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1. INTRODUCTION

A compact space K is called Corson [8] if it is homeomorphic to a subset
of
»(T') = {z € R'' : suppz is countable}

for a set I'. A compact space K is called Valdivia [2] if it is homeomorphic to
some K’ C R with K'NY(T) dense in K’. A subset A C K is called $-subset
if there is a homeomorphic injection h : K — R with A = h=1(X(I")). In
this setting K is Valdivia if and only if it has a dense X-subset (cf. [6, Section
1.1)).

Corson and Valdivia compacta are useful for studying the structure of non-
separable Banach spaces, they are closely related with projectional resolutions
of the identity and Markushevich bases, see e.g. [10], [11], [12], [2], [6]. There
are studied also the associated Banach spaces.

A subspace S C X* is called a X-subspace if there is a one-to-one linear
weak* continuous mapping 7 : X* — R with S = T-}(X(T')). A Banach
space X is called weakly Lindelof determined (or shortly WLD) if X* is a
Y-subspace of itself. The space X is called Plichko (1-Plichko) if X* admits
a norming (1-norming, respectively) Y-subspace.

The class of Valdivia compact spaces is not closed to continuous images
[13], [6, Theorem 3.21] and the class of 1-Plichko spaces is not closed to sub-
spaces [6, Sections 4.5 and 5.2]. However, continuous images of Valdivia com-
pacta enjoy many properties of Valdivia ones, see for example [6, Theorem
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3.27]. In the present paper we study the class of continuous images of Valdi-
via compacta and the associated class of subspaces of 1-Plichko spaces. We
show some analogues and differences between these classes and the classical
ones. We also introduce subclasses of weak Corson compact spaces and weakly
WLD Banach spaces which play a similar role as Corson compacta and WLD
spaces.

In the second section we study two classes of countably compact spaces
which are a generalization of Corson compacta. Third section is devoted to
the classes of compact spaces. In the fourth section we investigate associated
Banach spaces. The last section contains some open problems.

All topological spaces are assumed to be Hausdorff and completely regular.

A subspace A of a topological space X is called countably closed if C C A
for each C C A countable. A space X is said to have countable tightness
(to be Fréchet-Urysohn) if, whenever A C X and x € A then there is a
countable subset C C A with z € C (there is a sequence x,, € A with z,, — =,
respectively).

2. CORSON AND WEAKLY CORSON COUNTABLY COMPACT SPACES

We say that a countably compact space X is Corson if there is a continuous
injection of X into some X(I'). Such an injection is necessarily a homeomor-
phism onto its image [6, Lemma 1.8]. Within the class of compact spaces our
definition is just the classical definition of Corson compact spaces [8]. Corson
compact spaces are stable to continuous images [8], more generally Corson
countably compact spaces are stable to quotient mappings [4]. However, it is
easy to see (cf. Theorem 2.5 below) that Corson countably compact spaces
are not stable to continuous images. Countably compact spaces which are
continuous images of Corson countably compact spaces will be called weakly
Corson. We begin by some easy or well-known stability properties of Corson
and weakly Corson spaces.

LEMMA 2.1. The class of Corson countably compact spaces is closed to
taking countably closed subspaces, quotient images, countable products, finite
topological sums, “one-point countably compact modifications” of arbitrarily
large topological sums.

By a “one-point countably-compact modification” of a topological sum of
countably compact spaces we mean any countably compact space containing
that topological sum as its (topological) subspace with one-point complement.
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An example is the one-point compactification of the topological sum of a family
of compact spaces. Among one-point countably compact modifications there
is a maximal element. This is the topological sum extended by a point oo such
that neighborhood basis of co is formed by complements of closed countably
compact subsets of the topological sum.

Proof of Lemma 2.1. The stability to countably closed subspaces and to
finite topological sums is trivial, that to quotient images is a result of [4]. That
to countable products follows from [6, Lemma 3.28]. Let us show the stability
to one-point countably compact modifications of topological sums. Let X, be
a Corson countably compact space for o € A and X = @, 4 Xao U {00} be
countably compact. Fix f, : X, — X(I',) continuous one-to-one mappings.
Put

F={(a,y):acA,yel}U{(a,A):a € A}

and define f : X — RI by the formula

f&(x)(7)7 TE XOH Y € Faa

0, otherwise.

This is clearly a continuous one-to-one mapping satisfying f(X) c X(T).
Hence X is Corson. [

LEMMA 2.2. The class of weakly Corson countably compact spaces is
stable to all operations mentioned in Lemma 2.1 and, moreover, to continuous
images and finite unions.

Proof. The stability to closed subspaces, countable products and finite to-
pological sums follows easily from Lemma 2.1 and definitions. The stability to
continuous images is trivial, that to finite unions follows from the observation
that any finite union is a continuous image of a finite topological sum. It
remains to show the stability to one-point countably compact modifications
of topological sums. Let X, be a weakly Corson countably compact space
for any o € A and X = @ 4 Xa U {oo} be countably compact. By the
definitions there is, for each o € A, a Corson countably compact space Y, and
a continuous onto mapping f : Y, — X,. Let Y be the maximal one-point
countably compact modification of the topological sum of all Y,’s. Then Y is
Corson by Lemma 2.1. Define f : Y — X by the formula

F) = {my), y € Va,

00, Y = o0.
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Then f is an onto mapping. Moreover, it is continuous. Indeed, let U C X
be open and V = f~1(U). Obviously V NY, is open for each a, so V '\ {oo}
is open. If oo ¢ U then oo ¢ V and we are done. Suppose now oo € U. Then
it remains to prove that V is a neighborhood of co in Y. To this end it is
enough to show that Y\ V is countably compact. As each Y, is countably
compact, it suffices to observe that Y, C V for all but finitely many . And
this is true because X, C U for all but finitely many « as X \ U is countably
compact. [

Now we are going to introduce a topological operation, which will yield
another stability property. This will be the [0,7)-sum, where 7 is an ordinal.

Suppose that X, is a topological space for each isolated ordinal o < 7.
The [0, n)-sum of spaces X, is the set

X ={(a,z): v € X,, a <nisolated} U {(a, ) : @ < n limit}

equipped with the following topology. The sets {a} x X, for a isolated are
canonically homeomorphic to X, and clopen in X. A neighborhood basis for
(o, @) with « limit is formed by sets

X(v,o]={(B2)eX:y<B<a}, y<a.

It is easy to check that X is a Hausdorff (regular, completely regular)
topological space whenever each X, is Hausdorff (regular, completely regular,
respectively).

LEMMA 2.3. e Ifn is either an isolated ordinal or an ordinal with un-
countable cofinality, then any [0,n)-sum of countably compact spaces is
countably compact.

e Any [0,w;)-sum of Corson (weakly Corson) countably compact spaces
is again Corson (weakly Corson).

Proof. To show the first part, let (ay,,x,) be any sequence in X. Then
there is a subsequence o,, which is either constant or strictly increasing. If
oy, = «a for each k and « is isolated, then x,, € X, and hence it has a cluster
point x € X,. Then (a,x) is a cluster point of the sequence x,. If « is limit,
then x,, = «, hence (a, @) is a cluster point of z,,. It remains to consider the
case when «,,, is increasing. Let o denote the supremum of this sequence.
By the assumptions on 1 we have a < 1. It follows from the definition of the
topology on [0, 7n)-sum that (o, , zn, ) converges to (o, ar), so the sequence zy,
has a cluster point.
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Now suppose that X, is a Corson countably compact space for a < wy
isolated. Let X be the [0,w;)-sum. By the previous paragraph X is countably
compact. As X, is Corson, there is a continuous injection hy : Xo — 3(I'y).
Put

I'={(a,7): v€Tq, a<w isolated} U {(w1,a): a < w;}

and define h: X — R' by the formula

ho(z)(y) o= < w isolated,
a # 3 <wip, (isolated,
B=w, v<a,

0 0=wi, v>a.

h(e, x)(8,7) =

Then h is continuous, one-to-one and maps X into X(I'). So X is Corson.

Finally suppose that X, is a weakly Corson countably compact space for
o < wq isolated. For each « there is a Corson countably compact space Y, and
a continuous surjection ¢, of Y, onto X,. Let X and Y be the [0, w;)-sums
of all X,’s (all Y,’s, respectively). The space Y is Corson by the previous
paragraph. Define a function ¢ : Y — X by the formula

a, oy « isolated,
play) = {( ) -
a, ) a limit.

It is clear that ¢ is a mapping of Y onto X. Moreover, it follows from the
definition of the [0, w;)-sum that it is continuous. Hence X is weakly Corson.

The following lemma characterizes Corson countably compact spaces among
weakly Corson ones.

LEMMA 2.4. Let X be a weakly Corson countably compact space. The
following assertions are equivalent.

(1) X is Corson.
(2) X is Fréchet-Urysohn.
(3) X has countable tightness.

Proof. The implication 1 = 2 follows from [9, Theorem 2.1], see also [6,
Lemma 1.6].
The implication 2 = 3 is trivial.
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3 = 1 Let Y be a Corson countably compact space and f : Y — X a
continuous onto mapping. Let F' C Y be closed. We claim that f(F') is closed
in X. Let z € f(F). Then there is C C f(F) countable with x € C. Choose
a countable set D C F such that f(D) = C. Then D C F and, moreover, D
is compact, so f(D) contains z. As f(D) C f(F) we get x € f(F). Therefore
f(F)isclosed. So f is a closed mapping, in particular it is a quotient mapping,
so X is Corson by Lemma 2.1. 1

THEOREM 2.5. e Let X be a countably compact set of ordinals. Then
X is weakly Corson if and only if X has cardinality at most X;. Further,
X is Corson if and only if card X < N; and any ordinal of uncountable
cofinality contained in X is an isolated point of X.

e The space [0, 7] is Corson (weakly Corson) if and only ifn < wy (n < wa,
respectively).

Proof. Suppose that X is a countably compact set of ordinals with
card X < N; and 6 = sup X. Let Y denote the closure of X in [0,6]. Then
clearly card Y < N; and Y is a well-ordered compact space, hence Y is homeo-
morphic to [0, n] for some < we. As X is countably closed in Y, it is enough
to show (due to Lemma 2.2) that [0, 7] is weakly Corson for any n < ws.

We will show it by transfinite induction. [0,0] is clearly even Corson.
Suppose that n < ws is such that [0,7] is weakly Corson for every v < 7.
There are three possibilities.

(a) n =&+ 1 — then [0,7] is the topological sum of [0,¢] and {n}, and so
it is weakly Corson by Lemma 2.2.

(b) n is a limit ordinal of countable cofinality. So there are 1, < 1 such
that n, /. Then [0, 7] is the one-point compactification of the topological
sum of weakly Corson compact spaces [0, m1], (n1,72], (n2,m3], ..., hence it is
weakly Corson by Lemma 2.2.

(c) n is a limit ordinal of cofinality w;i. Then there is an increasing long
sequence of ordinals (7, : v < wy) such that 7, for limit « is the supremum
of the preceding 7,’s and the supremum of the whole family is . Then [0, 7]
and (7, ny+41] for v < wy are weakly Corson by the induction hypothesis and
their [0, w;)-sum, which is the interval [0, ), is weakly Corson by Lemma 2.3.
Finally, [0,7] is the union of [0,7) and {7}, and so it is weakly Corson by
Lemma 2.2.

Now suppose that X is a weakly Corson countably compact set of ordinals
with card X > Ny. Let Y be the set of those x € X which are the limit of
a sequence of isolated points of X. Then clearly Y is countably closed in X,
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so it is weakly Corson by Lemma 2.2. Further, Y is Fréchet-Urysohn, so it
is Corson by Lemma 2.4. As clearly cardY > No, we can without loss of
generality suppose that X is Corson.

Let 6 = sup X and Z denote the closure of X in [0,6]. Then Z is a well-
ordered compact space and so it is homeomorphic to [0,7] for some 1 > ws.
This homeomorphism maps X onto the set of all ordinals from [0,7] which
are either isolated or of countable cofinality. Hence, by Lemma 2.1, the set

Xo = {a < wy: «a isolated or of countable cofinality}

is Corson. Let h: Xy — X(T") be a one-to-one continuous mapping. If v € T,
then h, : o +— h(a)(y) is continuous and so there is 3(y) < wy such that h,
is constant on (B(7y),w2) N Xo. Put

I={yel': h,=0o0n ((7),w2) N Xo}.

If T'\ I is uncountable, choose J C I'\ I with card J = N; and put [y =
sup{B(7) : v € J}. Then [y < wy and hence there is o € (Gp, w2) N Xo. Then
h(a) # 0 for each v € J, thus h(«) ¢ 3(I'), a contradiction.

Therefore I" \ I is countable. Due to the previous paragraph there is a
unique continuous extension h : XoU{ws} — (') of the mapping h. As h|Xo
is one-to-one, there is at most one a € Xo such that h(a) = h(ws). Hence
there is some o < ws such that A is one to one on X; = (Xo N (o, wo)) U {ws}.
Therefore X7 is Corson, which is a contradiction with Lemma 2.4 as X7 is not
Fréchet-Urysohn.

Thus we proved the characterization of weakly Corson countably compact
sets of ordinals. That of Corson ones follows now easily from Lemma 2.4. The
case of [0,n] is just a special case of the countably compact case. I

3. WEAKLY CORSON AND WEAKLY VALDIVIA COMPACT SPACES

Let us call a compact space K weakly Valdivia if it has a dense countably
compact subset which is weakly Corson. This is not a new class, as says the
following proposition.

PrOPOSITION 3.1. A compact space K is weakly Valdivia if and only if it
is a continuous image of a Valdivia compact space.

Proof. Suppose there is a Valdivia compact space L and a continuous
surjection ¢ : L — K. Let A be a dense ¥-subset of L. Then A is a Corson
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countably compact space and ¢(A) is weakly Corson and dense in K. Thus
K is weakly Valdivia.

Conversely let B be a dense weakly Corson countably compact subset of
K. Then there is A C X(I") countably compact and ¢ : A — B, a continuous

—_Rrr
surjection. As v = BA [6, Lemma 1.8 and Proposition 1.9], the space A
is Valdivia. The continuous extension By : A — K witnesses that K is a
continuous image of a Valdivia compact space. [

The next proposition sums stability properties of weak Valdivia compact
spaces.

PROPOSITION 3.2. The class of weakly Valdivia compact spaces is closed
to arbitrary products, continuous images, finite unions, one-point compactifi-
cations of arbitrary topological sums. Moreover, if K is weakly Valdivia and
L is a subset of K which can be written as the closure of the union of an
arbitrary family of G§ subsets of K, then L is weakly Valdivia as well.

Proof. The stability to arbitrary products and one-point compactifications
of topological sums follows, using Proposition 3.1, from the respective stability
properties of Valdivia compact spaces, see [6, Theorem 3.29 and Theorem
3.35]. The stability to continuous images is trivial by Proposition 3.1, that to
finite unions follows from the fact that a finite union is a continuous image of
a finite topological sum.

Now suppose that K is weakly Valdivia and L is a subset of K which can
be written as the closure of the union of arbitrary family of Gs subsets of K.
Let A C K be a dense weakly Corson countably compact subset. It follows
from [6, Lemma 1.11] that LN A is dense in L. As LN A is weakly Corson by
Lemma 2.2, L is weakly Valdivia. |

The class of weakly Valdivia compact spaces is not stable to taking closed
subsets. In fact any compact space is homeomorphic to a subset of [0, l]r,
which is even Valdivia and not all compact spaces are weakly Valdivia.

PROPOSITION 3.3. There is a closed subset of {0, 1}** which is not weakly
Valdivia. Any weakly Corson compact is hereditarily weakly Valdivia.

Proof. Let K C [0,1] be the Cantor set and A C K be any subset of
cardinality N; consisting of both-sided accumulation points. Let K4 be the
compact from [5]. Then it is not weakly Valdivia by [6, Example 1.18(ii)] and
it can be found in {0, 1}*! as it is zero-dimensional and has weight Rj.

The second part is obvious. [
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The following proposition is an analogue of Lemma 2.3 for the compact
case.

PROPOSITION 3.4. Any [0,w; + 1)-sum of (weakly) Valdivia compacta is
again a (weakly) Valdivia compactum.

Proof. First let us note that [0, n)-sum of compact spaces is again compact
whenever 7 is isolated. Now we are going to prove the statement for Valdivia
compacta.

Let K, be a Valdivia compactum for @ < w; + 1 isolated. Fix a dense
Y-subset A, of K,. Denote by K the [0,w; + 1)-sum of K,’s. Put

A= U {a} x Ay U{(a, @) : @ < wy limit}.

a<wi+1 isolated

Then A is dense in K and it is the [0,w;)-sum of A,’s. As each A, is a
Corson countably compact space, A has the same property by Lemma 2.3.
By [6, Proposition 1.4 and Lemma 1.9] it now suffices to prove that K = SA.
Let f be a real continuous function of A. We will describe the continuous
extension of f on K.

As K, = A, the restriction f|{a} x A, can be continuously extended
on {a} x K,. Moreover, {(o, @) : o < wy limit} is homeomorphic to [0,w;)
and hence f is constant on {(a, ) : @ € (f,w1) limit} for some § < wi. So
we extend f to the point (w1, w) by this common value.

In this way we have extended f to all points of K. It follows easily from
the definition of the topology on K that this extension is continuous.

The case of weakly Valdivia compacta is even more easy. Let A, be a
dense weakly Corson countably compact subset of K,. Define A as above.
Then A is weakly Corson by Lemma 2.3 and therefore K is weakly Valdivia.

Now we give a characterization of weakly Valdivia compacta among ordinal
segments.

THEOREM 3.5. Let n be an ordinal. Then the following are equivalent.

(1) n < wa.

(ii) [0,n] is Valdivia.

(iii) [0,n] is weakly Valdivia.
)

(iv) [0,7m] is weakly Corson.
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Proof. (i)=(iv) follows from Theorem 2.5.

(i)=(ii) follows by transfinite induction from Proposition 3.4. This is also
proved in [6, Theorem 3.7].

The implications (ii)=-(iii) and (iv)=-(iii) are trivial.

(iii)=-(i) Suppose n > wq. If [0,n] is weakly Valdivia, there is A C [0, 7]
dense weakly Corson countably compact space. But clearly card A > wso,
which is a contradiction with Theorem 2.5. 1

The following theorem sums up duality properties of weakly Valdivia com-
pacta. It is an analogue of [6, Theorems 5.2 and 5.3].

THEOREM 3.6. Let K be a compact space. Consider the following asser-
tions.

(1) K is weakly Valdivia.
(2) (Bo(k)+w*) is weakly Valdivia.
(3) P(K) is weakly Valdivia.

Then 1 = 2 & 3. If K has a dense set of G points, then all three assertions
are equivalent.

Proof. 1 = 2 The space K is a continuous image of a Valdivia compac-
tum L. The dual unit ball (BC( L)*,w*) is Valdivia by [6, Theorem 5.2] and
(BC(K)* , w*) is a continuous image of (BC(L)* , w*), thus it is weakly Valdivia.

2 = 3 It is easy to check that P(K) is weak™ closed weak™ G subset of
(BC( K)*,w*). Hence the assertion follows by Proposition 3.2.

3 = 2. Suppose P(K) is weakly Valdivia. Then P(K) x P(K) x [0,1] is
weakly Valdivia as well, due to Proposition 3.2. And (u,v,t) — tu— (1 —t)v
is a continuous mapping onto (BC(K)*,w*).

3 = 1 if K has a dense set of Gs points. Let us consider K canonically
embedded to P(K). If k is a G5 point of K then it is also a G point of P(K).
Then use Proposition 3.2. |

It is unknown whether 3 = 1 holds without the assumption that K has a
dense set of G5 points (cf. the analogous problem for Valdivia compacta, [6,
Question 5.10]).

Before stating the next theorem let us recall that a compact space K has
property (M) if any Radon probability measure in K has separable support.

THEOREM 3.7. If K is weakly Corson and has property (M), then
(BC(K)*,w*) is weakly Corson as well.
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Proof. Let A be a Corson countably compact space and ¢’ : A — K a
continuous surjection. Put L = SA and let ¢ : L — K be the continuous
extension of ¢’. Then, by [6, Proposition 1.9], A is a X-subset of L and

A= {1 € By~ : supp p is a separable subset of A}
is a dense Y.-subset of (BC(L)*,w*) by [6, Proposition 5.1]. Let
T: (Bowyw") — (Bougyw")

be the canonical continuous surjection (T'(p) = ¢(u)). We claim that T'(A) =
(BC’(K)* s w*)

As A is convex symmetric and T affine, it is enough to check that P(K) C
T(A). Let p € P(K). Put H = supp u. By the property (M) the set H is
separable, let {h, : n € N} be a dense subset. For each n € N choose some
an € A such that ¢(a,) = h, and put M = {a,: n € N}L. Then M is a
metrizable compact subset of A and (M) = H. Hence there is v € P(M)
such that T(v) = p. As suppv C M is separable, v € A and so p € T(A).
This completes the proof. |

4. ASSOCIATED BANACH SPACES

Let us call Banach space X weakly Plichko if it is isomorphic (or, equiva-
lently, isometric) to a subspace of a Plichko space. A space X will be called
weakly 1-Plichko if it is isometric to a subspace of a 1-Plichko space. It is not
known whether any weakly Plichko space is already Plichko, while there are
weakly 1-Plichko spaces which are not 1-Plichko, see e.g. [6, Section 4.5]. It
is clear that a space is weakly Plichko if and only if it can be renormed to be
weakly 1-Plichko.

PRroPOSITION 4.1. Let X be a Banach space. The following assertions are
equivalent.

(a) X is weakly 1-Plichko.

(b) (Bx~+,w™") contains a dense convex symmetric Corson countably compact
subset.

(¢) (Bx=,w*) is weakly Valdivia.

Proof. (a)=-(b) Let X be isometric to a subspace of a 1-Plichko space Y.
Denote by ¢ the injection of X into Y and by ¢* the adjoint surjection of Y™*
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onto X*. Let A be a dense convex symmetric 3-subset of (By+«,w*). Then
i*(A) is the required subset of (Bx=,w*).

(b)=(c) is trivial.

(¢c)=(a) Suppose (Bx~,w*) is weakly Valdivia. Then it is a continuous
image of a Valdivia compact L. The space C(L) is 1-Plichko by [6, Theorem
5.2], C(Bx»,w") is isometric to a subspace of C'(L) and X is isometric to a
subspace of C(Bx+,w*). 1

Let us remark that the analogous statement for 1-Plichko spaces and Val-
divia compacta is not true. While the analogue of (a)<(b) is true by [6,
Theorem 2.7], there is, by [7], a Banach space with Valdivia dual unit ball
which is not 1-Plichko. A significant subclass of weakly 1-Plichko spaces is
formed by those Banach spaces whose dual unit ball is weakly Corson. Let us
call such spaces weakly WLD.

The following proposition is an immediate consequence of Lemma 2.2.

PROPOSITION 4.2. The class of weakly WLD Banach spaces is closed to
isomorphisms, subspaces and quotients.

As a corollary we get the following example.

EXAMPLE 4.3. If @ < wo, then for any equivalent norm on C[0,«] the
dual unit ball is a continuous image of a Valdivia compactum.

This example shows that there are non-WLD Banach spaces whose dual
unit ball with respect to any equivalent norm is weakly Valdivia. This should
be compared with [6, Theorem 4.22] which says that if the dual unit ball with
respect to any equivalent norm is even Valdivia, then the space is already
WLD. Now it is natural to ask which spaces are weakly 1-Plichko in any equi-
valent norm. Is any such space weakly WLD? We do not know the complete
answer but some methods used for Valdivia compacta and 1-Plichko spaces
can be applied in this situation, too. We continue by the following analogue
of [6, Lemma 4.27].

PROPOSITION 4.4. Let X be a Banach space such that X* contains a
convex weak* compact subset which is not weakly Valdivia. Then there is an
equivalent norm on X x R in which this space is not weakly 1-Plichko.

Proof. Let K C X* be a convex weak* compact which is not weakly
Valdivia. Put

B = conv ((;BX* « [_; ;D U (K x {1}) U ((—K) x {_1})> .
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Then B is a dual unit ball of an equivalent norm on X x R. Further, K x {1}
is a weak™ closed weak* Gy subset of B. If B were weakly Valdivia, K would
have the same property by Proposition 3.2. So B is not weakly Valdivia. I

As a corollary we get the following general result on C(K) spaces.

COROLLARY 4.5. Let K be a compact space such that there is a closed
subset L C K with a dense set of (relatively) G5 points which is not weakly
Valdivia. Then there is an equivalent norm on C(K) in which this space is
not weakly 1-Plichko.

Proof. By Theorem 3.6 the space P(L) of probability measures on L is not
weakly Valdivia. Now, P(L) can be identified with a convex weak™ compact
subset of P(K). Hence the result follows easily from Proposition 4.4. 1

Another result is the following analogue of [3, Lemma 4(iii)].

PRrROPOSITION 4.6. Let X be weakly 1-Plichko and the norm on X be
Gateaux smooth. Then X is weakly WLD.

Proof. We follow the proof of [3, Lemma 4(iii)]. Let A be a dense weakly
Corson countably compact subset of (Bx»,w*). If the norm on X is Gateaux
differentiable and £ € Sx~+ attains its norm at some point of Sx, then £ is a
weak* G5 point of Bx+, hence £ € A by [6, Lemma 1.11]. By Bishop-Phelps
theorem norm-attaining functionals are norm dense in Sx«. As A is clearly
closed to limits of sequences, Sx+ C A. Finally, by a corollary to Josefson-
Nissenzweig theorem Bx+ C A. This completes the proof. [

In the following theorem we collect some interesting examples in which the
previous methods can be applied.

THEOREM 4.7. On the following Banach spaces X there is an equivalent
norm in which X is not weakly 1-Plichko.

(1) X = C(K) where K contains [0,ws]|. This is the case for example if K
is a Valdivia compactum which is not ‘Va-Corson” (cf. [6, Section 1.3]).

(2) X = C(K) where K = [0,1]F or K = {0,1}! for uncountable T.

(3) X = ¢1(T") for uncountable T.
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Proof. The assertion (1) follows immediately from Corollary 4.5 and Theo-
rem 2.5.

The assertion (2) follows from Corollary 4.5 and the proof of Proposition
3.3.

Let us prove the assertion (3). Let K be the compact used in the proof
of Proposition 3.3. Then K is not weakly Valdivia, has weight N; and has
a dense set of G points. So the dual unit ball (Bg(g)«,w*) is not weakly
Valdivia by Theorem 3.6. The Banach space C'(K) has density R, and so it
is isometric to a quotient of ¢1(I") whenever I' is uncountable. Hence (¢1(I"))*
contains a copy of (Bg(xy+, w”™) as a weak™ closed convex symmetric subset.
So, by Proposition 4.4, there is an equivalent norm on ¢;(I') x R in which this
space is not weakly 1-Plichko. It remains to conclude using the obvious fact
that ¢1(I") x R is isomorphic to ¢1(T). 1

Another set of problems is that concerning isomorphisms of C'(K') spaces,
see [6, Section 5.3]. Suppose that C(K) and C(L) are isomorphic. It is known
that L is Corson with property (M) whenever K is, see [1], and that K can be
Valdivia without L being Valdivia, see [6, Theorem 5.18] for a general result.
It is still unknown whether L is Corson whenever K is, cf. [1, Problem on
p. 218] or [6, Question 5.22]. Here we give a generalization of the mentioned
result of [1].

PROPOSITION 4.8. Let K be a weakly Corson compactum with property
(M). If L is a compact space such that C(L) is isomorphic to C(K), then L
is weakly Corson.

Proof. If K is weakly Corson with property (M), then C(K) is weakly
WLD by Theorem 3.7. Hence C(L) is weakly WLD by Proposition 4.2. The-
refore L is weakly Corson by Lemma 2.2. 1

We do not know whether, in the previous proposition, L has necessa-
rily property (M). Neither do we know whether the assumption that K has
property (M) can be dropped. As an immediate consequence of the above
proposition (together with Theorem 2.5) we get the following

EXAMPLE 4.9. If C(L) is isomorphic to C[0, a] for some a < wsg, then L
is weakly Valdivia.

This example is a partial positive answer to [6, Question 5.22], see Question
4 below.
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5. OPEN PROBLEMS

In this final section we collect some open questions in this area.

QUESTION 1. Let K be a weakly Corson compact space. Does K have a
dense set of G5 points?

Notice that any Corson compact space has a dense set of G points (see
e.g. [6, Theorem 3.3]).

QUESTION 2. Let K be a compact space such that each closed subset of
K is weakly Valdivia. Is K weakly Corson?

The analogous question on Valdivia and Corson compacta has negative
answer by [6, Theorem 3.7].

QUESTION 3. Let X be a Banach space which is weakly 1-Plichko in any
equivalent norm. Is X weakly WLD?

The previous section contains several partial positive answers.

QUESTION 4. Suppose C(K) is isomorphic to C(L) and K is weakly Val-
divia. Is L weakly Valdivia as well?

A partial positive answer is given by Example 4.9.

QUESTION 5. Suppose C(K) is weakly Plichko (or even weakly 1-Plichko).
Is K weakly Valdivia?

Theorem 3.6 answers this question positively in case that C'(K) is weakly
1-Plichko and K has a dense set of G5 points.
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