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In this work, we study the Liapunov quantities, the problem of the center,
and the local limit cycles of the lopsided systems ẋ = y, ẏ = −x + pk(x, y),
when k = 5, 7 and when k is odd. In general, the Liapunov quantities are
derived from the focal values η2k+2, but when k = 5, we show that they are
derived from the focal values η4k+2. Moreover, when k = 5, the origin is a
center if and only if the system is time-reversible and if it is not, no more than
five local limit cycles can bifurcate out of the origin. When k = 7, we show
that the origin is a center if and only if the system is time-reversible and if
it is not, no more than seven local limit cycles can bifurcate out of the origin
under certain conditions. In general, when k is odd, we conjecture that the
origin is a center if and only if the system is time-reversible.

1. Introduction

The part of Hilbert’s 16th-problem [8] that relates to the number of limit
cycles of two-dimensional autonomous systems of the form

ẋ = P (x, y) , ẏ = Q(x, y) , (1)

where · = d
dt , P and Q are polynomials in x and y, remains one of the

outstanding unsolved problems in the theory of non-linear ordinary differential
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equations. The maximum possible number of limit cycles (isolated closed
orbits) which can be bifurcate out of the origin of (1) is the question of interest
in this part of Hilbert’s 16th-problem. In the local study of these systems, we
find the problem of a center is closely related to the problem of limit cycles.
This problem consists in finding all necessary and sufficient conditions that
bears on the coefficients of P and Q, in order that all orbits in a neighborhood
of the origin be periodic. Now when the origin is a center for the linearised
systems of (1) we can choose co-ordinates in which (1) is of the form

ẋ = λx+ y + p(x, y) , ẏ = −x+ λy + q(x, y) . (2)

We write p(x, y) = p2(x, y) + · · ·+ pn(x, y), q(x, y) = q2(x, y) + · · ·+ qn(x, y),
where pk and qk are homogeneous polynomials of degree k. The linear part
of (2) is in canonical form and the stability of the origin is determined by the
sign of λ. If λ = 0 the origin is a centre for the linearised system and is said
to be a fine focus (or a weak focus) of the non-linear system.

The Kukles system is the origin of the lopsided systems; in [9] Kukles has
examined the conditions under which the origin is a centre for the differential
system of the form

ẋ = y, ẏ = −x+ a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3. (3)

It was thought that the conditions given in [9] were necessary and sufficient
conditions, but Xiaofan and Dongming [20] describe an example which was not
covered by them and in which the computations suggest that the origin was
a center, then Christopher and Lloyd [7] prove that the origin of the example
suggested by Xiaofan and Dongming is indeed a centre. By transforming (3)
to a system of Liénard type, Cherkas [6] also noted that the Kukles conditions
were incomplete and he discussed some aspects of the problem. In [18] the
author analyzes the center conditions given by Kukles and Cherkas. In [7] it
was shown that for the class of systems (3) under the condition a7 = 0, at
most five limit cycles bifurcate from the origin. The Kukles conditions are
complete under this restriction and a study of those centre conditions was
developed in [16]. In [12], it was shown that, for the systems of type (3) under
the condition a2 = 0, at most six limit cycles bifurcate from the origin. Later,
in [13], Lloyd and Pearson found another condition for a centre not covered
by the preceding ones and they conjecture that there are no others conditions
for a centre.

This work is a continuation of Kukles System and the systems of type
(2), where p(x, y) = pn(x, y) and q(x, y) = qn(x, y). The systems of type (2),
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where p(x, y) = pn(x, y) and q(x, y) = qn(x, y) has been thoroughly studied
by many researchers. In particular, we should highlight the works of Bautin
[2] when n = 2, and the works of Lunkevich and Sibirskii [14] when n = 3,
for the fact that they characterize all the centers. Some conditions of a center
are given in [4] and [5] when n = 4 and n = 5, respectively.

For the systems of type (2), Poincaré introduced an important technique
which is developed by Liapunov [10] in order to determine whether the origin
is a center. It consists in looking for a formal power series of x and y of the
form V (x, y) =

∑∞
k=2 Vk(x, y), where V2(x, y) =

1
2(x

2 + y2), so that

V̇ =
∞
∑

k=1

η2k(x
2 + y2)k ,

where the coefficients η2k are the focal values and they are polynomials in
λ and the coefficients in p and q. It is known that the origin is stable or
unstable according to whether the first non-zero focal value is negative or
positive, and that the origin is a centre if all the focal values are zero. What
we really need are the so-called Liapunov quantities L(0), L(1), . . . ; these are
the non-zero expressions obtained by calculating each η2k under the condition
η2 = η4 = · · · = η2k−2 = 0. Then the origin is a center if all the Liapunov
quantities are zero. The origin of (2) is said to be a fine focus of order k if
η2 = η4 = · · · = η2k = 0, but η2k+2 6= 0. In general L(k) is derived from η2k+2,
but it may happen that a reduced focal value is necessarily zero, in which case
it does not contribute a Liapunov quantity, as we shall show for a lopsided
quintic systems in the next section.

Remark. The origin of the system (2) is a fine focus of order k if L(0) =
L(1) = · · · = L(k − 1) = 0, but L(k) 6= 0.

A reversible system [17] is a planar differential system Ẋ = f(X), X ∈ R2,
for which there exists a diffeomorphism R : R2 → R2 such that R2 is the
identity and f(R(X)) = −R(f(X)). We say that system Ẋ = f(X) is time-
reversible if after a rotation

(

ξ

η

)

=

(

cosα − sinα
sinα cosα

)(

x

y

)

,

the system becomes invariant by the transformation of the form (X, t) 7→
(R(X),−t). The time-reversible systems are characterized for the existence
of at least a straight line through the origin, which is a symmetry axis of
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the phase portrait. This line has the slope tan(α2 ), then after a rotation
of the angle α

2 the system is reversible with respect to the diffeomorphism
R(x, y) = (x,−y). Note that a vector field (p(x, y), q(x, y)) is reversible with
respect to the map R if and only if p(x,−y) = −p(x, y) and q(x,−y) = q(x, y);
if the system of type (2) is reversible then the origin is a centre (the symmetry
principle, see [15, p. 135]). A general study on reversible vector fields can be
found in [18], [19] and [21].

In this work, we study lopsided systems of the form

ẋ = λx+ y , ẏ = −x+ λy + qk(x, y) , (4)

where qk(x, y) is homogeneous polynomial of degree k. For k = 5 and q5(x, y)
= a1x

5 + a2x
4y + a3x

3y2 + a4x
2y3 + a5xy

4 + a6y
5, we refer to the system (4)

as a lopsided quintic for which we have the following results

Theorem 1. For a lopsided quintic system, the Liapunov quantities L(k)
is derived from the focal values η4k+2 in each cases.

Theorem 2. For a lopsided quintic system, we have: (i) The origin is a
centre if and only if the system is time-reversible. (ii) If the system is not
time-reversible, we have at most five local limit cycles which bifurcate out of
the origin.

For k = 7 and q7(x, y) = a1x
7+a2x

6y+a3x
5y2+a4x

4y3+a5x
3y4+a6x

2y5+
a7xy

6 + a8y
7, doing the following change of variables

a1 = b1+b2+b3+b4
64 , a5 = 3b1−5b2−5b3+35b4

64 ,

a2 = b5+3b6+5b7+7b8
64 , a6 = 3b5+b6−9b7+21b8

64 ,

a3 = 3b1−b2−9b3−21b4
64 , a7 = b1−3b2+5b3−7b4

64 ,

a4 = 3b5+5b6−5b7−35b8
64 , a8 = b5−b6+b7−b8

64 ,

in order to simplify the computations. We have the following results

Theorem 3. For a lopsided system of degree seven, suppose that b6 =
b3 = 0, we have: (i) The origin is a centre if and only if the system is time-
reversible. (ii) If the system is not time-reversible, then no more than seven
local limit cycles can bifurcate out of the origin.

In general, when k is odd, one conjecture the following

Conjecture. When k is odd, the origin of system (4) is a centre if and
only if the system is time-reversible.
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2. The construction of a focal values

We now describe the procedure for determining the focal values η2k and the
Liapunov quantities L(k) (see [15]) and write V (x, y) = V2(x, y) + V3(x, y) +
· · · + Vk(x, y) + · · · , (V2(x, y) = 1

2(x
2 + y2)), where Vk is a homogeneous

polynomials of degree k; let for k ≥ 2

Vk =
k−i
∑

i=0

Vk−i,i x
k−iyi ;

for convenience, we say that Vi,j is an even or odd coefficient according to

whether i is even or odd. Now V̇ = dV
dt = ∂V

∂t
dx
dt +

∂V
∂y

dy
dt , the function V in a

neighbourhood of the origin is such that its rate of change along orbits is of
the form V̇ = η2r

2 + η4r
4 + · · · + η2kr

2k + · · · , where r2 = x2 + y2. Let Dk

denote the terms of degree k in V̇ , by direct substitution in the system (2), we
get Dk = y(Vk)x−x(Vk)y+Rk(x, y), where Rk(x, y) = (Vk−1)xp2+(Vk−1)yq2+
· · ·+ xpk−1 + yqk−1 and the subscripts x and y denotes partial differentiation
with respect to x and y respectively. The idea is to choose the coefficients Vi,j
and the quantities ηk so that Dk = 0 if k is odd and Dk = ηk(x

2 + y2)k/2 if k
is even.

Suppose first that k is odd, k = 2m + 1, the requirement Dk = 0 is
equivalent to solving a set of 2m + 2 unknowns Vi,j with i + j < k and
the coefficients arising in the original differential equations. These 2m + 2
equations divide into two sets of m+ 1 linear equations, one set determining
the odd coefficients of Vk and the other determining the even coefficients.

When k is even, k = 2m, the condition Dk = η2m(x
2+y2)m gives as 2m+1

linear equations for η2m and the 2m + 1 coefficients of Vk. These equations
divide into two sets: m + 1 equations for η2m and m odd coefficients of Vk,
and m equations for the m+ 1 even coefficients. To obtain unique values for
the even coefficients of Vk, we introduce conditions Vm,m = 0 if m is even and
Vm+1,m−1 + Vm−1,m+1 = 0 if m is odd. Then the even coefficients of Vk are
uniquely determined (for details see [11]).

3. The main results

We now consider the lopsided quintic system

ẋ = λx+ y , ẏ = −x+ λy + q5(x, y) , (5)

where q5(x, y) = a1x
5+a2x

4y+a3x
3y2+a4x

2y3+a5xy
4+a6y

5. For a lopsided
quartic system it was shown in [1] that L(k) is derived from η6k+2 in each case.
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Now we have V̇ = (x+ (V3)x + (V4)x + . . . ) (λx+y)+(y+(V3)y+(V4)y+
. . . )(−x+ λy+ q5), so V̇ = λr2 + o(r2) as r → 0 where r2 = x2 + y2, we have
also V̇ = η2r

2+o(r2) as r → 0. Then L(0) = η2 = λ, we set λ = 0 to compute
more focal values. Now

V̇ = (x+ (V3)x + (V4)x + . . . )(y) + (y + (V3)y + (V4)y + . . . )(−x+ q5)

= (y(V3)x − x(V3)y) + (y(V4)x − x(V4)y + (y(V5)x − x(V5)y)

+ (y(V6)x − x(V6)y + yq5) + (y(V7)x − x(V7)y + (V3)yq5)

+ · · ·+ (y(Vk)x − x(Vk)y + (Vk−4)yq5) .

Let Dk denote terms of degree k in V̇ , then Dk = y(Vk)x−x(Vk)y+(Vk−4)yq5.
The condition D3 = 0 gives two sets of equations 3V3,0 − 2V1,2 = 0, V1,2 = 0 ;
2V2,1 − 3V0,3 = 0, −V2,1 = 0 ; from theses two sets it follows that V3 = 0.

Now D4 = η4(x
2 + y2)2 gives two sets of equations 4V4,0 − 2V2,2 = 0,

2V2,2 − 4V0,4 = 0 ; −η4 − V3,1 = 0, −2η4 + 3V3,1 − 3V1,3 = 0, −η4 + V1,3 = 0 ;
from these two sets with the condition V2,2 = 0, we get V4 = 0 and η4 = 0, so
η4 does not contribute L(1).

From D5 = 0, we get two sets of equations 5V5,0−2V3,0 = 0, 3V3,2−4V1,4 =
0, V1,4 = 0 ; −V4,1 = 0, 4V4,1 − 3V2,3 = 0, 2V2,3 − 5V0,5 = 0 ; so we get V5 = 0.

Now D6 = η6(x
2 + y2)3 gives two sets of equations 6V6,0 − 2V4,2 + a1 = 0,

4V4,2 − 4V2,4 + a3 = 0, 2V2,4 − 6V0,6 + a5 = 0 ; −η6 − V5,1 = 0, −3η6 + 5V5,1 −
3V3,3 + a2 = 0, −3η6 + 3V3,3 − 5V1,5 + a4 = 0, −η6 + V1,5 + a6 = 0. From the
second set one can get η6 = 1

16(5a6 + a2 + a4), so L(1) = 5a6 + a2 + a4; from
these two sets of equations with the condition V4,2 + V2,4 = 0, and after some
calculations we get

V6 = −1
6 (a3

4 + a1)x
6 − 1

16(a2 + a4 + 5a6)x
5y − 1

8a3x
4y2

+ 1
6(a2 − a4 − 5a6)x

3y3 + 1
8a3x

2y4

+ 1
16(a2 + a4 − 11a6)xy

5 + 1
6(
a3

4 + a5)y
6 .

By similar calculations, and by using MapleV Release 4, we obtain

V7 = V8 = V9 = 0 , V10 6= 0 , V11 = V12 = V13 = 0 , V14 6= 0 ,

V15 = V16 = V17 = 0 , V18 6= 0 , V19 = V20 = V21 = 0 , V22 6= 0 ,

V23 = V24 = V25 = 0 , V26 6= 0 ,

η8 = η12 = η16 = η20 = η24 = 0 , 0 6∈ { η10 , η14 , η18 , η22 , η26 } .

So far we have the following
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Lemma 1. For a lopsided quintic system, the Liapunov quantities L(k) =
η4k+2 modulo 〈η2, η6, . . . , η4k−2〉 (the ideal generated by η2, η6, . . . , η4k−2)
are for k = 0, 1, . . . , 6:
L(0) = λ;
L(1) = 5a6 + a2 + a4 modulo 〈λ〉;
L(2) = η10 modulo 〈λ, 5a6 + a2 + a4〉;
L(3) = η14 modulo 〈λ, 5a6 + a2 + a4, η10〉;
L(4) = η18 modulo 〈λ, 5a6 + a2 + a4, η10, η14〉;
L(5) = η22 modulo 〈λ, 5a6 + a2 + a4, η10, η14, η18〉;
L(6) = η26 modulo 〈λ, 5a6 + a2 + a4, η10, η14, η18, η22〉.

For the expressions of η10, η14, η18, η22 and η26 see the Appendix.

Remark. (1) The focal values η4i+2 for i ≥ 2 are of the form a6Pi1+a4Pi2+
a2Pi3, where Pi1, Pi2 and Pi3 are polynomials in a1, a3 and a5, and for i = 1
we have P11 = 5 and P12 = P13 = 1.

(2) If a2 = a4 = a6 = 0 then all the Liapunov quantities are zero, so the
origin is a center for the system (5).

Now we shall show that Vk = 0 for k 6≡ 2 mod 4 and ηk = 0 for k 6≡ 2
mod 4. That is we consider the following

Lemma 2. For the system (5) we have

(i) Vk = 0 if k ≡ 3 mod 4;

(ii) Vk = 0 if k ≡ 4 mod 4, ηk = 0 if k ≡ 4 mod 4;

(iii) Vk = 0 if k ≡ 5 mod 4.

Proof. Note that Dk = y(Vk)x − x(Vk)y + (Vk−4)yq5, k ≥ 6.

(i) We have V3 = V7 = 0, let k = 4l + 3, l = 1, 2, . . . , now D4l+3 =
y(V4l+3)x − x(V4l+3)y + (V4l−1)yq5. For l = 1 we have V7 = 0. Suppose that
the result is true for l so that V4l+3 = 0, we show that it holds also for l + 1.
Now D4l+7 = 0 gives two sets of equations

(4l + 7)V4l+7,0 − 2V4l+5,2 = 0
(4l + 5)V4l+5,2 − 4V4l+3,4 = 0

...
3V3,4l+4 − (4l + 6)V1,4l+6 = 0

V1,4l+6 = 0



























,

−V4l+6,1 = 0
(4l + 6)V4l+6,1 − 3V4l+4,3 = 0
(4l + 4)V4l+4,3 − 5V4l+2,5 = 0

...
2V2,4l+5 − (4l + 7)V0,4l+7 = 0



























;
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from these two sets we get V1,4l+6 = V3,4l+4 = · · · = V4l+7,0 = 0 and
V4l+6,1 = V4l+4,3 = · · · = V0,4l+7 = 0. Hence V4l+7=0, therefore Vk = 0 if
k ≡ 3 mod 4.

(ii) We have V4 = V8 = 0, let k = 4l + 4, l = 1, 2, . . . . For l = 1 we have
V8 = 0 and the corresponding focal value η8 = 0. Suppose that the result is
true for l, i.e., V4l+4 = 0, and we have to show that it is still true for l + 1.

Since D4l+8 = η4l+8(x
2 + y2)

4l+8
2 , we have the following two sets of equations

(4l + 8)V4l+8,0 − 2V4l+6,2 = 0
(4l + 6)V4l+6,2 − 4V4l+4,4 = 0

...
4V4,4l+4 − (4l + 6)V2,4l+6 = 0
2V2,4l+6 − (4l + 8)V0,4l+8 = 0



























,

−η4l+8 − V4l+7,1 = 0

−

(

2l + 4
1

)

η4l+8 + (4l + 7)V4l+7,1 − 3V4l+5,3 = 0

−

(

2l + 4
2

)

η4l+8 + (4l + 5)V4l+5,3 − 5V4l+3,5 = 0

...

−

(

2l + 4
2l + 3

)

η4l+8 + 3V3,4l+5 − (4l + 7)V1,4l+7 = 0

−η4l+8 + V1,4l+7 = 0















































;

the first set with condition V4l+2,4l+2 = 0 gives V4l+8,0 = V4l+6,2 = · · ·
= V0,4l+8 = 0, and the second set gives η4l+8 = V4l+7,1 = · · · = V1,4l+7

= 0, hence V4l+8 = 0. Therefore Vk = 0 if k ≡ 4 mod 4 and ηk = 0 if
k ≡ 4 mod 4.

(iii) When k = 4l + 5, l = 1, 2, . . . , D4l+5 = y(V4l+5)x − x(V4l+5)y +
(V4l+1)q5. When l = 1, V9 = 0. Assuming that the result is true for l, that is
V4l+5 = 0, we shall show that the result is also true for l + 1. Now D4l+9 = 0
gives two sets of equation

(4l + 9)V4l+9,0 − 2V4l+7,2 = 0
(4l + 7)V4l+7,2 − 4V4l+5,4 = 0

...
3V3,4l+6 − (4l + 8)V1,4l+8 = 0

V 1, 4l + 8 = 0



























,

−V4l+8,1 = 0
(4l + 8)V4l+8,1 − 3V4l+6,3 = 0
(4l + 6)V4l+6,3 − 5V4l+4,5 = 0

...
2V2,4l+7 − (4l + 9)V0,4l+9 = 0



























;

from these two sets we get V1,4l+8 = V3,4l+6 = · · · = V4l+9,0 = 0 and
V4l+8,1 = V4l+6,3 = · · · = V0,4l+9 = 0, then V4l+9 = 0. Therefore Vk = 0 if
k ≡ 5 mod 4.
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The above lemma shows that, for a lopsided quintic system, there are some
focal values which are identically null; in this case these focal values do not
contribute a Liapunov quantities.

Proof of Theorem 1. Follows immediately from Lemma 2 and from the
fact that the Liapunov quantities L(k) are the non-zero expressions obtained
by calculating each non-zero η2k+2.

Remark. The origin of a lopsided quintic system (5) is a fine focus of order
k if η2 = η6 = · · · = η4k−2 = 0, but η4k+2 6= 0, so the Liapunov quantities
L(0), L(1), . . . are the non-zero expressions obtained by calculating each η4k−2

under the conditions η2 = η6 = · · · = η4k−6 = 0.
When the origin is a fine focus of order k, no more than k limit cycles

can bifurcate from the origin under the perturbation of the system (see [3]),
these limit cycles are so-called small-amplitude limit cycles. But it is not
necessarily true that this maximum number is attained, especially when fewer
than k Liapunov quantities are derived from η2, . . . , η2k+2, in which case it
may be that less than k limit cycles bifurcate out of a fine focus of order k.
However for a lopsided quintic system this cannot occur because we can find
k Liapunov quantities from η2, . . . , η4k+2.

Now for a lopsided quintic system, we assume that, for k ≤ 6, L(k) are
those described in Lemma 1.

Proof of Theorem 2. (A) First the origin is a centre by the symmetry
principle, when the system is time-reversible. Second when the origin is a
centre, we have to show that the system is time-reversible.

With λ = 5a6 + a2 + a4 = 0, we have L(0) = L(1) = 0. We suppose that

a2 = −5a6 − a4 . (6)

We substitute (6) in η10 = 0, when 14a6 + a4 6= 0 we get

a3 = −(14a6 + a4)
−1(7a1a4 + 2a5a6 − a5a4 + 50a1a6) . (7)

If 14a6+a4 = 0, knowing a4 = −14a6 and (6) we have η10 = − 1
16a6(a5−3a1),

the vanishing of η10 gives two conditions a6 = 0 or a5 = 3a1. If a6 = 0 we have
a4 = a2 = 0, and we get that the system is invariant by the change of variables
(x, y, t) 7→ (−x, y,−t) and this ensures that the system is time-reversible. If
a5 = 3a1 with a6 6= 0, knowing a4 = −14a6 and (6) we have

η14 = a6(560a
2
1 + 192a2

6 + 9a2
3 + 136a3a1) ,
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η18 = a6(80112a3a
2
1+250944a3

1+280832a2
6a1+9420a1a

2
3+405a3

3+32320a2
6a3) .

For the vanishing of η14 and η18, we compute the resultant of η14 with η18

rapport to a6 which is

<(η14, η18, a6) = (1665a3 + 13316a1)
2(8a1 + a3)

4 .

If a3 = −8a1 we have η14 = a6(a
2
1 + 4a2

6), since a6 6= 0 it is impossible η14 to
be zero. If a3 = −13316

1665 a1 we have η14 = a6(51317a
2
1 + 205350a2

6), and it is
not possible for η14 to be zero for the same reason. So if 14a6 + a4 = 0 the
only possibility for the origin to be a centre is a6 = a4 = a2 = 0 which gives
the system time-reversible.

If 14a6 + a4 6= 0, knowing a2 from (6) and a3 from (7), for the van-
ishing of η14, η18, η22 and η26 we compute <(η14, η18, a1), <(η14, η22, a1) and
<(η14, η26, a1) which are the resultants of η18, η22 and η26 with η14 rapport to
a1 respectively. We obtain

<(η14, η18, a1) = (a4+10a6)(a4+2a6)(a
2
4−20a6a4+100a2

6+16a2
5)

2ψ1(a4, a5, a6),

<(η14, η22, a1) = (a2
4 − 20a6a4 + 100a2

6 + 16a2
5)

2ψ2(a4, a5, a6),

<(η14, η26, a1) = (a2
4 − 20a6a4 + 100a2

6 + 16a2
5)

2ψ3(a4, a5, a6),

where ψ1, ψ2 and ψ3 are polynomials in a4, a5 and a6.
If a4 + 10a6 = 0, after the substitution of a4 = −10a6 we obtain η14 =

a6(a5 − 5a1)
2. For η14 = 0 we have two cases a6 = 0 and a5 = 5a1. If a6 = 0

we get a4 = 0 which is not possible because we have 14a6+a4 6= 0. If a5 = 5a1

with a6 6= 0 we obtain η22 = a6(a
2
6 + a2

1)
2, which is impossible because the

origin is centre and η22 6= 0. Now if a4 + 2a6 = 0, we substitute a4 = −2a6 in
η14, we get η14 = a6(a5 + 3a1)(7a5 − 27a1). If a6 = 0 we have a4 = 0 and it
is impossible because 14a6 + a4 6= 0. If a5 + 3a1 = 0 with a6 6= 0 we change
a5 = −3a1 in η22 and we obtain η22 = a6(a

2
6+a

2
1)

2, so it is not possible because
the origin is a centre and η22 6= 0. Next if 7a5− 27a1 = 0 with a5 = −27

7 a1 we
have η22 = a6(1152480a

4
6 +78302980a2

1a
2
6 +23426337a4

1) and it is not possible
to vanish η22 since a6 6= 0.

If a2
4−20a6a4+100a2

6+16a2
5 = (10a6−a4)

2+16a2
5 = 0, this implies a5 = 0

and a4 = 10a6, so we have η14 = a6(16a
2
6+a

2
1) which is not possible to vanish it

since 14a6+a4 6= 0. Finally, in order to vanish the last term of <(η14, η18, a1),
that is ψ1(a4, a5, a6), we do the changes a4 = c a6 and a5 = d a6, where c, d ∈ R
and a6 6= 0.

If a6 = 0 we have ψ1(a4, a5, a6) = a2
5a

9
4. We substitute a6 = a5 = 0 in η14

and we get η14 = a4(18a
2
1 + a2

4), and it is impossible to vanish η14 because
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we have 14a6 + a4 6= 0. If a6 6= 0 after the change mentioned previously, we
compute <(ψ1, ψ2, d) and <(ψ1, ψ3, d) which are

<(ψ1, ψ2, d) = a80
6 (c+ 10)12δ1(c) ,

<(ψ1, ψ3, d) = a112
6 (c+ 10)12(c+ 8)2δ2(c) ,

where δ1 and δ2 are polynomials in the variable c and they have not common
roots. Since a6 6= 0, a4 + 10a6 6= 0 and the polynomials δ1 and δ2 have not
common roots, so the only possibility is c = −8, in this case we put a4 = −8a6

in ψ1 and we obtain ψ1 = a9
6a

2
5. We have ψ1 = 0 implies a5 = 0, so we put

a4 = −8a6 and a5 = 0 in η14, we get η14 = a2
1a6, the vanishing of η14 yelds

a1 = 0. Now we have η22 = a5
6 and it is impossible to be zero since we have

a6 6= 0.
(B) In the above proof (A), it is clear that the system is not time-reversible

when we have η2 = η6 = η10 = η14 = η18 = 0 and η22 6= 0. Since we have L(k)
is derived from η4k+2, we have L(0) = L(1) = L(2) = L(3) = L(4) = 0 and
L(5) 6= 0, so the order of the origin is five, then we have at most five local
limit cycles which bifurcate out of the origin.

The Liapunov quantities L(k) for the lopsided system of degree seven are
available in the following e-mail address: salih@@math.unice.fr.

Proof of Theorem 3. (A) If the system is reversibe, by the symmetry
principle, the origin is a center. Now we suppose that the origin is a center,
we have to show that the system is time-reversible. In order to have a fine
focus, we put L(0) = λ = 0, so the first Liapunov quantities L(1) is b5

128 .
Knowing b5 = 0 from L(1) = 0 we compute the second Liapunov quantities
L(2) which is b3b6−b1b6−b2b7+b4b7−b3b8

16384 . Since we have b6 = b3 = 0, the vanshing
of L(2) implies b7 = 0 or b4 = b2.

(a) If b7 = 0, we have the third Liapunov quantities L(3) = b2b8(52b1−9b2)
33554432 .

L(3) = 0 gives b2 = 0 or b8 = 0 or b2 = 52
9 b1.

(a.1) If b2 = 0 the fourth Liapunov quantities L(4) = −
b8b31

67108864 , so L(4) = 0
implies b1 = 0 or b8 = 0.

(a.1.1) If b1 = 0 with b8 6= 0, in this case we have L(5) = L(6) = 0 and L(7) =
1491b8(b

2
4 + b28)

3, so it is impossible to vanish L(7) which is a contradiction
because we have a center for the origin.

(a.1.2) If b8 = 0 with b1 6= 0, we have L(5) = L(6) = L(7) = 0 and we get
that the system is time-reversible.
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(a.2) If b8 = 0 the computation gives L(5) = L(6) = L(7) = 0 and we obtain
another particular case of a time-reversible system.

(a.3) If b2 = 52
9 b1 with b1 6= 0and b8 6= 0, we have L(4) = −7b1b8(10859b

2
1 +

1755b24 + 1755b28) and in this case it is not possible to vanish L(4) which is a
contradiction.

(b) If b2 = b4 we compute the fourth Liapunov quantities which is L(3) =
30b21b7 − 10b1b4b7 + 18b24b7 + 52b1b4b8 − 9b24b8 + 3b27b8.

(b.1) If 52b1b4−9b
2
4+3b27 6= 0 the vanishing ofL(3) gives b8 =

2b7(5b1b4−15b21−9b24)

52b1b4−9b24+3b27
.

(b.1.1) If b7 = 0 we have b8 = 0 which is the case (a.2).

(b.1.2) If b7 6= 0, we suppose that b7 = 1 and after we compute L(4), L(5)
and L(6), for the vanshing of L(4), L(5) and L(6) we calcul <(L(4), L(5), b1)
and <(L(4), L(6), b1) which are the resultants of the polynomials L(5), L(6)
with L(4) rapport to b1 respectively, obtaining the following polynomials

<(L(4), L(5), b1) = b44(45− 10b24 + 7737b44)
12P1(b4) ,

<(L(4), L(6), b1) = b4(45− 10b24 + 7737b44)
15P2(b4) ,

where P1(b4) and P2(b4) are polynomials of b4 and of degree 44 and 58 re-
spectively. Moreover, they have no common roots. So the only possibility is
b4 = 0 which gives another particular case of a time-reversible system.

(b.2) If 52b1b4 − 9b24 + 3b27 = 0 and b4 6= 0 we change b1 =
9b242−3b27

52b4
in L(3)

which gives L(3) =
3b7(7737b44−10b24b

2
7+45b47)

b24
. Since b4 6= 0, knowing b7 = 0 from

L(3) = 0 we compute L(4) which is L(4) = −7b4b8(208337b
2
4 + 175760b28), so

L(4) = 0 implies b8 = 0 and is the case (a.2) of a time-reversible system.

(b.3) If 52b1b4 − 9b24 + 3b27 = 0 and b4 = 0 we have b7 = 0, so L(3) = 0.
The computation gives L(4) = −b8b

3
1 and L(5) = b8b

2
1(14825b

2
1 + 4002b28).

Both cases b1 = 0 and b8 = 0 gives that the system is time-reversible by the
symmetry conditions.

(B) In the above (a.1.1), the system is not time-reversible when we have
L(0) = L(1) = L(2) = L(3) = L(4) = L(5) = L(6) = 0 and L(7) =
1491b8(b

2
4 + b28)

3 6= 0, so the order of the origin is seven then no more than
seven local limit cycles can bifurcate out of the origin.
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Appendix

The focal values η10, η14, η18, η22 and η26 are of the following forms:

η10 = a6(61a5 − 3a3 − 95a1) + a4(15a5 + 3a3 − 13a1) + a2(13a5 + a1 + 5a3) ,

η14 = a6(6490a2a4 − 1016a2
3 − 24380a2

1 − 5043a2
4 + 4293a2

2 + 4724a2
5 − 1303a2a6

− 67407a4a6 − 17120a3a1 − 848a3a5 − 34040a1a5 − 176705a2
6) + a4(1332a

2
5

− 6296a1a5 + 665a2
2 + 1401a2a4 − 88a2

3 − 5212a2
1 + 480a3a5 − 3664a1a3 + 251a2

4)

+ a2(932a
2
5 + 72a2

3 − 2828a2
1 − 2368a1a3 + 848a3a5 − 3032a1a5 − 421a2

2) ,

η18 = a6(1368031a1a
2
2 + 647766a3a

2
2 − 2266941a1a

2
4 − 798715a1a

2
3 − 1534750a3a

2
1

− 156825a5a
2
3 − 81988625a5a

2
6 − 20876950a3a

2
6 − 282915a3

5 − 10030a3
3 + 4611525a1a

2
6

− 3445435a1a
2
5 − 4052465a1a2a6 − 5443150a2a3a6 − 454610a3a

2
5 − 4075525a2

1a5

− 5968807a5a
2
4 − 2411346a3a

2
4 − 14434500a3a4a6 − 5905275a1a4a6 − 40930405a4a5a6

+ 972621a2
2a5a6 − 13780795a2a5a6 − 4018125a3

1 − 1371430a1a2a4 − 3511640a1a3a5

− 2184426a2a4a5 − 839360a2a3a4) + a4(60997a1a
2
2 + 420459a2

2a5 − 331337a1a
2
3

− 736880a2
1a3 − 69945a3

5 − 219299a5a
2
4 − 188397a1a

2
4 − 78308a3a

2
4 − 882437a1a

2
5

− 127636a3a
2
5 − 1286855a2

1a5 − 75375a2
3a5 + 158113a2a4a5 − 1117275a3

1

+ 242068a2
2a3 − 141741a1a2a4 + 134034a2a3a4 − 17936a3

3 − 1087900a1a3a5)

+ a2(78327a
2
2a5 − 65625a2

3a5 − 72795a3
5 − 124139a1a

2
2 + 12686a3a

2
2 − 21386a3

3

− 1368605a2
1a5 − 403667a1a

2
3 − 104206a3a

2
5 + 647766a2a3a6 − 1182525a3

1

− 1058080a1a3a5 − 1034090a2
1a3 − 704027a1a

2
5) ,

η22 = a6(18365025280a
3
1a3 − 229652191920a3a5a

2
6 + 367415040a2

3a
2
5 + 14954928960a2

1a
2
5

+ 7348134262a3
2a6 − 59366026702a2

2a
2
6 − 1753788287a4

2 + 443058852925a2a
3
6

+ 343126337a4
4 + 644392962866a2

4a
2
6 + 50543927274a3

4a6 + 3000453114445a4a
3
6

− 495804061320a2
5a

2
6 − 29266290400a2

3a
2
6 + 210883952a4

3 + 207774673400a2
1a

2
6

− 11539712800a4
1 − 803864096a4

5 − 39636377600a2
3a4a6 + 54928890280a2

1a4a6

− 51553494178a2a
2
4a6 + 692215808a3

3a5 − 42192981400a2
1a2a6745985280a3a

3
5

+ 4020073456a1a
2
2a5 + 9269588648a2

1a
2
2 − 45093552450a2

2a4a6 − 183469856a2
2a

2
3

− 3937648344a2
2a

2
5 − 6891973242a2

2a
2
4 − 2869515516a3

2a4 − 8938261628a2a
3
4

+ 26715614436a2a4a
2
6 + 953236592a1a

2
2a3 − 1577147792a2

2a3a5 + 4795803337725a4
6

− 151407450392a2a
2
5a6 − 30016606976a2a

2
3a6 − 4651858568a2

1a
2
4 − 59785062408a2

4a
2
5

− 10953900944a2
3a

2
4 − 307010757592a4a

2
5a6 + 639750967760a1a5a

2
6

+ 297573354320a1a3a
2
6 − 124613041424a2a3a5a6 − 13627892752a1a2a5a6

− 18127553520a2
1a2a4 − 25251198224a1a2a3a6 − 43369822112a2a3a4a5
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− 22049322912a1a2a3a4 − 25438955168a1a2a4a5 − 50088734960a2a4a
2
5

− 11175315200a2a
2
3a4 − 479696091a3a

2
4a5 + 13580240640a2

1a
2
3 + 14042528640a3

1a5

+ 1799962624a1a
3
3 + 4293665152a1a

3
5 − 603963824a1a3a

2
4 + 3085241488a1a

2
4a5

− 204625874320a3a4a5a6 + 183482955632a1a4a5a6 + 92214965104a1a3a4a6

+ 28761265920a2
1a3a5 + 6446897664a1a3a

2
5 + 5090899072a1a

2
3a5) + a4(82565504a1a

3
5

+ 939443520a2
2a

2
3 + 366048986a3

2a4 + 283330525a4
2 − 236989555a2a

3
4 + 156242746a2

2a
2
4

− 3598154744a2
4a

2
5 − 730655920a2

3a
2
4 − 2083280a4

3 − 1305374584a2
1a

2
4 − 5249595680a4

1

− 281377824a4
5 − 40757248a3

1a3 + 591080256a2
1a

2
5 − 78058752a3

3a5

− 1978103432a2
1a2a4 + 859328256a2

1a
2
3 + 2128280104a2

1a
2
2 + 1220339368a2

2a
2
5

+ 2096839536a1a
2
2a5 + 1041265008a1a

2
2a3 + 2439999088a2

2a3a5 − 61794503a4
4

− 3320323080a2a
2
5a4 − 459155312a2a

2
3a4 − 3112823888a3a

2
4a5 − 1414781840a1a

2
4a5

− 1131466576a1a3a
2
4 − 1324717184a3

1a5 − 343726848a2
3a

2
5 − 131394304a1a

3
3

− 524678400a3a
3
5 − 2397631152a2a3a4a5 − 3075959792a1a2a4a5

− 2642359984a1a2a3a4 + 1321310976a2
1a3a5 − 747591168a1a3a

2
5 − 752934784a1a

2
3a5)

+ a2(1563924176a
2
2a3a5 + 763676984a2

1a
2
2 − 37472592a4

3 + 508014080a2
2a

2
3

+ 1240789688a2
2a

2
5 − 10569385120a4

1 − 153042848a4
5 − 458829568a3a

3
5

− 2821853632a2
1a

2
5 − 196518912a3

3a5 + 1190313680a1a
2
2a3 + 1886015440a1a

2
2a5

− 2503069440a2
1a

2
3 + 233938921a4

2 − 8527134336a3
1a5 − 446551808a2

3a
2
5

− 723067904a1a
3
3 − 7291479552a3

1a3 − 299255936a1a
3
5 − 5839216384a2

1a3a5

− 2179015680a1a3a
2
5 − 2452349312a1a

2
3a5) ,

η26 = a6(330066419200a
5
3 + 7333942231560a5

5 + 67820798325000a5
1 + 58279519566240a2

1a
3
3

+ 197072391042800a3
1a

2
3 + 5809865036640a3

3a
2
5 + 42996674880040a1a

4
5

+ 12150099552080a2
3a

3
5 + 14779209528440a3a

4
5 + 6709637090240a1a

4
3

+ 1890474416320a5a
4
3 + 116603419747920a2

1a
3
5 + 293563779675600a3

1a
2
5

+ 92700118782880a1a3a
3
5 + 35317104663680a1a5a

3
3 + 81147959257680a1a

2
3a

2
5

+ 213578571949680a2
1a5a

2
3 + 485118933034400a5a3a

3
1 + 267141060931920a2

1a3a
2
5

+ 282315650827000a3a
4
1 + 322579640761000a4

1a5 − 130522020749255a3
5a

2
4

− 8387828245524a2
2a

3
3 + 56014253028768a3a

4
4 − 49549361352443a3

5a
2
2

− 28060886366153a1a
4
2 + 95854010972159a1a

4
4 − 7817615541820a3a

4
2

− 10086080674055a5a
4
2 − 11381230521984a2

4a
3
3 + 133069714030937a5a

4
4

+ 6500845961055a2
2a

3
1 + 133465709269875a2

4a
3
1 − 14830798208168a4a3a

3
2

− 67641038288284a2
2a3a

2
4 − 257720854414668a2a4a3a

2
5 − 27251007122988a2a4a

3
3
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− 31810733416148a2a5a
3
4 − 138004949154714a5a

2
2a

2
4 − 73027244971276a2

2a3a
2
5

− 70516829898821a5a
2
4a

2
3 − 153546931763512a2

4a3a
2
5 − 28276671949808a2a3a

3
4

− 27027054947708a1a
3
2a4 + 502987179492749a1a

2
4a

2
5 − 15022156474575a1a

2
2a

2
5

+ 306370174664148a2
4a3a

2
1 + 544201331803239a2

4a
2
1a5 − 49923322520789a2

2a
2
1a5

− 60228453854084a1a
2
2a3a5 + 147642070273328a1a2a4a3a5 + 229586582693974a1a2a4a

2
5

+ 8399047565582a1a2a4a
2
3 + 520523114076932a1a

2
4a3a5 + 143701551491853a1a

2
4a

2
3

+ 159637616472330a2a4a
2
1a5 − 60210129497830a2a4a

3
1 + 26313051508940a2a4a3a

2
1

− 64803381784128a2
2a3a

2
1 − 39233416133129a5a

2
2a

2
3 + 51382401414996a1a2a

3
4

− 36105030545278a1a
2
2a

2
4 − 35422970864151a1a

2
2a

2
3 − 37443094819284a5a

3
2a4

− 174394268779098a2a
3
5a4 − 138681510382870a2a5a4a

2
3 − 323453706772505a2

6a
3
5

+ 2006894331495125a2
6a

3
1 + 101660131833262725a4

6a5 + 40953518382860a2
6a

3
3

+ 31572410771915700a4
6a3 + 18413071754336875a4

6a1 − 39518813095086a2
6a5a

2
2

+ 8498636675271852a2
6a3a

2
4 + 1016166835408125a6a4a

3
1 − 72234826512472a2

6a3a
2
2

+ 2612132948416710a6a5a
3
4 − 37205425210072a6a2a

3
3 + 21085164522029186a2

6a5a
2
4

+ 8852783125929800a3
6a2a3 − 20713196322a6a4a

3
3 + 1378427874429338a6a1a

3
4

− 130837116197170a2
6a1a

2
2 + 6928088238675375a3

6a1a2 + 8466497447057590a2
6a1a

2
4

+ 6966818500367675a2
6a1a

2
5 − 56673097331568a6a3a

3
2 − 130566017124078a6a5a

3
2

+ 1103034199853016a6a3a
3
4 − 303452292331339a6a2a

3
5 + 1723639393162675a2

6a1a
2
3

− 50049684590025a6a2a
3
1 − 415339262013349a6a4a

3
5 + 22904797744684825a3

6a2a5

+ 212899251534180a2
6a3a

2
5 + 181300084485885a2

6a5a
2
3 + 76083429863625955a3

6a4a5

+ 27849773118111510a3
6a4a3 + 22135200295510825a3

6a1a4 + 6375559257922825a2
6a

2
1a5

+ 3370280456955400a2
6a3a

2
1 − 1518892245634a6a1a

3
2 + 274669111680665a6a1a2a

2
3

+ 3964734175174840a2
6a2a3a4 − 402319453773360a6a2a3a

2
5

+ 9914390989223980a2
6a2a5a4 + 1043745945018758a6a2a5a

2
4 − 66870212534795a6a4a5a

2
3

− 204662256107425a6a2a5a
2
3 − 300136836224044a6a

2
2a3a4 − 544740615505390a6a5a

2
2a4

− 275779330237490a6a4a3a
2
5 + 3456709588956075a6a1a4a

2
5 + 873331938528114a6a1a2a

2
4

+ 1197424498149545a6a1a2a
2
5 + 998468005582095a6a1a4a

2
3 − 99686917462378a6a1a

2
2a4

+ 3537725263924845a6a4a
2
1a5 + 2004534621313290a6a4a3a

2
1

+ 6659770566880900a2
6a1a3a5 + 1145536264012260a6a1a2a3a5

+ 3571048856641520a6a1a4a3a5 + 4468409448665540a2
6a1a2a4

+ 441976380212300a6a2a3a
2
1 + 1006298868243275a6a2a

2
1a5 + 352111914681660a6a2a3a

2
4)

+ a4(120061175360a
5
3 + 1911973192920a5

5 + 1558131351000a5
1 + 14436455920320a2

1a
3
3

+ 42414502817680a3
1a

2
3 + 2300236041600a3

3a
2
5 + 12315023261240a1a

4
5
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+ 4201675930480a2
3a

3
5 + 4359474042280a3a

4
5 + 1944445350400a1a

4
3 + 759695511680a5a

4
3

+ 33339113416560a2
1a

3
5 + 67757811271920a3

1a
2
5 + 27939438312800a1a3a

3
5

+ 10625049547840a1a5a
3
3 + 24824284697520a1a

2
3a

2
5 + 54444742996560a2

1a5a
2
3

+ 106555966407520a5a3a
3
1 + 71853838638960a2

1a3a
2
5 + 49427955420200a3a

4
1

+ 58928394236600a4
1a5 − 11598193940971a3

5a
2
4 + 104283170966a2

2a
3
3 + 611044081362a3a

4
4

− 10165897154629a3
5a

2
2 + 1100788237193a1a

4
2 + 2237055021725a1a

4
4

+ 42337525798a3a
4
2 − 1597464772509a5a

4
2 − 1602698722466a2

4a
3
3 + 1610401969399a5a

4
4

+ 26573018501677a2
2a

3
1 + 3654320624923a2

4a
3
1 + 1854114140180a4a3a

3
2

− 1464085628280a2
2a3a

2
4 − 32111724329668a2a4a3a

2
5 − 3190730163692a2a4a

3
3

− 5737585472999a2a5a
3
4 − 6436384720250a5a

2
2a

2
4 − 10662240312762a2

2a3a
2
5

− 8723633391437a5a
2
4a

2
3 − 16612839169938a2

4a3a
2
5 − 2655256731292a2a3a

3
4

+ 350332548294a1a
3
2a4 + 20248648034189a1a

2
4a

2
5 − 2039732742629a1a

2
2a

2
5

+ 10237879734242a2
4a3a

2
1 + 21602819201267a2

4a
2
1a5 + 4853511829933a2

2a
2
1a5

− 6626937983168a1a
2
2a3a5 − 10828166863364a1a2a4a3a5 + 3407702770837a1a2a4a

2
5

− 8298438084355a1a2a4a
2
3 + 18264727325368a1a

2
4a3a5 + 3877060636961a1a

2
4a

2
3

− 3169355199641a2a4a
2
1a5 − 3171638173733a2a4a

3
1 − 9814404975784a2a4a3a

2
1

+ 4228103267298a2
2a3a

2
1 − 2416094627003a5a

2
2a

2
3 + 479726420311a1a2a

3
4

− 1226586740358a1a
2
2a

2
4 − 3521208052881a1a

2
2a

2
3 − 93132260382a5a

3
2a4

− 21242870961367a2a
3
5a4 − 16908577818157a2a5a4a

2
3) + a2(103806066560a

5
3

+ 1731877036680a5
5 − 47232284379000a5

1 + 10269337354080a2
1a

3
3 + 21841273872880a3

1a
2
3

+ 2142413552160a3
3a

2
5 + 11639072490920a1a

4
5 + 3977951120080a2

3a
3
5

+ 4068544257400a3a
4
5 + 1541479280320a1a

4
3 + 680161334720a5a

4
3

+ 32744138080080a2
1a

3
5 + 48925728507600a3

1a
2
5 + 27304751388320a1a3a

3
5

+ 9217698058240a1a5a
3
3 + 23505927669840a1a

2
3a

2
5 + 41884303008240a2

1a5a
2
3

+ 63062441226400a5a3a
3
1 + 62755399924560a2

1a3a
2
5 − 2255620347400a3a

4
1

+ 6224629884200a4
1a5 + 1436734644752a2

2a
3
3 + 121342060727a3

5a
2
2

+ 2641164451395a1a
4
2 + 126522097992a3a

4
2 − 990970624859a5a

4
2

+ 23939881405693a2
2a

3
1 + 4349883335368a2

2a3a
2
5 + 7665519051203a1a

2
2a

2
5

+ 22039194611561a2
2a

2
1a5 + 14337209801884a1a

2
2a3a5 + 20546899565244a2

2a3a
2
1

+ 4830698633877a5a
2
2a

2
3 + 6719813849475a1a

2
2a

2
3).
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