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1. INTRODUCTION

Let D and A be two nonempty subsets in a metric space. We say that the
pair (D, A) satisfies the fix-finite approximation property (in short F.F.A.P.)
for a family F of maps (or multifunctions) from D to A, if for every f € F
and all € > 0 there exists g € F which is e-near to f and has only a finite
number of fixed points. In the particular case where D = A, we say that A
satisfies the F.F.A.P. for F.

H. Hopf [4] proved by a special construction that any finite polyhedron
which is connected and which dimension is greater than one satisfies the
F.F.A.P. for any continuous self-map. Later H. Schirmer [5] extended this
result to any continuous n-valued multifunction. After this J.B. Baillon and
N.E. Rallis showed in [1] that any finite-union of closed convex subsets of a
Banach space satisfies the F.F.A.P. for any compact self-map.

In this paper we study the fix-finite approximation property in normed
vector spaces. We work with the pair (D, A) such that A satisfies the Schauder
condition.

If 2 is a point of a normed space X and r > 0, then we denote by B(z,r)
the open ball of radius r and center z. A subset K of X is said to be relatively
compact if its closure K is compact. The convex hull of a subset {z1,...,z,}
of X is defined by

n n
conv{zy,...,Tn} = {Zaiwi:ai €[0,1] fori=1,...,n and Zai: 1}.
i=1 i=1
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A subset A of a normed space X is said to enjoy the Schauder condition
if for any nonempty relatively compact subset K of A and every ¢ > 0 there
exists a finite cover {B(zi,ng,) 1 v € A,0<n,, <e,i=1,...,n} of K such
that for any subset {z;,,...,x;, } of {z1,..., 2y} with

k
() Blaiy.ne,) N K #0

J=l

the convex hull of {x;,,...,z; } is contained in A.

For example, any nonempty convex subset of a normed space X and any
open subset of X satisfies the Schauder condition (see [6]). Also, all finite-
union of closed convex subsets of a Banach space satisfies the Schauder con-
dition (see [1]).

In the present work we first establish the following result (Theorem 3.1): if
A is a nonempty subset of a normed space X satisfying the Schauder condition
and D is a compact subset of X containing A, then the pair (D, A) satisfies
the F.F.A.P. for any n-function.

Secondly we prove (Theorem 3.2): if A is a nonempty subset of a normed
space X satisfying the Schauder condition and D is a path and simply con-
nected compact subset of X containing A, then the pair (D, A) satisfies the
F.F.A.P. for any n-valued continuous multifunction. As consequence we ob-
tain a generalization of the Schrimer’s result [5, Theorem 4.6].

2. PRELIMINARIES

In this section we recall some definitions for subsequent use.

Let X and Y be two Hausdorff topological spaces. A multifunction F :
X — Y is a map from X into the set 2¥ of nonempty subsets of Y. The range
of Fis F(X) = Uzex F(z).

The multifunction F': X — Y is said to be upper semi-continuous (usc) if
for each open subset V of Y with F'(z) C V there exists an open subset U of
X withx € U and F(U) C V.

The multifunction F' : X — Y is called lower semi-continuous (lsc) if for
every x € X and open subset V of Y with F(x) NV # () there exists an open
subset U of X with x € U and F(2') NV # () for all 2’ € U.

The multifunction F' : X — Y is continuous if it is both upper semi-
continuous and lower semi-continuous.

The multifunction F is compact if it is continuous and the closure of its
range F'(X) is a compact subset of Y.
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A point x of X is said to be a fixed point of a multifunction F': X — Y
if x € F(x). We denote by Fix(F') the set of all fixed points of F.

Let X and Y be two normed spaces. We denote by C(X) the set of
nonempty compact subsets of X. Let A and B be two elements of C'(X). The
Hausdorff distance between A and B, di (A, B), is defined by setting:

dH(A7B) = max{p(A,B),p(B,A)}

where
p(A,B) =sup{d(z,B) :z € A},
p(B, A) = sup{d(y,A) : y € B}

and
d(z,B) =inf {|ly — z|| : y € B}.

Let F' and G be two compact multifunctions from X to Y. We define the
Hausdorff distance between F' and G by setting:

dp(F,G) =sup{dy(F(z),G(z)) :z € X}.
Let € > 0 and F and G be two compact multifunctions from X to Y. We say

that F' and G are e-near if dy(F,G) < e.

3. FIX-FINITE APPROXIMATION PROPERTY

3.1. FIX-FINITE APPROXIMATION PROPERTY FOR n-FUNCTIONS. In this
subsection we study the fix-finite approximation property for n-functions.
First, we recall the definition of an n-function.

DEFINITION 3.1. Let X and Y be two Hausdorff topological spaces. A
multifunction F' : X — Y is said to be an n-function if there exist n continuous
maps f; : X — Y, where i = 1,...,n, such that F(z) = {f1(x),..., fu(x)} for
all z € X and fi(z) # fj(x) forallz € X and 4,5 =1,...,n with i # j.

In this subsection we shall prove the following:

THEOREM 3.1. Let A be a nonempty subset of a normed space X satisfy-
ing the Schauder condition. If D is a compact subset of X containing A, then
the pair (D, A) satisfies the F.F.A.P. for any n-function F : D — A.

In order to prove Theorem 3.1, we shall need the following lemmas.
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LEMMA 3.1. If a nonempty subset A of a normed space X satisfies the
Schauder condition, then for any relatively compact subset K of A and every
€ > 0 there exist a finite polyhedron P contained in A and a continuous map
7 : K — P such that |7(z) — x| < ¢ for all z € K.

Proof. Let ¢ > 0 and K be a nonempty relatively compact subset of A.
Since A satisfies the Schauder condition, then there exists a finite cover

{B(zi,ng;) 1 xi € A,0<n, <e,i=1,...,n}

of K such that for all subset {x;,...,z;} of {z1,...,2,} with
ﬂ;‘f’:lB(xij,nmij) N K # 0 the convex hull of {x;,,...,x; } is contained in A.

For all i = 1,...,n, let u; be the continuous function defined by u;(z) =
max(0,ny, — ||z — z;]|), for all z € K. Since for all € K there exists i €
{1,...,n} such that ||z — z;|| < ny,, then > " | pi(x) > 0. Now we can define
a continuous function «; on K by setting:

pi(z)
ajf(r)==——,1=1,...,n, forall z € K.
@) > i mil)
Let
Q= {{xil,...,xik} CA{x1,...,xn}: ﬂ?:lB(xij,nxij) NK # @}
and

P= Uley s, }eQCORY {zi), ... @i, }.

Let m be the map from K to P defined by n(z) = > 7" ; a;(2)z;, for all z € K.
Then, the map 7 is continuous and satisfies the property |7 (x) — z|| < € for
allz e K. 1

In [6] we introduced the notion of Hopf spaces. These are metric spaces
satisfying the F.F.A.P. for any compact self-map. By using [6, Theorem 1.3]
and the Schauder condition we obtain the following lemma.

LEMMA 3.2. Let A be a nonempty subset of a normed space X satisfying
the Schauder condition. If D is a compact subset of X containing A, then
for all continuous map f : D — A and for every € > 0, there exist a finite
polyhedron P contained in A and a continuous map g : D — P which is
e-near to f and has only a finite number of fixed points. In particular every
nonempty compact subset of a normed space satisfying the Schauder condition
is a Hopf space.
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Proof. Since f(D) is a relatively compact subset of A, then by Lemma
3.1 for a given ¢ > 0, there exist a finite polyhedron P contained in A and
a continuous map 7. : f(D) — P such that ||m.(y) — y|| < 3¢, for all y €
f(D). Set f. = me o f, then the map f. : D — P is continuous and satisfies
I f-(z) — f(z)| < 3&, for all z € D.

By [6, Theorem 1.3] there exists a continuous map ¢ : D — P which is
%s—near to f. and has only a finite number of fixed points. Then, the map g

is e-near to f because for all x € D, we have:

1f () = g@)|| < [If () = fe(@)]| + || f-(2) — g(@)]| <e. .

Proof of Theorem 3.1. Let ¢ >0 and F': D — A be an n-function. Then,
there exist n continuous maps f; : D — A such that F(z) = {fi(x),..., fan(2)}
for all x € D and f;(x) # fj(x) for all x € D and 4,j = 1,...,n with i # j.

For all4,j = 1,...,n with i # j, we define §; ;) (F') = min{|| fi(z) — f;(z)]| :
x € D}. As each f; is continuous for all i = 1,...,n and D is compact, then
for each i,j = 1,...,n with i # j, we have §(; ;)(F) > 0. Therefore,

O(F) = min{o(; ;(F) =4, =1,...,n, i # j} > 0.
For a given ¢ > 0, we set A = min(36(F), 3¢). By Lemma 3.2, for each
1=1,...,n, there exists a map ¢g; : D — A which is A-near to f; and has only
a finite number of fixed points. Let G : D — A be the multifunction defined
by G(z) = {g1(x),...,gn(x)}, for all z € D.
Claim 1. The multifunction G is an n-function. Indeed, if there exists
xzo € D and i,j =1,...,n with i # j, such that g;(x¢) = gj(z0), then,

1fi(zo) = fi(@o) |l < [fi(zo) — gi(wo)ll + [1.f(x0) — gj(zo)l| < 2A.

Therefore, 6(; j(F) < 6(F). This is a contradiction and our claim is proved.
Claim 2. The multifunction G is e-near to F. Indeed, for all i =1,...,n
and for every x € D, we have, | fi(z) — g;(z)|| < 3&. Then, dy(F,G) < e.
Claim 3. The multifunction G has only a finite number of fixed points.
Indeed, Fix(G) = Ul ,Fix(g;) and for all ¢ = 1,...,n the maps g; has only a
finite number of fixed points. |

COROLLARY 3.1. Let C;, fori=1,...,m, be a finite family of nonempty
convex compact subsets of a normed space, then UJ*, C; satisfies the F.F.A.P.
for any n-function F : U*,C; — U™, C;.
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3.2. FIX-FINITE APPROXIMATION PROPERTY FOR n-VALUED CONTINU-
OUS MULTIFUNCTIONS. To start this subsection, we give the definition of a
n-valued multifunction.

DEFINITION 3.2. Let X and Y be two Hausdorff topological spaces. A
multifunction F' : X — Y is said to be n-valued if for all x € X, the subset
F(zx) of Y consists of n points.

Now we recall the definition of the gap of a n-valued multifunction. Let
X and Y be two Hausdorff topological spaces and let F' : X — Y be a n-
valued continuous multifunction. Then, we can write F'(z) = {y1,...,yn} for
all x € X. We define a real function v on X by

v(z) =1inf {|ly; — y;|| : vi,y; € F(x), i,j=1,...,n, i # j}, forall z € X,

and the gap of F' by
Y(F) =inf {y(z) : z € X}.

Since the multifunction F is continuous then the function + is also continuous
[5, p.76]. If X is compact, then v(F) > 0.
In this subsection we show the following:

THEOREM 3.2. Let A be a nonempty subset of a normed space X satis-
fying the Schauder condition. If D is a path and simply connected compact
subset of X containing A, then the pair (D, A) satisfies the F.F.A.P. for any
n-valued continuous multifunction F': D — A.

We recall the following Lemma due to H. Schrimer [5] which is useful for
the proof of our result.

LEMMA 3.3. Let X and Y be two compact Hausdorff topological spaces.
If X is path and simply connected and F : X — Y is a n-valued continuous
multifunction, then F' is an n-function.

Proof of Theorem 3.2. Let ¢ > 0 and F': D — A be a n-valued continuous
multifunction. Then, v(F) > 0 and A = min(e, 37(F)) > 0. By Lemma
3.1 there exist a finite polyhedron P contained in A and a continuous map
7 : F(D) — P such that ||7(y) —y|| < A for all y € F(D). Now we define a
continuous multifunction G : D — P by G(z) = (7 o F)(x), for all z € D.

Claim 1. The multifunction G is n-valued and %s—near to F. Indeed, if
x € D such that F(z) = {y1,...,yn}, then G(z) = {n(y1),...,7(yn)} with
lyi — m(ys)|| < e foralli=1,... n.



APPROXIMATION PROPERTY IN NORMED SPACES 129

Claim 2. There exists an n-function L : D — A which is e-near to F
and has only a finite number of fixed points. Indeed, from Lemma 3.3 the
multifunction G : D — P is an n-function and by Theorem 3.1 there exists
an n-function L : D — P which is %e—near to G and has only a finite number
of fixed points. Then, the multifunction L : D — P is e-near to F' and has
only a finite number of fixed points. [

As a consequence of Theorem 3.1 and Theorem 3.2 we obtain the following:

COROLLARY 3.2. Let C;, fori=1,...,m, be a finite family of nonempty
convex compact subsets of a normed space such that N, C; # 0 or C;NC; = ()
for i # j, then U*,C; satisfies the F.F.A.P. for any n-valued continuous
multifunction F : U*,C; — U, C;.

Proof. Let ¢ > 0 and F : U2,C; — U,C; be a n-valued continuous
multifunction. For the proof we distinguish the following two cases.
First Case. C;NC; = 0 for i,j = 1,...,m and i # j. We have, F|¢, :

C; — U™, C; is a n-valued continuous multifunction for ¢ = 1,...,m. From
Lemma 3.3, the multifunction F|¢; is a n-function for i = 1, ..., m. Therefore,
for each i € {1,...,m}, there exist n continuous maps f;; : C; — U2, C; such

that F(x) = {fi,(x),..., fi,(z)} for all z € C;. Now for each j € {1,...,n}
we can define a continuous map h; : U2, C; — UL, C; by hj(z) = fi;(v) if
z € C;. It follows that for all x € U, C;, we have F(x) = {h1(z),...,hn(z)}.
Thus, the multifunction F' is an n-function. By Corollary 3.1 there exists a
n-multifunction G : U™, C; — U™, C; which is e-near to F' and has only a
finite number of fixed points.

Second Case. N, C; # 0. It follows from Theorem 3.2 that U, C; satisfies
the F.F.A.P. for any n-valued continuous multifunction. |

As a particular case of Corollary 3.2 we obtain a generalization of the
Schirmer’s result [5, Theorem 4.6].

COROLLARY 3.3. If Cy and Csy are two nonempty convex compact sub-
sets of a normed space, then C1 U Cy satisfies the F.F.A.P. for any n-valued
continuous multifunction F : C1 U Cy — C1 U Cy.
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