esssupern || fllg < 00). Lpk (E) denotes the
set of all measurable Bochner functions f : R* — E such that kf € L, (E).
Putting ||f||Lp,k(E) = ||kfll, for f € Ly (E), Lpx (E) becomes a Banach space
isometrically isomorphic to L, (E). When E is the field C, we simply write L,
and Ly . If f € Ly (E) the Fourier transformation of f, for Ff, is defined
by f(£) = Jgn [ () e7%%dz. If f is a function on R then f(z) = f(~2),
(thf) (z) = f(x — h), z,h € R".

2. SPACES OF VECTOR-VALUED ULTRADISTRIBUTIONS

In this section we collect some basic facts about vector-valued ultradis-
tributions. The results are “elementary”in the sense that the usual “scalar
proofs”carry over to the vector-valued setting by using obvious modifications
only. Comprehensive treatments of the theory of (scalar or vector-valued) ul-
tradistributions can be found in [3], [4], [5], [14], and [15]. Our notations are
based on [3] (cf. also [19, pp. 14-19)).

Let M be the set of all continuous real-valued functions w (z) on R such
that w (z) = o (|z|) where o (¢) is an increasing continuous concave function
on [0, oo[ with the following properties:

(i) o(0) =0,
(i) [° f_i(_—%dt < oo (Beurling’s condition),
(iii) there exists a real number a and a positive number b such that o (¢) >
a+blog(1+1) for t > 0.

The main assumption is (ii), which is essentially the Denjoy-Carleman non-
quasi-analyticity condition (see [3]). The two most prominent examples of
functions w € M are given by w (z) = log (1 + |z|)? with d > 0, and w (z) =
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|IE|B with 0 < 8 < 1. If w € M and FE is a Banach space, we denote by D, (F)
the set of all functions f € Ly (F) with compact support, such that

1918 = [ [F@), s < oo

for all A > 0. For each compact subset K of R", D,(K,E) = {f € D,(E) :
supp f C K}, equipped with the topology induced by the family of norms

{|| . ||§\w) A > O}, is a Fréchet space and D, (E) with the inductive limit
topology, D, (E) = ind Dy, (K, E), becomes a strict (LF)-space. Let S, (E)

K "
be the set of all functions f € L; (E) such that both f and f are infinitely
differentiable functions on R" with

Par(f) = sup. M| ()| < o0

and
Tap () = sup @ 0% () (2) | < o0
TER™

for all multi-indices « and all positive numbers A. S, (E) with the topo-
logy induced by the family of seminorms {?a)\,?a,)\} is a Fréchet space
and the Fourier transformation F is an automorphism of S, (E). If E = C
then D, (E) and S, (E) coincide with the spaces D, and S,. In this case
we write, p, » and 7, ) instead of Fa,,\ and ?a,,\. Let us recall that, by
the Beurling’s condition, the space D, is non-trivial and the usual proce-
dure of the resolution of unity can be established with D,-functions (cf.[2],

[3, Th.1.3.7]). Furthermore, D, i) D (cf. [3, Th.1.3.18]) and D, is nuclear

(cf. [26, Cor.7.5] ). On the other hand, Dy = D N Sy, Dy <5 Sy <5 S (cf. [3,
Prop.1.8.6, Th.1.8.7]) and S, is a Fréchet-Schwartz space with the approxi-
mation property (by [3, Th.1.8.7], [19, Prop.1.2.2/2] and [21, Prop. 3,p.9]).
Using the above results and [14, Th. 1.12] we can identify D, (E) with D,®.E
and S, (E) with S.8.E. A continuous linear operator from D, into FE is
said to be a (Beurling) ultradistribution with values in E. We write D, (E)
for the space of all E-valued (Beurling) ultradistributions endowed with the
bounded convergence topology, thus D!, (E) = L, (D, E) is isomorphic to
DL,®€E. A continuous linear operator from S, into E is said to be an
E-valued tempered ultradistribution. S;, (E) is the space of all E-valued tem-
pered ultradistributions equipped with the bounded convergence topology.
Also 8!, (E) = Ly (S, E) is isomorphic to S,®.E (S!, has the approximation
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property) and the Fourier transformation F is an automorphism of S/, (E).
Next we recall the definition of &, given in [3, p.383]. If w € M, then K,
is the set of all positive functions & on R" for which there exists a constant
A > 0 such that

k(z+y) <@k (y)

for all z and y in R*. If k, k1, ks € K, and s is a real number then logk is
uniformly continuous, k° € Ky, k1k2 € K, and M, () = sup,cgn % e K,
(see [3,Th.2.1.3]). If u € L and [g, ¢ (2) u (z) dz = 0 for all ¢ € D, then
u =0 a.e ( see [3]). This result, the Hahn-Banach theorem and [6, Cor.I1.27]
prove that if £ € K, and p € [1,00] we can identify f € L, (F) with the
FE-valued tempered ultradistribution

w—><<p,f)=/ o (@) f (¢)d,

R

@ € S, Summarizing, we have the embeddings

D)L s,m) L s B D (E)

SH
S
SH
SH

D(E);d,g(E) ;d,gl(E);d,pl(E)

(commutative diagram) and
d d o
Su(E) = Ly (E) = S, (E),

p < oo.

Let G be a locally convex space such that G — D! (E), then G is said to
be an “E-valued space of ultradistributions”. For ¢ € S,,, T € S/ (E) and
P € Sy, we define (¢, T) = (¢, T). The “point-wise multiplication”S,, x
S, (E) = S, (E) : (p,T) — ¢T is a well-defined separately continuous bili-
near map (and hypocontinuous when S, is nuclear). If p € S, and T € S/, (E),
we define ¢ x T (z) = (1,0,T), © € R*. The function o * T : R* — E
is called the convolution of ¢ and T. ¢ * T is continuous and there exist
positive constants C' and A such that ||¢ * T (z)|| < Ce*®) for all z €
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R™. Thus, we can identify ¢ x* T with the F-valued tempered ultradistri-
bution ¢ — (1,0 *T) = [pa ¥ () (¢ * T) (z) dz, ¢ € S,. The bilinear map
Sy xS,(E) = S, (E ) (¢p, T) r—) @ * T is separately continuous (and hypo-
continuous if S, is nuclear). One easily checks that

~

W+ T) = (G2, T), (p+T)" =G T, (o1)" =m) " (p+T),

for all p,p € S, and T € S/, (E).

3. THE VECTOR-VALUED HORMANDER-BEURLING SPACES B, (F)

In this section we generalize the spaces By of [3] to the vector-valued
setting. We shall use the notations of the previous section and we shall begin
by extending the Definition 2.2.5 of [3] and the Definition 1 of [16].

DEFINITION 3.1. Let w € M, k € K,, 1 < p < oo and FE a Banach
space. We denote by B, i (E) the set of all E-valued tempered ultradistri-

butions T" for which there exists a function f € L, (E) such that <<p,f> =

Jzn © z)dz, p € S,. Obviously By i, (E) is a linear subspace of S/, (E) (if
we 1dent1fy Lp,k (E) with a subspace of S, (E) then By \ (E) = F~ 1Lp k (E)).
By i (E) with the norm

)H da:) 1 if p<oo

e B

1Tl =

m@fmw if p = oo

€SS SUP,cRn .

becomes a Banach space isometrically isomorphic to Ly j (E) and, therefore,

to Ly, (E). (In the previous formulae we have written T (z) instead of f(x),
we shall frequently commit this abuse of notation.)

Remark 3.2. (1) Of course, B, (C) is the Hérmander-Beurling space B,
considered by Bjorck in [3], and our definition coincides with Definition 1 of
[16] when w (z) = log (1 + |z|).

(2) The study of the spaces B, (E) is not reduced to the study of the
spaces Bp,kéf)eE since, as is well-known, L, (E) and Lp@)eE are not isomorphic
in general. For sake of completeness we recall some examples: The space
L1 (¢,) is not isomorphic to L1<§)€€p if 2 < p < oo (see [6, p.117 & Cor.
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p.258]). If dimE = oo and 1 < p < oo then L, (E) is not isomorphic to
L,®E (see [6, p.253]). Finally, we show that L, (¢2) is not isomorphic to
Loo®.ly: Since the space K (L, #3) of compact linear operators from L; into
£y is not complemented in L (Lq,%3) (cf [23]), it follows from Proposition 1
of [13] that K (L1, #2) is not isomorphic to a dual space. This concludes the
proof since Loo®clo =~ K (L1,03) and Ly () =~ (L1 (£2))’ .

The next result is the vector-valued counterpart of the Theorem 2.2.3 of [3].

PROPOSITION 3.3. Let w € M, k € K,, 1 < p < 0o and E a Banach

space. Then

Sy (B) = Bp (B) <5 8, (E)

and D, ® E is dense in By i, (E) if p < 0.

Proof. Tt is enough to take into account the two diagrams of the Section 2,
that the Fourier transformation is an automorphism of S, (E) and of S/, (E)
and an isomorphism from B, ; (E) onto L, ;, (E), and that D, ® E is dense in
D, (E). 1

In the next proposition we shall determine the dual space of B, ; (F) when
p < oo by extending Theorem 10.1.14 of [11] and Theorem 6 of [16]. In the
second part of the proposition we shall use some well-known results about
finitely additive vector measures and finitely additive vector measure spaces
(see [1], [6], [7], [17] and [25]): Let (2, %, ) be a o-finite measure space and
Yo C X the ring of sets of finite y-measure. A Yg-partition 7 of €2 is any finite
disjoint collection {4, } C Xy (the Xy-partitions of Q are partially ordered by
defining m < 79 whenever each element of 71 is a union of elements of 79). If
E a Banach space and p € [1, 00|, we denote by V, (i, E) the space

{m : 39 — E, m finitely additive, m p-continuous,

m(A) =0 if u(A) =0 and |m|, < oo}

(here |m|, = sup{(>, [|[m(A)|5/u(A)P~1)/P . © = Sg-partition of Q} if
p < 0o and |m|e = sup{||m(A4)||g/u(A) : A € Xy}) of all finitely additive E-
valued measures of bounded p-variation. With the norm ||m||y, ) = [mlp,
Vp(p, E) is a Banach space. The map Ly(u, E) = Vp(p, E) : f — my, where
mg(A) = [, fdu when A € X, is an isometric embedding which becomes
an isometric isomorphism when E has the Radon-Nikodym property. On the
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other hand, for 1 < p < oo, the map Vy(u, E') = (Lp(p, E))' : m = [, -dm
always is an isometric isomorphism (here the integral is the integral of Bartle:
fQ fdm = lim, Zw<ﬁ fA fd,u,m(A)>, | fQ fdm| < “f“p‘m'p’ and fQ fdmg =
Jolf.9)du if g € Ly (u, E')).

Now we assume that E is a Banach space, p € [1,00], w € M, k € K. If
1 <p < oo, themap Ly (E) — V, (kPdz, E) : f = my (A) = [, fkPdz, A €
Yo, is an isometric embedding. Furthermore, the map I : V, (kdz, E) —
S!,(E) given by (¢, I (m)) = [gn @k Pdm, ¢ € S,, also is an embedding.
In fact, for each ¢ € S, the function k™ € Ly (kPdz), so the integral
Jgn 9k~ Pdm is well-defined and

o T o)l < bl 10577, hoay < 1l Pon ()

where A is a certain constant > 0 independent of ¢. This yields that the map
I is well-defined and is linear and continuous. Let us see that it is injective: If
I(m) =0, that is, if [, ok Pdm = 0forall p € S, then [,, @k Pd (e om) =
0 for each ¢ € S, and ¢’ € E'. Since ¢’ om € V, (kP dz), there is a function
fo € Ly (kP dz) such that €’ om (A) = [, fok? dz for each A € ¥y and such
that [z, 0k Pd(e' om) = [gn 0k P fokPdz = [g. ¢ fodz for all ¢ € S,,. Thus
fo = 0 a.e. and, consequently, ¢’ o m = 0. Since ¢ is arbitrary we get m = 0
and so I is injective. If p = oo the map Loo,k(E)( ~ Lo (%dw,E)) —
Voo (%dw,E) : f=mp(A) = [, fdx, A € %y, is an isometric embedding and
the map I : Vo (%dw,E) — S/,(E) given by (p,I(m)) = [z, ¢dm, ¢ € S,,
also is an embedding. The above analysis allows to give the following definition
which generalizes the definition of B, ;, (E): BV, (E) is the set of all E-valued
tempered ultradistributions 7" for which there exists m € V, (kP dz, E) (m €
Voo (3dz, E) if p = 00) such that (o, T) = Jrn Ok Pdm (o, T) = Jn @ dm if
p=00), p €S,. Putting

”(27r)’"/p T\”Vp( it p < oo,

kpdz,E)
T8y, () =

”T\va(%dz,E) if p = oo.

BV, i (E) becomes a Banach space isometric to the space V, (kPdz, E) (to
the space Voo (%d:v, E) when p = 00). By using this notation we have
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PROPOSITION 3.4. Let w € M, k € K, 1 < p < o0 and E a Banach
space.

(1) If the dual E' has the Radon-Nikodym property then the map
Z:B, 1 (B) — (Byu(B))
defined by
(1.2(5)) = )" [ (7). 8(@))d
Se Bp,,%(E’), T € By x(E), is an isometric isomorphism.
(2) The map Z : BVp,,% (E') — (Bpx (E))" defined by

~

(27)" [ K (z) T(z)dS(z) if 1< p < oo,

T,Z(S)) = N
< ) (2m)™™ [on T(z)dS(x) if p=1,

S e BVP,,%(E’), T € By x(E), is an isometric isomorphism.

Proof. (1) Let us consider the following diagram

Bp,7% (El) Z (Bp,k(E))l
aF t(CZf)
Lp’a%(El) Ly (kPdz, E') (Lpk(E))'

where F denotes the Fourier transformation both in S, (E’) and in S/, (E),
¢ = (2m) P ¢y = (2r) 7P, A is the multiplication operator A (h) = L,
B is the operator defined by

(f,B(9)) = /n<f (z), g (2))k? (z) dz

and Z is the corresponding composed operator. Since c1.F, * (coF), A and B
are isometric isomorphisms (although in [6, p. 98] it is shown that if (Q, %, u)

is a finite measure space and 1 < p < oo then (L, (i, E))’ ~ Ly (p, E')
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if and only if E' has the Radon-Nikodym property, it is well-known that
this result holds if the measure u is o-finite because in this case writing
Q = Uyl Q, with the sets Q, pairwise disjoints, x(Q,) < oo and
“'Eﬂﬂn = i, we get the natural isometric isomorphisms (L, (u, E)) =~

(4p (Lyp (4n, E))) = 2 ((Lp (/J‘naE))I) x> by (Lp’ (,unaEl)) ~ Ly (u, E') ) also
Z is an isometric isomorphism given by

(T, Z(8)) = (T, Y(c2F)BA(c1 F)(S)) = c1c2{ T, "F(BAS))

= (2r)"™(T, BAS) = (2m) ™ /R (T(2), 5(2))da

for T € By (E) and S € Bp,7% (E").

(2) If 1 < p < oo the appropriate diagram is

BV, 1 (B') d (Bos(B))

61.7: t(62.7:)

Vp (k7P dz, E') (Lp(k~" dz, E))’

where c1,co and F are as in part 1, B is the adjoint of the multiplication
operator L, i (E) — L, (k‘p'dm, E):gw gk?', A is the operator defined by
< 1, A(m)> = fR” fdm, and Z is the composed operator. As in the preceding
case, Z becomes an isometric isomorphism and it is given by

(T, Z(8)) = c1co(T, *F(BAS)) = c1¢o(Tk? , AS)

=@r) " | K (z)T(z)dS(z)
Rn

for T € By (E) and S € BV, 1 (E). If p =1 we consider the following

diagram

ESE
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BV, 1 (E) Z (B.4(B))’
.7: t(CQJ:)
A '
Voo (kdz, E") (Lik(E))

where co and F are as in part 1, A is the operator defined by (f, A (m)) =
fR" fdm, and Z is the composed operator. Z become an isometric isomor-
phism and it is given by

(T, Z(S)) = (T, tF(AS)) = (2r) (T, AS) = (2m)™" / ) T () dS (z)

for T € By ;(E) and S € BVOO,% (E"). (It is easy to check that these formulae

coincide with the one obtained in first part of the proposition provided E’ has
the Radon-Nikodym property.) 1

In [8] Favini interpolates Hormander spaces extending partially some re-
sults of Schechter (see [18]). In the following proposition we extend (for
po,p1 < 00) the Corollary of Theorem 14 of [8] to vector-valued Hérmander-
Beurling spaces by using direct methods.

PROPOSITION 3.5. Let we M, k€ K,,1<p;<o0,i1=0,1, 0<0 <1,
1

_1-6 , 68
P Do + 1 and E a Banach space. Then

(Bpo,ko (B), Bp, (E))g = (Bpo,ko (B), Bp, k: (E))g’p = Bp,k(E)a
where k (z) = kéfe (z) k¢ (z) and the corresponding norms are equivalent.

Proof. 1t is clear from the definition that the Fourier transformation F
in § (E) is an isomorphism from By, i, (E) onto Ly, r. (E), ¢ = 0,1, which
implies that F is also an isomorphism from the space (Bpq ko (E), Bpy 41 (E)) 0
(resp. (Bpoko(E), Bpy ks (E))e,p) onto the space (Lpg ko (E) ; Lp, &, (E) ), (resp.
(Lpoko (E) s Lpy oy (E) )a,p)' To finish, it suffices to take into account (see, f.i,
21, p.130] ) that

(Lpo,kg (E) aLp1,k1 (E) )9 = (Lpo,ko (E) ,Lpl,lm (E) )g,p = Lp,k (E)

(with equivalent norms) and that F is also an isomorphism from B, ; (E) onto
Lp,lc (E ) |
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Some functional spaces can be represented by countable projective limits of
Hormander-Beurling spaces. For example, if w (z) = log (1 + |z|) and k; (z) =
(1+ |z|? )j/Q, j =1,2,..., the Plancherel theorem shows that By, coincides
with the Sobolev space WQJ , thus, by the Sobolev embedding theorem, we get

00 oo
BQ,E: nBZ,kj = mWZjZ{UELQ: BQUELQ,VQENQ}:DL2
j=1 j=1

where DL2 is the Schwartz space of all functions f € C* such that 0%f € Lo
for all o € N} (see [20, p.199]). By using the preceding proposition it is easy
to interpolate B, ;. (E) spaces using the Goulaouic [9] procedure. Let us briefly
review this procedure: Let (4;);-; be a decreasing sequence of Banach spaces
such that the natural injections A;1+1 — A; are continuous. If A =2, 4;
is dense in A4;, ¢ > 1, and A is equipped with the projective limit topology,
then A becomes a Fréchet space denoted by l(iinAi. Let us now consider

(]
two Fréchet spaces By, By of the form By = lgnBo,i, B = lgnBl,i and such

that all spaces By ;, B1,; are continuously embédded in a conimon Hausdorff
topological vector space 8. We also suppose that, for each (i,5), By N By
is dense in By; N By ; (with the norm max{||-||BO,i , ||-||BO,],}). Then we write
(Bo,B1) = lgn(BO,i,Bl,i). For0<f<1land1l<p< oo, (30,31)9,1, denotes
7
the space {b € By+B1 : 13 (b) = [ 5~ (7% (8, b))p dt]l/p <oo, 1=1,2,...}
with the topology defined by the sequence of norms {r; : i > 1} (k; is the
Peetre k-functional associated with the couple (By;, B1;) ). By [9, Ch.3], we

have (B(), Bl)a,p = l}ln (BO,Z', Blvi)H,p'

7
We can now establish the following interpolation result:

PROPOSITION 3.6. Let w € M, E() = (ko,i)?ip El = (kl,i)f; increasing
sequences in K, 1 < pg,p1 < o and E a Banach space. Then we have

(Buoss (B). By, (B)), =B (B)

where

— (19,0 \*® 1 (1-90) 0 Y
k= (ko,z’ kl’i)izl ] 1_) = pT + p_17 Bpo,Eg (E) = 141%118170,/60,1' (E),

B, i, (B) =lmB, 4, (B), and B,y (E)=1lmB,, (E).
i (2
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Proof. All these vector-valued Hormander-Beurling spaces are continuous-
ly embedded in S, (E) and, by Proposition 3.3, D, ® E is dense in each of
them. D, ® E also is dense in the Banach space By, k,; (E) [ Bp, k, ; (E) for
each (7, 7). Consequently,

(Byo o (B) B, 5, (E)) =1im (Byy ko, () Byy s (B))

7

Then, by the previous Goulaouic’s result and Proposition 3.5, we get

(Bpg,Eo (E) aBpl,El (E)) = I}ZLH (BP07k0,i (E) ’Bplykl,i (E))a

=limB, 1, (E) = B, 3 (E)

a,p P

D,k

and the proof is complete. [

4. AN APPROXIMATION THEOREM

By extending the definition given by Schwartz in [21, p.7] to the setting
of the E-valued ultradistributions, we shall say that a linear subspace H of
D!, (E), equipped with a locally convex topology finer than the one induced
by D!, (E), has the property of approximation by cutting (CAP), if, for each
a € Dy, the operator [a] : H — H given by [a] (T') = o7 is well-defined and
it is continuous, and if, when ¢ € D, with 0 < p <1 and p =1 in |z| <1,
[pe] = I'in L, (H) (pe(z) = @(ex) and T is the identity) when e — 0+.
In this section we shall prove that By (E) is an S,-topological module and
that B, (E) has the CAP when p < oo (extending [3, Th.2.2.7] and [16,
Th. 3(3)))-

PROPOSITION 4.1. Let w € M, k € K,, 1 < p < o0, and E a Banach
Boo,k(E)

space. Let us put Bgo’k (E) =D, (E) .
(1) Ifp € Sy and T € By (E), then T € B,y (E) and [|T],, <
lll1,az, 1Tl - Consequently, By, (E) and Bgo,k (E) are S,,-topological
modules.

(2) Bpi (E) (p < o0) and Bgo,k (E) have the CAP.

Proof. (1) Let ¢ € S, and T € B, (E). By Section 2, ¢T € S/, (E) and
(1) = (2m) ™™ ($ *T). Let us see that $ *T € Ly (E). Since T € Ly, (E)
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we have

¢+ T (2) = (10, T) = LPEmy) Th)dy, zeRY,

and taking into account that &k (z) < My (z —y) k (y) we get
Hk(x)(a «T) (w)HE < <|Mk<,’5| * ka”E) (z), €R".

Since Myp € L; and ”kf” g € Lp we can apply the Young’s inequality
and so

1261 < KT | < 1M1,
P

21,

—n(1+1
= 2m) )0l ag I T k-

Thus § *T € Ly (E), that is, T € B, i (E), and

1T | e < ol g, 1T Mg < €mon (@) 1T

being ¢ and A certain positive constants. These inequalities imply that the
bilinear map S, x By i, (E) — Bp i (E): (¢, T) — ¢T is continuous. To finish,
it is enough to notice that if T' € Bgo,k (E) and (f;)32, is a sequence in D, (E)
such that f; = T in By then, for each ¢ € S, ((pfj);il is a sequence in
D, (E) such that ¢f; = ¢T in By (E).

(2) Let ¢ € D, such that 0 < ¢ <1 and ¢ =1 in |z| < 1. Let us put
©e () = ¢ (ex) for € > 0. Then, for any € € ]0,1[, we have

1@elly g, = (2m) 7" /Rn My (z) |@e (z)] dw = (2m) ™" o M (ez) | ()| dz

< (@m) " /R DB ()| do < (2m) " o]

where X is a certain number > 0 independent of e. Thus, sup{||¢e|li,a, :
0 < e <1} =c¢ < oo. Let us now assume p < oco. From part 1 and
the above estimation it follows that {[¢¢] : 0 < € < 1} is an equicontinuous
subset of L (B, i (E)). Consequently, the topologies of simple and precompact
convergence coincide on {[¢c] : 0 < € < 1} (see, f.i., [12, p.156]). Therefore, to



104 J. VILLEGAS G.

see that By i (E) has the CAP it is enough to show that, for any T' € By, (E),
o +— T in By (E) when e — 0+: Fix T € By, (E). For f € S,, (E) we have

1T = T llpp < NT = Fllpp + 1 = efllp i + llpef = 0Tl
< (1+ llee M = fllpge + 1 = @efllp

<A+ )IT = fllpp + I1F = eefllps >

but this shows that ¢ — T in By (F) since S, (F) is dense in B, (E)
(Proposition 3.3) and ¢f — f in By (E) (to see that ¢ f — f in S, (F)
one can follow the scalar case, [3, Th.1.8.7], step by step). The argument for
Bgo’k (E) is analogous. We leave the details to the reader. I

Remark 4.2. Let w € M be such that S, is nuclear. Let k € K, 1 <p <
oo. Let E, F be Banach spaces. Then, by virtue of Proposition 4.1 and [22,
Prop. 3, p.37], there exists an unique continuous bilinear map

Su(E) X (BprBcF) — By p®c (E&,F)
(d),T) = ¢'7TT

such that (p®e) 7 (u® f) = (pu) @ (e® f) forall p € S, e € E, u € By,
fePF.

We now consider the map Z : (S, ®; E) x Byx(F) — Byi (E®,F)
defined by

(0, Z (6, T)) = { Z‘Pz®ez} Zez (pi,T), @€S,.

It is clear that this definition is independent of the representatlon of ¢. It
is also immediate that Z (¢,T) € S, (E®,F), that Z (¢, T)" = 31", e; ®<p,T
and that Z (¢ ®e,u® f) = (pu) ® (e® f) for all p € S, e € E, u € By,
f € F. Since, by virtue of Proposition 4.1, (Eﬁ’ € Lp(F), it follows that
Yirie® @1 € Lpy (E@,rF ) Therefore, Z is well-defined and is bilinear.
Let us see that it is continuous: Let p < 00. If ¢ = > 1" p; ® ¢; € S, ® F and
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T € By x(F), we have

($erm)

p

k”(:v)d:v) v

(L

< tes ([, |

m
= 2m)™P > leill g lloiT
1
m
< O(Z leill s ||<,oz~||1,M,c) 171, .
1

m
< C(ZWO,A(%‘) ||ei||E) 1l -
1

m ——
Y e ®piT(x)
1 EQ,F

aﬁ(x)H’; k”(x)d:z;) "

Thus
1Z (6, D)l < C (5, @ -15) (D) I TNl 1

(C, X > 0 are independent of ¢ and T') and Z is continuous. (The case p = oo is
analogous.) Since S, is nuclear, S.,®.E = S, (E). This fact and the theorem
of extension of bilinear mappings prove that there exists a uniquely determi-
ned continuous extension of Z to S,(E) x By x(F).
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