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In this work, we study the Liapunov quantities, the problem of the center,
and the local limit cycles of the lopsided systems & = y, y = —z + pr(z,y),
when £ = 5,7 and when k is odd. In general, the Liapunov quantities are
derived from the focal values ngg42, but when k = 5, we show that they are
derived from the focal values n4x12. Moreover, when k& = 5, the origin is a
center if and only if the system is time-reversible and if it is not, no more than
five local limit cycles can bifurcate out of the origin. When k& = 7, we show
that the origin is a center if and only if the system is time-reversible and if
it is not, no more than seven local limit cycles can bifurcate out of the origin
under certain conditions. In general, when k is odd, we conjecture that the
origin is a center if and only if the system is time-reversible.

1. INTRODUCTION

The part of Hilbert’s 16"-problem [8] that relates to the number of limit
cycles of two-dimensional autonomous systems of the form

jc:P(x,y), z):Q(ﬂc,y), (1)

where - = %, P and ) are polynomials in x and gy, remains one of the
outstanding unsolved problems in the theory of non-linear ordinary differential

tKeywords: Center-focus problem, nonlinear differential equations.
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equations. The maximum possible number of limit cycles (isolated closed
orbits) which can be bifurcate out of the origin of (1) is the question of interest
in this part of Hilbert’s 16!"-problem. In the local study of these systems, we
find the problem of a center is closely related to the problem of limit cycles.
This problem consists in finding all necessary and sufficient conditions that
bears on the coefficients of P and @), in order that all orbits in a neighborhood
of the origin be periodic. Now when the origin is a center for the linearised
systems of (1) we can choose co-ordinates in which (1) is of the form

T= v +y+plx,y), y=—-x+y+qz,y). (2)

We write p(z,y) = pa(x,y) + - +pa(2,9), ¢(,y) = g2(z,y) + - + qu(2,y),
where p; and g are homogeneous polynomials of degree k. The linear part
of (2) is in canonical form and the stability of the origin is determined by the
sign of A. If A = 0 the origin is a centre for the linearised system and is said
to be a fine focus (or a weak focus) of the non-linear system.

The Kukles system is the origin of the lopsided systems; in [9] Kukles has
examined the conditions under which the origin is a centre for the differential
system of the form

=y, y=-—x+ a1z’ + aszy + ozgy2 + agx® + a5x2y + a6xy2 + a7y3. (3)

It was thought that the conditions given in [9] were necessary and sufficient
conditions, but Xiaofan and Dongming [20] describe an example which was not
covered by them and in which the computations suggest that the origin was
a center, then Christopher and Lloyd [7] prove that the origin of the example
suggested by Xiaofan and Dongming is indeed a centre. By transforming (3)
to a system of Liénard type, Cherkas [6] also noted that the Kukles conditions
were incomplete and he discussed some aspects of the problem. In [18] the
author analyzes the center conditions given by Kukles and Cherkas. In [7] it
was shown that for the class of systems (3) under the condition a7 = 0, at
most five limit cycles bifurcate from the origin. The Kukles conditions are
complete under this restriction and a study of those centre conditions was
developed in [16]. In [12], it was shown that, for the systems of type (3) under
the condition ay = 0, at most six limit cycles bifurcate from the origin. Later,
n [13], Lloyd and Pearson found another condition for a centre not covered
by the preceding ones and they conjecture that there are no others conditions
for a centre.

This work is a continuation of Kukles System and the systems of type

(2), where p(z,y) = pp(z,y) and ¢(z,y) = gn(z,y). The systems of type (2),
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where p(z,y) = pn(z,y) and q(z,y) = gn(x,y) has been thoroughly studied
by many researchers. In particular, we should highlight the works of Bautin
[2] when n = 2, and the works of Lunkevich and Sibirskii [14] when n = 3,
for the fact that they characterize all the centers. Some conditions of a center
are given in [4] and [5] when n = 4 and n = 5, respectively.

For the systems of type (2), Poincaré introduced an important technique
which is developed by Liapunov [10] in order to determine whether the origin
is a center. It consists in looking for a formal power series of  and y of the
form V(z,y) = Y12, Vi(,y), where Va(z,y) = 3(z* + y?), so that

[e.e]
V= Zn2k($2 LS
k=1

where the coefficients 79 are the focal values and they are polynomials in
A and the coefficients in p and . It is known that the origin is stable or
unstable according to whether the first non-zero focal value is negative or
positive, and that the origin is a centre if all the focal values are zero. What
we really need are the so-called Liapunov quantities L(0), L(1),...; these are
the non-zero expressions obtained by calculating each 79, under the condition
N2 =mMg = -+ = Mogp—o = 0. Then the origin is a center if all the Liapunov
quantities are zero. The origin of (2) is said to be a fine focus of order k if
Ny =ng =+ =n9, =0, but nory2 # 0. In general L(k) is derived from ngp 2,
but it may happen that a reduced focal value is necessarily zero, in which case
it does not contribute a Liapunov quantity, as we shall show for a lopsided
quintic systems in the next section.

Remark. The origin of the system (2) is a fine focus of order k if L(0) =
L(1)=---=L(k—1) =0, but L(k) # 0.

A reversible system [17] is a planar differential system X = f(X), X € R?,
for which there exists a diffeomorphism R : R? — R? such that R? is the
identity and f(R(X)) = —R(f(X)). We say that system X = f(X) is time-

reversible if after a rotation

£\ [ cosa —sina T
n )  \ sina cosa y )’
the system becomes invariant by the transformation of the form (X, t¢) —

(R(X),—t). The time-reversible systems are characterized for the existence
of at least a straight line through the origin, which is a symmetry axis of
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the phase portrait. This line has the slope tan(§), then after a rotation
of the angle § the system is reversible with respect to the diffeomorphism
R(z,y) = (xz,—y). Note that a vector field (p(z,y),q(x,y)) is reversible with
respect to the map R if and only if p(z, —y) = —p(x, y) and ¢(z, —y) = q(z,y);
if the system of type (2) is reversible then the origin is a centre (the symmetry
principle, see [15, p. 135]). A general study on reversible vector fields can be
found in [18], [19] and [21].
In this work, we study lopsided systems of the form

T= X +vy, J=—x+ Ay + q(x,y), (4)

where gx(x,y) is homogeneous polynomial of degree k. For k = 5 and ¢5(z, y)
= a12° + agxty + azz3y? + ayx?y? + aszy? + agy®, we refer to the system (4)
as a lopsided quintic for which we have the following results

THEOREM 1. For a lopsided quintic system, the Liapunov quantities L(k)
is derived from the focal values 1412 in each cases.

THEOREM 2. For a lopsided quintic system, we have: (i) The origin is a
centre if and only if the system is time-reversible. (ii) If the system is not
time-reversible, we have at most five local limit cycles which bifurcate out of
the origin.

For k = 7 and g7(x,y) = a12” +asaby+azz®y? +asrty’ +asx®y* +agz?y® +
arxy® + agy”, doing the following change of variables

ay = butbathiths a5 = BBy t35hs
ay = botbetibrtThs ag = Batho=Obr421b;
ag = Su=be=Ob=21b; a7 = bi=SbrtSha=Thy
qy = Batbbabhi=3sbs g bibotbiobs

in order to simplify the computations. We have the following results

THEOREM 3. For a lopsided system of degree seven, suppose that bg =
bs = 0, we have: (i) The origin is a centre if and only if the system is time-
reversible. (ii) If the system is not time-reversible, then no more than seven
local limit cycles can bifurcate out of the origin.

In general, when k is odd, one conjecture the following

CONJECTURE. When k is odd, the origin of system (4) is a centre if and
only if the system is time-reversible.
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2. THE CONSTRUCTION OF A FOCAL VALUES

We now describe the procedure for determining the focal values 79, and the
Liapunov quantities L(k) (see [15]) and write V (z,y) = Va(x,y) + Va(z,y) +
o+ Vilzy) + oo, (Valz,y) = 3(2® + y?)), where Vj is a homogeneous
polynomials of degree k; let for k > 2

k—i
—
Vk:E Vi—ig " 'y"s
i=0

for convenience, we say that V;; is an even or odd coefficient according to
whether i is even or odd. Now V = % = %—‘t/ % %—‘; %, the function V in a
neighbourhood of the origin is such that its rate of change along orbits is of
the form V = nor? 4+ nar* + -+ + nopr?* + -+, where r2 = 22 + 2. Let Dy,
denote the terms of degree k in V, by direct substitution in the system (2), we
get Dy = y(Vi)a—2(Vi)y+ Ri(z, y), where Ry (z,y) = (Vi—1)ap2+ (Vi—1)ya2+
-+« + Tpr_1 + yqr_1 and the subscripts = and y denotes partial differentiation
with respect to x and y respectively. The idea is to choose the coefficients V; ;
and the quantities 7, so that Dy, = 0 if k is odd and Dy, = ng (2 + y?)¥/2 if k
is even.

Suppose first that &k is odd, k& = 2m + 1, the requirement D = 0 is
equivalent to solving a set of 2m + 2 unknowns V;; with i + j < k and
the coefficients arising in the original differential equations. These 2m + 2
equations divide into two sets of m + 1 linear equations, one set determining
the odd coefficients of Vj and the other determining the even coefficients.

When £ is even, k = 2m, the condition Dy, = ngy, (2% +1y2?)™ gives as 2m+1
linear equations for 72, and the 2m + 1 coefficients of V. These equations
divide into two sets: m + 1 equations for 7, and m odd coefficients of Vi,
and m equations for the m 4 1 even coefficients. To obtain unique values for
the even coefficients of V},, we introduce conditions V,, ,,, = 0 if m is even and
Vint1,m—1 + Vin—1,m+1 = 0 if m is odd. Then the even coefficients of V}, are
uniquely determined (for details see [11]).

3. THE MAIN RESULTS

We now consider the lopsided quintic system
i=Ar+y, y=-cz+Iy+a(zy), (5)

where g5(z,y) = a12° +asxty +azr3y? +agxy3 +asry* +agy’. For a lopsided
quartic system it was shown in [1] that L(k) is derived from g2 in each case.
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Now we have V = (+(WB)a+ (Va)e +...) Az +y) +(y+ (Va)y + (Va)y +
..)(—a:+/\y+q5),s0V M2 +o(r?) asr —>0Where r? = 2% 4+ y2, we have
L

also V = mor2+o(r?) as r — 0. Then L(0) = 1, = A, we set A = 0 to compute
more focal values. Now
=@+ (V3)e+ (Va)o+..)(y) + (v + (Va)y + (Va)y + ... )(—7 + g5)

(V:
= (W(V3)e —x(V3)y) + ( (Va)z = 2(Va)y + (y(Vs)z — 2(V5)y)
+ (y(Vo)z — 2(Vo)y +yas) + (y(V)e — x(Va)y + (V3)yas)
o (Y(Vi)e = 2(Vi)y + (Via)ygs) -

Let Dy, denote terms of degree k in V, then Dy, = y(Vi)e —2(Vi)y + (Vi—a)ys5-
The condition D3 = 0 gives two sets of equations 3V39 —2Vi2 =0, V12 =0;
2Vo1 —3Vh3 =0, —=Vo 1 = 0; from theses two sets it follows that V3 = 0.

Now Dy = 174(:62 + y2)2 gives two sets of equations 4Vjo — 2Va9 = 0,
2Voo —4Voa =05 —my — V31 =0, =2my +3V31 —3V13 =0, = + V13 =0;
from these two sets with the condition V52 = 0, we get V4 = 0 and 74 = 0, so
n4 does not contribute L(1).

From D5 = 0, we get two sets of equations 5V50—2V39 =0, 3V32—4V1 4 =
0, V1,4 =0; —‘/2171 =0, 4V471 — 3V2,3 =0, 2V273 — 5V0,5 =0; so we get V5 = 0.

Now Dg = ng(x? + 3?)? gives two sets of equations 6Vs,0 —2Vyo+ar =0,
AVio —4Voy+a3 =0, 2V 4 —6Vo6 + a5 =0; —ng — V51 =0, —3ns +5V51 —
3V373 + a2 =0, —3n¢ + 3V3,3 — 5V175 + a4 =0, —ng + V175 + ag = 0. From the
second set one can get ng = %(5@6 + ag + ayq), so L(1) = bag + ag + a4; from
these two sets of equations with the condition Vj 2 4 V24 = 0, and after some
calculations we get

Vo = 5 (% 4 a1)a® — 1—6(a2 + a4+ 5a6) — Lazaty?

+ %(ag — ay — bag)r3y> + gag.%' yt
+ %(ag + a4 — 1lag)zy® + %(%3 + as)y®.

By similar calculations, and by using MapleV Release 4, we obtain

Vi=Ve=Vy=0, Vio # 0, Vit =Vig=Vi3 =0, Via #0,
Vis = Vig = V17 =0, Vis # 0, Vig = Voo = Vo1 =0, Vag #0,
Voz = Voy = Va5 =0, Vo # 0,

N = M2 =N16 = N20 = N24 = 0, 0&{mo, ma, ms, M2, 126 } -

So far we have the following
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LEMMA 1. For a lopsided quintic system, the Liapunov quantities L(k) =
Nag+2 modulo (na, Mg, ..., Nag—2) (the ideal generated by n2,mg,...,Nik—2)
are for k=0,1,...,6:

L(0) = X;

L(1) = bag + a2 + a4 modulo (\);

(2) = n10 modulo (\,bag + as + a4);

(3) = m14 modulo (A, 5ag + as + aq, mo);

(4) = mig modulo (A, bag + ag + a4, Mo, M4);

(5) =122 modulo <)\, 5&6 + a9 + a4,M10, M4, 7718>;

(6) = mo6¢ modulo (\,bag + az + as, Mo, N4, M18, 1722) -

SIS

For the expressions of 719, 114, 718, N22 and 726 see the Appendix.

Remark. (1) The focal values 14,49 for i > 2 are of the form ag P;; +a4Pjo+
asP;3, where P;1, Pjo and P;3 are polynomials in a1, a3 and as, and for ¢ = 1
we have P11 =5 and P12 = P13 =1.

(2) If ag = a4 = ag = 0 then all the Liapunov quantities are zero, so the
origin is a center for the system (5).

Now we shall show that Vj, = 0 for £k # 2 mod 4 and n;, = 0 for k& # 2
mod 4. That is we consider the following

LEMMA 2. For the system (5) we have

(i) Ve =0 if k=3 mod 4;
(ii)) Vo =0 if k=4 mod 4, n, =0 if k=4 mod 4;
(iii) Vi, =0 if k=5 mod 4.

Proof. Note that Dy = y(Vi)a — x(Vi)y + (Vi—a)ygs, k > 6.

(i) We have V3 = V; =0, let k = 41+ 3,1 = 1,2,..., now Dy3 =
Y(Vays)z — t(Vagys)y + (Vai—1)ygs. For I = 1 we have V7 = 0. Suppose that
the result is true for [ so that V.3 = 0, we show that it holds also for [ + 1.
Now Dy+7 = 0 gives two sets of equations

(4l + 7)V41+7p — 2V41+5,2 =0 _V;ll+6,1 =0
(4l + 5)V4l+572 — 4V4l+374 =0 (4l + 6)‘/2114—6,1 - 3V4H—4,3 =0
: (4l +4)Vyta3 — 5Vap25 =0

3V3144 — (4 +6)Via46 =0 :
Viaive =0 2Vogiqs — (Al +T) Vo147 =0
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from these two sets we get Vig46 = Vigpa = -+ = Viyqro = 0 and
Viige1 = Vagas = -+ = Voarr = 0. Hence Vi1 7=0, therefore Vj, = 0 if
k=3 mod 4.

(i) We have Vy = Vg =0, let k=4l+4,1=1,2,.... For | = 1 we have

Vg = 0 and the corresponding focal value ng = 0. Suppose that the result is
true for [, i.e., Vg4 = 0, and we have to show that it is still true for I + 1.

!
Since Dyjig = nays(2? + yQ)%, we have the following two sets of equations

(41 4 8) V48,0 — 2Vair62 =0 )
(4l +6)Vyt62 —4Vaj4aa =0

AViar4a — (4 4+6)Vas46 =0
2Vo 146 — (40 +8)Vou118 =0 )

—Nag+8 — Vai471 =0
- <2l 4) Nai+s + (H +T)Vysr1 —3Vays3 =0

Jr
1
- (2134) Nai+s + (4 +5)Vays3 — 5Varss = 0

- @ﬁ JJ: g) Nays +3Va 45 — (Al +T)Vig147 =0
—nai48 + Va7 =0

the first set with condition Viio 4142 = 0 gives Viyygo = Vg2 = ---
= Voai+s = 0, and the second set gives nyys = V71 = -+ = Vigyr
= 0, hence Vy4g = 0. Therefore Vi, = 0 if K = 4 mod 4 and n; = 0 if
k=4 mod 4.

(iii) When £ =4+ 5,1 =1,2,..., Dyys = y(V4H_5)z - :z:(V41+5)y +
(Vai+1)g5- When [ =1, Vo = 0. Assuming that the result is true for [, that is
V45 = 0, we shall show that the result is also true for [ + 1. Now Dy 9 =0
gives two sets of equation

(4l +9)Viyr190 — 2Vaip72 =0 Vg1 =0
(40 + T)Va72 — 4Vags54 =0 (40 +8)Viryg1 — 3Varye3 =0
. (41 + 6)V4l+6,3 —5Vi4a5=0

3V 4146 — (4 +8)Vig4g =0 :
V1,414+8=0 2Vo a7 — (U +9)Vour40 =0

from these two sets we get Vig4s = Vagye = -+ = Vyyoo = 0 and
V41+871 = V4l+6,3 = . = VO741+9 = 0, then V4l+9 = 0. Therefore Vk =0if

k=5 mod4. 1
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The above lemma shows that, for a lopsided quintic system, there are some
focal values which are identically null; in this case these focal values do not
contribute a Liapunov quantities.

Proof of Theorem 1. Follows immediately from Lemma 2 and from the
fact that the Liapunov quantities L(k) are the non-zero expressions obtained
by calculating each non-zero nogio. |

Remark. The origin of a lopsided quintic system (5) is a fine focus of order

kifny =mng =+ = mg_o =0, but nypro # 0, so the Liapunov quantities
L(0), L(1),... are the non-zero expressions obtained by calculating each n4x_o
under the conditions 179 =ng = - -+ = Nqr—¢ = 0.

When the origin is a fine focus of order k£, no more than k limit cycles
can bifurcate from the origin under the perturbation of the system (see [3]),
these limit cycles are so-called small-amplitude limit cycles. But it is not
necessarily true that this maximum number is attained, especially when fewer
than k Liapunov quantities are derived from s, ..., M2k+2, in which case it
may be that less than k limit cycles bifurcate out of a fine focus of order k.
However for a lopsided quintic system this cannot occur because we can find
k Liapunov quantities from ng, ..., N4x12.

Now for a lopsided quintic system, we assume that, for k& < 6, L(k) are
those described in Lemma 1.

Proof of Theorem 2. (A) First the origin is a centre by the symmetry
principle, when the system is time-reversible. Second when the origin is a
centre, we have to show that the system is time-reversible.

With A = bag + a2 + a4 = 0, we have L(0) = L(1) = 0. We suppose that

as = —bag — a4 . (6)
We substitute (6) in 19 = 0, when 14ag + a4 # 0 we get
a3 = —(14a6 + as) " (Taras + 2asa6 — asay + 50a1ag) - (7)

If 14a¢ + a4 = 0, knowing ay = —14ag and (6) we have 1o = —%aﬁ(% —3ay),
the vanishing of 11 gives two conditions ag = 0 or a5 = 3a;. If ag = 0 we have
a4 = ao = 0, and we get that the system is invariant by the change of variables
(x,y,t) — (—z,y,—t) and this ensures that the system is time-reversible. If
as = 3aj with ag # 0, knowing a4y = —14ag and (6) we have

M4 = a6(560a% + 192a% + 9a§ + 136asaq) ,
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ms = ag(80112aza? 425094443 +280832a2a; +9420a1 a3 +405a3 +32320a2a3) .

For the vanishing of 714 and 118, we compute the resultant of 114 with g
rapport to ag which is

R(114, M8, ag) = (1665a3 + 13316a1)?(8a; + a3)*.

If a3 = —8a; we have n1y = ag(a% + 4a§), since ag # 0 it is impossible 714 to
be zero. If agz = —113636156a1 we have ny4 = a6(51317a% + 205350@%), and it is
not possible for 714 to be zero for the same reason. So if 14ag + a4 = 0 the
only possibility for the origin to be a centre is ag = a4 = ag = 0 which gives
the system time-reversible.

If 14a6 + a4 # 0, knowing ag from (6) and a3 from (7), for the van-
ishing of 114, M8, m22 and n9¢ we compute R(n14, M8, a1), R(n14,122,a1) and
R(114, n26, a1) which are the resultants of 715, 722 and 726 with 714 rapport to
a1 respectively. We obtain

R(1m4,ms,a1) = (ag+10ag)(as+2ag) (ai—20a6a4+100a§+16a§)21/)1 (as,as,ag),

R(n1a,m22,a1) = (ai — 20agayq + 10()(1(23 + 16a§)21/)2(a4, as, ag),
§):E(7714’ 7126, al) = (CLZ - 20&6@4 + 100&% + 16&%)21[)3(@4’ as, CLG),

where 1, Y9 and 3 are polynomials in a4, as and ag.

If a4 + 10ag = 0, after the substitution of a4 = —10ag we obtain 714 =
ag(as — 5ay)?. For n4 = 0 we have two cases ag = 0 and a5 = 5a;. If ag = 0
we get aq = 0 which is not possible because we have 14ag+a4 # 0. If a5 = bay
with ag # 0 we obtain 722 = ag(a + a?)?, which is impossible because the
origin is centre and 799 # 0. Now if a4 + 2a¢ = 0, we substitute ay = —2ag in
M4, we get ma = ag(as + 3a1)(7as — 27ay1). If ag = 0 we have ag = 0 and it
is impossible because 14ag + a4 # 0. If a5 + 3a; = 0 with ag # 0 we change

as = —3a1 in 792 and we obtain 720 = ag(a%—i—a%)Q, S0 it is not possible because
the origin is a centre and 72 # 0. Next if 7Tas —27a; = 0 with a5 = —2—77a1 we

have 122 = ag(1152480ag + 78302980a%a2 + 23426337a}) and it is not possible
to vanish 799 since ag # 0.

If a3 — 20agaq +100a 4+ 16a2 = (10ag — aq)? + 16a2 = 0, this implies a5 = 0
and a4 = 10ag, so we have 114 = a6(16a§+a%) which is not possible to vanish it
since 14a¢ + a4 # 0. Finally, in order to vanish the last term of (114, M8, a1),
that is ¥ (a4, as, ag), we do the changes as = cag and a5 = d ag, where ¢,d € R
and ag # 0.

If ag = 0 we have v (a4, as, ag) = a2aj. We substitute ag = a5 = 0 in 1714
and we get 714 = a4(18a? + a2), and it is impossible to vanish 14 because
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we have 14ag + a4 # 0. If ag # 0 after the change mentioned previously, we
compute R(¢)1,9,d) and R(¢1, 13, d) which are

%(wl, wg, d) = agO(C + 10)12(51(0) ,
R(¥1, 93, d) = ag'*(c +10)*(c + 8)%0a(c) ,

where 01 and 2 are polynomials in the variable ¢ and they have not common
roots. Since ag # 0, aq + 10ag # 0 and the polynomials é; and d2 have not

common roots, so the only possibility is ¢ = —8, in this case we put a4 = —8asg
in ¢ and we obtain 91 = agag. We have 11 = 0 implies a5 = 0, so we put
a4 = —8ag and as = 0 in 114, we get N4 = a%aﬁ, the vanishing of 714 yelds

a1 = 0. Now we have 192 = ag and it is impossible to be zero since we have
ag 7& 0.

(B) In the above proof (A), it is clear that the system is not time-reversible
when we have 79 = 15 = 110 = 714 = M8 = 0 and 1922 # 0. Since we have L(k)
is derived from 7442, we have L(0) = L(1) = L(2) = L(3) = L(4) = 0 and
L(5) # 0, so the order of the origin is five, then we have at most five local
limit cycles which bifurcate out of the origin. 1

The Liapunov quantities L(k) for the lopsided system of degree seven are
available in the following e-mail address: salih@@math.unice.fr.

Proof of Theorem 3. (A) If the system is reversibe, by the symmetry
principle, the origin is a center. Now we suppose that the origin is a center,

we have to show that the system is time-reversible. In order to have a fine
focus, we put L(0) = A = 0, so the first Liapunov quantities L(1) is 1172—58.
Knowing b5 = 0 from L(1) = 0 we compute the second Liapunov quantities
L(2) which is b3b67b1b6711762§’87 4+ babr=bsbs  Qince we have bg = by = 0, the vanshing
of L(2) implies by = 0 or by = by.

babs (52b1—9b3)

(a) If by = 0, we have the third Liapunov quantities L(3) = *sz=ires

L(3) =0 gives by =0 or bg = 0 or by = %bl.

bgb3

(a.1) If by = 0 the fourth Liapunov quantities L(4) = — z=15s561>

implies b; = 0 or bg = 0.

(a.1.1) If by = 0 with bg # 0, in this case we have L(5) = L(6) = 0 and L(7) =
1491bg(b3 + b2)3, so it is impossible to vanish L(7) which is a contradiction
because we have a center for the origin.

(a.1.2) If bg = 0 with by # 0, we have L(5) = L(6) = L(7) = 0 and we get
that the system is time-reversible.

so L(4) =0
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(a.2) If bg = 0 the computation gives L(5) = L(6) = L(7) = 0 and we obtain
another particular case of a time-reversible system.

(a.3) If by = 22by with by # Oand bs # 0, we have L(4) = —Tbybg(10859b7 +
175503 + 1755b2) and in this case it is not possible to vanish L(4) which is a
contradiction.

(b) If by = by we compute the fourth Liapunov quantities which is L(3) =
3002b7 — 10b1b4b7 + 18b3b7 + 52b1babs — 9b3bs + 3b2bs.

2b7 (5b1b4—15b2 —9b3)

(b.1) 1f52b1bs—9b3+3b% # 0 the vanishing of L(3) gives bg = 520163 V24 302

(b.1.1) If b7 = 0 we have bg = 0 which is the case (a.2).

(b.1.2) If by # 0, we suppose that b; = 1 and after we compute L(4), L(5)
and L(6), for the vanshing of L(4), L(5) and L(6) we calcul R(L(4), L(5),b1)
and R(L(4), L(6),b1) which are the resultants of the polynomials L(5), L(6)
with L(4) rapport to by respectively, obtaining the following polynomials

R(L(4), L(5),by) = bj(45 — 10b3 + 773703) 2 Py (by) ,
R(L(4), L(6),by) = by(45 — 10b2 + 773703)° Py(by) ,

where P;(by) and Py(bs) are polynomials of by and of degree 44 and 58 re-
spectively. Moreover, they have no common roots. So the only possibility is
by = 0 which gives another particular case of a time-reversible system.

(b.2) If 52b1bs — 92 + 362 = 0 and by # 0 we change by = 25 in 1(3)

which gives L(3) = 3b7(7737b3—b120b§b$+45b;1)
4

L(3) = 0 we compute L(4) which is L(4) = —Tbsbs(208337b3 + 175760b3), so
L(4) = 0 implies bg = 0 and is the case (a.2) of a time-reversible system.
(b.3) If 52b1by — 93 + 3b2 = 0 and by = 0 we have by = 0, so L(3) = 0.
The computation gives L(4) = —bsb} and L(5) = bgb?(14825b%7 + 4002b2).
Both cases by = 0 and bg = 0 gives that the system is time-reversible by the
symmetry conditions.

. Since by # 0, knowing b7 = 0 from

(B) In the above (a.1.1), the system is not time-reversible when we have
L(0) = L(1) = L(2) = L(3) = L(4) = L(5) = L(6) = 0 and L(7) =
1491bs(b3 + b2)3 # 0, so the order of the origin is seven then no more than
seven local limit cycles can bifurcate out of the origin. N
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APPENDIX

The focal values 110, 114, 718, 122 and 19g are of the following forms:

nio = a6(61a5 — 3az — 95&1) =+ a4(15a5 + 3a3 — 13&1) + a2(13a5 + a1 + 5&3) s

Ma = a6(6490asas — 1016a3 — 24380a; — 5043a3 + 4293a3 + 4724a2 — 1303azae
— 67407a4a6 — 17120aza;1 — 848azas — 34040a1as — 176705a¢) + a4(1332a3
— 6296a1a5 + 665a3 + 1401asas — 88a3 — 521247 + 480azas — 3664a1as + 251a3)
+ a2(932a2 + 72a3 — 282843 — 2368a1a3 + 848azas — 3032a1as — 421a3) ,

ms = ae(1368031a1a3 + 647766aza3 — 2266941a1a; — 798715a1a5 — 1534750a3a]
— 156825a5a3 — 81988626a5ag — 20876950a3ag — 282915a3 — 10030a3 + 461152501 ag
— 34454350143 — 405246501 azas — 5443150a2aza6 — 454610aza3 — 4075525a1as
— 5968807a5ai — 2411346(13@3 — 14434500a3a4a6 — 5905275a1a4a6 — 40930405a4a5a6
+ 972621a§a5a6 — 13780795az2asa6 — 4018125@? — 1371430a1a2a4 — 3511640a1asas
— 2184426a2a4as — 839360azazas) + a4(60997a1a3 + 420459a3a5 — 331337a1a3
— 736880a3as — 69945a; — 219299asa; — 188397a1a; — 78308asa; — 882437a1ax
— 127636aza2 — 1286855a1as — 75375a3as + 158113azasas — 11172754}
+ 242068a3a3 — 141741a1a0a4 + 134034azazas — 1793643 — 1087900a; azas)
+ a2(78327a3as — 65625a3a5 — 72795a3 — 124139a1a3 + 12686a3a5 — 2138643
— 1368605a>as — 403667a1a3 — 104206asaz + 647766a2asas — 118252545
— 1058080a1azas — 1034090atas — 704027a1a3)

a2 = a6(18365025280a a3 — 229652191920asasag + 367415040a3a3 + 14954928960aa?
+ 734813426243 a6 — 59366026702a5ag — 1753788287a3 + 443058852925a2a
+ 343126337a] + 6443929628664 ag + 50543927274aas + 3000453114445a4a8
— 495804061320a2ag — 29266290400a3ag + 210883952a3 + 207774673400a ag
— 11539712800a] — 803864096a5 — 39636377600a3a4a6 + 54928890280aTasae
— 51553494178aza;a6 + 692215808a3as — 42192981400aTazas745985280a3a:
+ 40200734561 a3a5 + 9269588648a3 a3 — 45093552450a3a.a6 — 183469856a3a3
— 3937648344a3a2 — 6891973242a3a] — 2869515516a3a4 — 8938261628aza;
+ 26715614436a2a4a8 + 953236592a1a3a3 — 1577147792a5a3a5 + 4795803337725a
— 151407450392azaza6 — 30016606976a2a3a6 — 4651858568a3a3 — 59785062408a3a3
—10953900944a3a3 — 307010757592a4a2as + 639750967760a1 asag
+ 297573354320a1a3a§ — 124613041424aza3asa6 — 13627892752a1az2a5a6
— 1812755352047 azas — 25251198224a1 azazas — 43369822112aza3a4as
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— 2204932291241 azaza4 — 254389551681 asasas — 50088734960asa4a?

— 11175315200az2a3a4 — 479696091aza3as + 13580240640a7 a3 + 1404252864047 as

+ 1799962624a1 a5 + 4293665152a1a — 603963824a1asza; + 3085241488a;a3as

— 204625874320asasasa6 + 183482955632a1a4asa6 + 92214965104a1asaqsa6

+ 28761265920a 1 azas + 6446897664a1azaz + 5090899072a1a3as) + a4 (82565504a1 as
+ 9394435200343 + 366048986a5a4 + 283330525a3 — 236989555a2a + 1562427464303
— 3598154744a3a2 — 730655920a3a3 — 2083280a3 — 1305374584a3a; — 5249595680a]
— 281377824as — 40757248a%as + 59108025647 as — 78058752a5as

— 197810343203 azaa 4 859328256a7a; 4 2128280104a3a3 + 1220339368a5a?

+ 209683953641 azas + 1041265008a1a3as + 2439999088a3asas — 61794503a3

— 3320323080a2azas — 459155312a2a3a4 — 3112823888azaias — 1414781840a1ajas
— 113146657601 aza; — 1324717184a%as — 343726848a3a5 — 131394304a1a3

— 524678400a3a§ — 2397631152asa3a4as — 3075959792a1 asasas

— 26423599841 azazas + 132131097645 azas — 747591168a1azaz — 752934784a;1a3a5)
+ a2(1563924176a3a3as + 763676984a’ a3 — 37472592a3 + 508014080a3a3

+ 1240789688a3a: — 10569385120a; — 153042848a2 — 458829568a3a3

— 2821853632a7a: — 196518912aj3as + 1190313680a1a3a3 + 1886015440a1a3as

— 250306944003 a3 + 233938921a5 — 85271343364’ a5 — 446551808a3az

— 723067904a1a3 — 729147955245 a3 — 29925593641 a3 — 5839216384aTazas

— 217901568001 azas — 2452349312a,1a3as)

n26 = a6(330066419200a3 + 7333942231560a3 + 67820798325000a] + 58279519566240a7 aj
+ 197072391042800a7 a3 + 5809865036640a3as + 42996674880040a1 a3
+ 12150099552080a3a3 + 14779209528440a3as 4+ 6709637090240a1 a3
+ 1890474416320asa3 + 116603419747920a5 a2 + 293563779675600a; a2
4 92700118782880a1 azal 4 35317104663680a1asa3 + 81147959257680a1 a3a?
+ 213578571949680a asa3 + 485118933034400asaza; + 267141060931920a aza?
+ 282315650827000aza] + 322579640761000atas — 130522020749255a5a;
— 8387828245524a5a5 + 56014253028768asa; — 49549361352443a3 a3
— 28060886366153a1a3 + 95854010972159a1a; — 7817615541820a3a3
— 10086080674055a5a3 — 11381230521984a3a3 + 133069714030937asa;
+ 6500845961055a2a’ + 133465709269875a3a5 — 14830798208168a4asas
— 67641038288284a5a3a] — 257720854414668a2a4a3a2 — 27251007122988aza4a5
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— 31810733416148a2asa; — 138004949154714asa3a; — 73027244971276a3a3 a3

— 70516829898821asa3a3 — 153546931763512a3asas — 28276671949808azasas

— 27027054947708a1 asas + 502987179492749a,ajaz — 15022156474575a, a5az

+ 306370174664148a3aza; + 544201331803239a3aias — 49923322520789a3a]as

— 60228453854084a1 asazas + 147642070273328a1 azasazas + 229586582693974a;1 asasal
+ 8399047565582a1 asasas + 520523114076932a;1 a5azas + 143701551491853a; afa3

+ 159637616472330a2a4a; as — 60210129497830az2a4a’ 4 26313051508940a2a4aza;

— 64803381784128a5aza; — 39233416133129asa3a3 + 51382401414996a1 aza’}

— 36105030545278a1a2a3 — 35422970864151a1a3a3 — 37443094819284asa5a4

— 174394268779098asa3 a4 — 138681510382870azasa4a3 — 323453706772505a0as

+ 2006894331495125aga; + 101660131833262725agas + 40953518382860aga3

+ 31572410771915700agas + 18413071754336875a4a1 — 39518813095086a2a5a3

+ 8498636675271852agaza; + 1016166835408125aasa; — 72234826512472agazas

+ 2612132948416710asasa; — 37205425210072asaza3 + 21085164522029186agasa;

+ 8852783125929800a3 azasz — 20713196322asa4a3 + 1378427874429338asa:1

— 130837116197170aga1a3 + 6928088238675375a5a1 a2 4 8466497447057590aga1 a3

+ 6966818500367675aga1a: — 56673097331568asa3aj — 130566017124078asasa’

+ 1103034199853016asaza; — 303452292331339asa2as + 1723639393162675a5a1 a3

— 50049684590025a6a2a; — 415339262013349asasas + 22904797744684825a3a2as

+ 212899251534180agazaz + 181300084485885a5asa3 + T6083429863625955a8a4as

+ 27849773118111510a3asa3 + 22135200295510825a5a1 a4 + 6375559257922825a3a3 as
+ 3370280456955400azaza; — 1518892245634asa1a3 + 274669111680665a6a1a2a3

+ 3964734175174840agazazas — 402319453773360asazaza?

+ 9914390989223980aazasa4 + 1043745945018758asasasa; — 66870212534795asa4a5a3
— 204662256107425asa2a5a3 — 300136836224044asa3azas — 544740615505390asa5a5a4
— 275779330237490acasazas + 3456709588956075aa1a1as + 873331938528114asa1aza;
+ 1197424498149545asa1a2a2 + 998468005582095asa1a4a3 — 99686917462378asa1a3as
+ 3537725263924845asa4a’as + 2004534621313290asasaza;

+ 6659770566880900aza1 azas + 1145536264012260a¢a1 azasas

+ 3571048856641520asa1a4a3as + 4468409448665540(1(23(11 a204

+ 441976380212300asazaza; + 1006298868243275asa2a;as + 352111914681660asazazas )
+ a4(120061175360a3 + 1911973192920a2 + 1558131351000a] + 14436455920320a7a}

+ 42414502817680a’ a3 + 2300236041600a5a2 + 12315023261240a; a2
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+ 4201675930480a3a3 + 4359474042280aza3 + 1944445350400a1 a3 + 759695511680asa3
+ 33339113416560a; a2 + 67757811271920a%az + 27939438312800a1 azas

+ 10625049547840a1 asa3 + 24824284697520a1 a3a2 + 54444742996560a’ asa3

+ 106555966407520asaza; + 71853838638960a; azas + 49427955420200a3a1

+ 58928394236600a a5 — 11598193940971a3a; + 104283170966a5a; + 611044081362a3a;
— 10165897154629a5a3 + 1100788237193a1 a5 + 2237055021725a1 a;

+ 42337525798aza3 — 1597464772509a5a5 — 1602698722466a3a3 + 1610401969399a5 a4
+ 26573018501677a3a; + 3654320624923a3a5 + 1854114140180asaza3

— 1464085628280a3a3a; — 32111724329668aza4aza: — 3190730163692a2a4a3

— 5737585472999asas5a]; — 6436384720250a5a3a] — 10662240312762a5a3a2

— 8723633391437asaja3 — 16612839169938a3aza? — 2655256731292aza3a]

+ 350332548294a1 a3as + 20248648034189a1a3a: — 2039732742629a1 a3a2
+10237879734242a3asa’ + 21602819201267a3a3as + 4853511829933a5a3as

— 6626937983168a1a3a3as — 10828166863364a1a2asa3as + 3407702770837a1aza4a?

— 8298438084355a1 azasas + 18264727325368a1a5aszas + 3877060636961a1a;a;

— 316935519964 1asasaras — 3171638173733aza4a’ — 9814404975784azasa3a>

+ 4228103267298a3aza; — 2416094627003asa3a3 + 479726420311a1aza

— 1226586740358a1a5a; — 3521208052881a1a3a3 — 93132260382a5a3a4

— 21242870961367azasas — 16908577818157azasa4a3) + a2(103806066560a3

+ 1731877036680a3 — 47232284379000a; + 10269337354080a7 a3 + 21841273872880a5 a3
+ 2142413552160a3 a2 + 11639072490920a1 a3 + 3977951120080a3a3

+ 4068544257400azas + 1541479280320a1 a3 + 680161334720a5 a4

+ 32744138080080aias + 48925728507600a’az + 27304751388320a1asas

+ 9217698058240a1 asaj + 23505927669840a1a3as + 41884303008240a7asa;

+ 63062441226400a5a3a’; 4+ 62755399924560a1azaz — 2255620347400aza]

+ 6224629884200a a5 + 1436734644752a5a5 + 121342060727aa3

+ 2641164451395a; a5 + 126522097992a3a3 — 990970624859a5a3

+ 23939881405693a3a; + 4349883335368a3aza3 + 7665519051203a1a3az

+ 22039194611561a3aTas 4+ 14337209801884a1 a3azas + 20546899565244a5az3a;

+ 4830698633877asasa3 + 6719813849475a1a3a3).
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