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1. Introduction

In this paper we define the notions of semicommutativity and semicom-
mutativity modulo a linear subspace. We prove some results regarding the
semicommutativity or semicommutativity modulo a linear subspace of a se-
quentially complete m-convex algebra. We show how can be applied such
results in order to obtain commutativity criterions for locally m-convex alge-
bras.

Let A be a complex m-convex algebra, whose topology is defined by a
separating family (pα)α∈I of submultiplicative seminorms.

The unitization of A over C, denoted by A1 is the m-convex algebra consis-
ting of the set C×A with addition, scalar multiplication and product defined
(for all x, y ∈ A and α, β ∈ C) by

(α, x) + (β, y) = (α + β, x + y)
β(α, x) = (βα, βx)

(α, x)(β, y) = (αβ, xy + αy + βx)

and with the seminorms (qα)α∈I , defined by

qα((λ, x)) = |λ|+ pα(x)

for all α ∈ I, λ ∈ C and x ∈ A; A1 is an m-convex algebra with unit element
(1, 0), qα((1, 0)) = 1 for all α ∈ I, and the mapping a → (0, a) is an isomor-
phism of A onto a subalgebra of A1. It is a routine matter to verify that A1
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is sequentially complete when A is sequentially complete (i.e., every Cauchy
sequence converges).

Recall that for an element x of an unital algebra A, the set

σ(x) = {λ ∈ C : λ1− x /∈ G(A)}
is called the spectrum of x, and

ρ(x) = sup{|λ| : λ ∈ σ(x)}
is called the spectral radius of x, 1 being the unit element of A and G(A) the
set of all invertible elements of A.

If A1 is a sequentially complete m-convex algebra, then (see [7])

ρ(y) = sup
α∈I

lim
n→∞ qα(yn)

1
n

for any y ∈ A1. In particular, we have

ρ((0, x)) = sup
α∈I

lim
n→∞ qα((0, x)n)

1
n

= sup
α∈I

lim
n→∞ qα((0, xn))

1
n = sup

α∈I
lim

n→∞ pα(xn)
1
n .

(1)

In the remainder of this paper we assume that A is a complex sequen-
tially complete m-convex algebra with topology defined by a separating family
(pα)α∈I of submultiplicative seminorms.

Definition 1. A is said to be commutative iff xy = yx for any x, y ∈ A,
and A is said to be semicommutative iff xyz = zxy for any x, y, z ∈ A.
Given a linear subspace E of A, A is said to be commutative modulo E iff
xy − yx ∈ E for any x, y ∈ A, and A is said to be semicommutative modulo
E iff xyz − zxy ∈ E for any x, y, z ∈ A.

For example, in the set M4(C) of all square matrices with four columns
and complex elements, we consider the subset

A = {X ∈M4(C) : X = αM + βN + γMN,α, β, γ ∈ C}
where

M =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 , N =




0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0


 .
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If we define on A the family consisting of the submultiplicative seminorm

p(X) = |α|+ |β|+ |γ| ,

A become an m-convex algebra. This m-convex algebra is semicommutative
but not commutative: on the one hand, NM = 0 (the null matrix) and

MN =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ;

on the other hand, using the fact that MNM = NMN = 0 it is a routine
matter to verify that XY Z = ZXY = 0 for any X,Y, Z ∈ A, and so we obtain
the semicommutativity of A.

Definition 2. If A has unit element, the radical of A, denoted by RadA
is the set

RadA = {x ∈ A : 1− xy ∈ G(A) for any y ∈ A}.
If A hasn’t unit element then we define the radical of A as

RadA = {x ∈ A : (0, x) ∈ RadA1}.

2. Some commutativity criterions

Theorem 1. If A is semicommutative then A is commutative modulo
RadA.

Proof. We have to prove that (0, xy − yx) ∈ RadA1 for any x, y ∈ A. We
prove first that

(xy)n = xnyn (2)

for any n ∈ N∗ and x, y ∈ A. Indeed, for n = 2, from semicommutativity we
have

(xy)2 = (xy)(xy) = ((xy)x)y = x(yx)y = xy2x = x2y2

for any x, y ∈ A, and by induction we obtain the equality (2).
Let now x, y ∈ A. For α ∈ I and n ∈ N∗, we have

pα((xy)n)
1
n = pα(xnyn)

1
n ≤ pα(xn)

1
n pα(yn)

1
n ,
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and by (1) we obtain

ρ((0, x)(0, y)) ≤ ρ((0, x))ρ((0, y)) . (3)

Using again the semicommutativity of A, we find that (xy− yx)2 = 0 for any
x, y ∈ A. This implies that

ρ((0, xy − yx)) = sup
α∈I

lim
n→∞ pα((xy − yx)n)

1
n = 0 (4)

for any x, y ∈ A. From (3) and (4) it follows that

ρ((0, xy − yx)(0, z)) = 0 (5)

for any x, y, z ∈ A.
We prove now that for u ∈ A with the properties

ρ(0, u) = 0 and ρ((0, u)(0, z)) = 0 for any z ∈ A,

the equality
ρ((0, u)(λ, v)) = 0 (6)

hold for any (λ, v) ∈ A1. Indeed, using the semicommutativity of A we obtain
that (0, λu) and (0, uv) are permutable elements of A1. It is a well known
fact that for permutable elements the spectral radius is submultiplicative so
we have

ρ((0, u)(λ, v)) = ρ((0, λu + uv)) ≤ |λ|ρ((0, u)) + ρ((0, u)(0, v)) = 0

for any (λ, v) ∈ A1.
From (4), (5) and (6) it follows that ρ((0, xy − yx)t) = 0 for any x, y ∈ A

and t ∈ A1. We deduce that 1 /∈ σ((0, xy− yx)t) for any x, y ∈ A and t ∈ A1.
So (1, 0)−(0, xy−yx)t ∈ G(A1) for any x, y ∈ A and t ∈ A1, and consequently

(0, xy − yx) ∈ RadA1

for any x, y ∈ A, and this completes the proof.

Definition 3. If (qα)α∈I is a family of seminorms on A, the kernel of
family (qα)α∈I , denoted by Ker ((qα)α∈I), is the set

Ker ((qα)α∈I) =
⋂

α∈I

Ker(qα) .
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Definition 4. If p, q are seminorms on A, q is said to be p-continuous if
there exists k > 0 such that

q(x) ≤ kp(x) for any x ∈ A .

Theorem 2. If (qα)α∈I is a family of submultiplicative seminorms on A
such that, for any α ∈ I, qα is a pα-continuous seminorm and there exists
kα > 0 such that

qα(xy) ≤ kαpα(yx)

for any x, y ∈ A, then A is semicommutative modulo Ker ((qα)α∈I).

Proof. Let x, y ∈ A, z ∈ A1, and f : C→ A given by

f(λ) = exp(λz)xy exp(−λz)

for any λ ∈ C, where

exp(λz) = (1, 0) +
∞∑

n=1

1
n!

λnzn .

The function f is well defined, because A is an ideal of A1. We consider the
linear space A/Ker((qα)α∈I) and the family of seminorms (p′α)α∈I given by

p′α(x̂) = qα(x)

for any x̂ ∈ A/Ker((qα)α∈I) and α ∈ I. We immediately obtain that the se-
minorms p′α are well defined and that (p′α)α∈I is a separating family. So the
linear space A/Ker((qα)α∈I) endowed with the family (p′α)α∈I is a locally convex
space. We will denote this space by Ã.

Let now f̃ : C → Ã defined by f̃(λ) = f̂(λ) for any λ ∈ C. The function
f̃ is differentiable on C. Indeed, for any α ∈ I, from the fact that qα is a
pα-continuous seminorm, we get the existence of a constant βα such that

p′α

(
f̃(λ)− f̃(λ0)

λ− λ0
− f̂ ′(λ0)

)
= p′α

̂(
f(λ)− f(λ0)

λ− λ0
− f ′(λ0)

)

= qα

(
f(λ)− f(λ0)

λ− λ0
− f ′(λ0)

)

≤ βαpα

(
f(λ)− f(λ0)

λ− λ0
− f ′(λ0)

)
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because f is a differentiable function as a product of differentiable functions.
It follows that f̃ is diferentiable on C and

(
f̃

)′
(λ) = f̂ ′(λ) for any λ ∈ C .

Let α ∈ I and λ ∈ C. We have

p′α
(
f̃(λ)

)
= p′α

(
f̂(λ)

)
= qα(f(λ))

= qα(exp(λz)xy exp(−λz)) ≤ kαpα(yz) .

So f̃ is differentiable and bounded on C and using Liouville Theorem we get

that f̃ is a constant function. This implies that
(
f̃

)′
(λ) = 0̂ for any λ ∈ C.

We have
(
f̃

)′
(λ) = f̂ ′(λ) = ̂

z exp(λz)xy exp(−λz)− exp(λz)xy exp(−λz)z

for any λ ∈ C. For λ = 0 we obtain 0̂ = ̂zxy − xyz. So zxy − xyz ∈
Ker ((qα)α∈I) for any x, y, z ∈ A and this completes the proof.

Corollary 1. If there exists a separating family (qα)α∈I of submulti-
plicative seminorms on A with the properties that for any α ∈ I, qα is a
pα-continuous seminorm and there exists kα > 0 such that

qα(xy) ≤ kαpα(yx) for any x, y ∈ A ,

then A is semicommutative.

Proof. From the fact that (qα)α∈I is a separating family, we have

Ker ((qα)α∈I) =
⋂

α∈I

Ker(qα) = {0}

and now we use Theorem 2.

Corollary 2. If A has unit element and for any α ∈ I there exists kα > 0
such that

pα(xy) ≤ kαpα(yx) for any x, y ∈ A ,

then A is commutative.
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Remark. If the conditions of Corollary 1 or Corollary 2 are satisfied then
A is commutative modulo RadA. In addition, if A has unit element, then A
is commutative.

Now we consider that A has unit element. We denote by S = S(A) the
set of all states on A, i.e., the set of all continuous functionals s on A with
the properties that s(1) = 1 and there exists α ∈ I such that

|s(x)| ≤ pα(x) for any x ∈ A .

Recall that, for an element x ∈ A, the set

V (x) = {s(x) : s ∈ S}

is called the numerical range of x, and

v(x) = sup{|s(x)| : s ∈ S}

is called the numerical radius of x. We recall the generalization of Bohnenblust
and Karlin theorem for m-convex algebras (see [3], [4]). Let A be an unital
m-convex algebra and x ∈ A. Then

1
e

sup
α∈I

pα(x) ≤ v(x) ≤ sup
α∈I

pα(x) .

Corollary 3. If A has unit element and for any α ∈ I there exists kα > 0
such that

v(xy) ≤ kαpα(yx) for any x, y ∈ A ,

then A is commutative.

Proof. From the generalization of Bohnenblust and Karlin theorem we
have

1
e

sup
α∈I

pα(xy) ≤ v(xy) for any x, y ∈ A .

Now using Corollary 2 it follows that A is a commutative algebra.

Theorem 3. If A has unit element and for any α ∈ I there exists kα > 0
such that

pα(x)2 ≤ kαpα(x2) for any x ∈ A ,

then A is commutative.
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Proof. Let α ∈ I and x ∈ A. An induction argument lead us to

pα(x) ≤ k
1− 1

2n
α (pα(x2n

))
1

2n .

We denote
ρα(x) = lim

n→∞(pα(x2n
))

1
2n .

Letting n →∞, we obtain pα(x) ≤ kαρα(x). As it is known, ρα(xy) = ρα(yx)
for any x, y ∈ A (see [7]). So

pα(xy) ≤ kαρα(xy) = kαρα(yx) ≤ kαpα(yx)

for any x, y ∈ A, and using Corollary 2 we obtain that A is commutative.

Corollary 4. (See [2]) Let A be a complex Banach algebra with unit
such that, for some k > 0,

‖xy‖ ≤ k‖yx‖ for any x, y ∈ A .

Then A is commutative.

Theorem 4. If A has unit element and for any α ∈ I there exists kα > 0
such that

pα(x) ≤ kαρ(x) for any x ∈ A ,

then A is commutative.

Proof. Let x, y ∈ A and f : C→ A given by

f(λ) = exp(λx)y exp(−λx)

for any λ ∈ C. For any α ∈ I and λ ∈ C, we have

pα(f(λ)) = pα(exp(λx)y exp(−λx)) ≤ kαρ(exp(λx)y exp(−λx)) = kαρ(y)

because the spectral radius has the property ρ(xy) = ρ(yx) for any x, y ∈ A
(see [7]). So f is a bounded and differentiable function on C and using Liouville
theorem we obtain that f is a constant function. This implies that f ′(λ) = 0
for any λ ∈ C and consequently

x exp(λx)y exp(−λx)− exp(λx)yx exp(−λx) = 0 for any λ ∈ C .

For λ = 0 we have xy − yx = 0, and this completes the proof.

Corollary 5. (See [1] and [2]) Let A be a complex Banach algebra with
unit such that, for some k > 0,

‖x‖ ≤ kρ(x) for any x ∈ A .

Then A is commutative.
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