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1. Introduction

The aim of this paper is to show, among other things, that, in separable
Banach spaces, the presence of the smoothness with the highest derivative
Lipschitzian implies the uniform Gâteaux smoothness of degree 1 up. More
exactly:

Theorem 4.1. Let X be a separable Banach space such that for some
nonnegative integer n its norm is n times differentiable on X\{0} and its n-th
derivative is Lipschitzian on the unit sphere. Then X admits an equivalent
norm which is, on any fixed annulus around the origin, n+1 times uniformly
Gâteaux differentiable, and whose derivatives of degree less than n + 1 are
Lipschitzian there.

The proof of this theorem uses countably many integral convolutions, an
implicit function theorem, and appropriate chain rules. Its predecessors are
papers [3] and [4].

Let p > 1 be an odd integer. Then the space Lp, with a sigma finite
measure, is separable and its canonical norm is p− 1 times differentiable with
the highest derivative Lipschitzian on the unit sphere [2, Theorem V.1.1].
Thus we get, from our theorem, an equivalent norm on Lp which is p times
uniformly Gâteaux differentiable. This was proved, in a different way, by
Troyanski in [9]. A more general case of Orlicz spaces considered by Maleev
in [7] is also covered by our theorem.
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Our theorem cannot be extended to nonseparable spaces: Let p > 1 be
again an odd integer and let Γ be an uncountable set. Then the canonical norm
`p(Γ) is still p− 1 times differentiable with the highest derivative Lipschitzian
on the unit sphere [2, Theorem V.1.1]. Yet this space does not admit any
p times Gâteaux differentiable equivalent norm or bump function [9], [8], [5,
Section 4].

The first part of the proof (dealing with the integral convolutions) of the
above theorem yields:

Theorem 4.2. Let X be a separable Banach space such that for some
nonnegative integer n there exists an n times differentiable bump function
on X, with its n-th derivative Lipschitzian. Then X admits an n + 1 times
uniformly Gâteaux differentiable bump whose derivatives of degree less than
n+ 1 are Lipschitzian.

An inspection of the process of subsequent integral convolutions used in
the proofs reveals that the constructed equivalent norm or bump can be done,
respectively, as close to the original norm or bump as we wish. Further,
if the norm or bump in the assumptions of our theorems is moreover C(k)-
smooth, with k ∈ {n+1, n+2, . . .}∪{∞}, then, respectively, the constructed
norm or bump is moreover C(k)-smooth. Thus we cover [4], where n = 0 was
considered. There are also local versions of our theorems when “Lipschitzian”
and “uniformly” are replaced by “locally Lipschitzian” and “locally uniformly”
respectively.

The above theorems can be completed by the following reverse results (for
the notation see below):

Proposition 3.10. Let (X, ‖ · ‖) be a (not necessarily separable) Banach
space, with dimension at least 2, and let n ∈ N. Then the following three
assertions are equivalent:

(i) ‖ · ‖ ∈ G(n)(SX) and ‖ · ‖(n) is Lipschitzian on the unit sphere SX .

(ii) ‖ · ‖ ∈ LIP(n)(SX).

(iii) ‖ · ‖ ∈ LIP(n)(A) for any annulus A around 0.

The above assertions are implied by

(iv) ‖ · ‖ ∈ UG(n+1)(SX).

From [6] a variant of the above follows: If a bounded continuous function f on
a (not necessarily separable) Banach space is n+ 1 times uniformly Gâteaux
differentiable, then all the derivatives f (k), k = 1, . . . , n, are Lipschitzian.
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2. Preliminaries

Throughout this paper, we will work with real Banach spaces. The to-
pological dual of X is denoted by X∗. The closed unit ball in X is de-
noted by BX . The unit sphere in X is denoted by SX . Further we put
U(x, δ) = {y ∈ X : ‖y − x‖ < δ}, B(x, δ) = {y ∈ X : ‖y − x‖ ≤ δ},
U(Ω, δ) =

⋃

x∈Ω U(x, δ), where δ > 0, x ∈ X, and Ω ⊂ X. The symbols N and
R stand for the set of positive integers and the set of real numbers respect-
ively. The symbol domf denotes the domain of the mapping f . The symbol
LipΩ(f) denotes a Lipschitz constant of a mapping f with respect to the set
Ω. Given n ∈ N, the symbol L(n)(X,Y ) denotes the (Banach) space of all
n-linear bounded operators from X to Y endowed with the norm

‖L‖ = sup{‖L(h1, . . . , hn)‖ : h1, . . . , hn ∈ BX}, L ∈ L(n)(X,Y ).

If n = 1, we write L(X,Y ) instead of L(1)(X,Y ). Further we put L(n)(X) =
L(n)(X,R). Thus X∗ = L(1)(X). We note that there is a canonical isometry
between L(X,L(n−1)(X,Y )) and L(n)(X,Y ). So, in what follows, we will
identify these two spaces.

Definition 2.1. Let X,Y be Banach spacesand Ω a subset of X. We say
that a mapping f from X into Y is Gâteaux differentiable at x ∈ X if

(i) there is δ > 0 such that U(x, δ) ⊂ domf , and

(ii) there is lx ∈ L(X,Y ) such that for every h ∈ X

lim
τ→0

∥

∥

∥

f(x+ τh)− f(x)

τ
− lx(h)

∥

∥

∥
= 0.

We then denote f ′(x) = lx. We say that f is Gâteaux differentiable on Ω if f
is Gâteaux differentiable at every point x ∈ Ω. Then we write f ∈ G(1)(Ω).
The Gâteaux differentiability of the n-th order, the symbol f (n)(x), and the
inclusion f ∈ G(n)(Ω) for n = 2, 3, . . . are defined by induction.

We say that a mapping f is uniformly Gâteaux differentiable on Ω if

(i) f ∈ G(1)(Ω),

(ii) there is δ > 0 such that U(Ω, δ) ⊂ domf , and

(iii)

lim
τ→0

sup
x∈Ω

∥

∥

∥

∥

f(x+ τh)− f(x)

τ
− f ′(x)(h)

∥

∥

∥

∥

= 0,

whenever h ∈ X.
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Then we write f ∈ UG(1)(Ω). The uniform Gâteaux differentiability of the
order n > 1, as well as the inclusion f ∈ UG(n)(Ω) are defined by induction.

Finally, for Ω ⊂ X we write f ∈ LIP (0)(Ω), provided that f satisfies the
Lipschitz condition on the set Ω. For n ∈ N we write f ∈ LIP (n)(Ω) if

(i) f ∈ G(n)(Ω), and

(ii) f (k) ∈ LIP(0)(Ω) for k = 0, . . . , n.

If there is no doubt what the set Ω is, we write UG(n), LIP(n) instead of
UG(n)(Ω), LIP(n)(Ω).

We can easily check that for a mapping f ∈ UG(1)(Ω), f ∈ LIP(0)(Ω), the
following equivalences hold :

f ′ ∈ UG(n−1)(Ω)⇐⇒ f ∈ UG(n)(Ω) for all n ≥ 2

f ′ ∈ LIP(n−1)(Ω)⇐⇒ f ∈ LIP(n)(Ω) for all n ≥ 1.
(2.1)

Also we use a standard definition of Fréchet smoothness (c.f. [1]). Let Ω ⊂ X
be an open set and n ∈ N. We say that the mapping f is C(n)−smooth on
Ω if it is n−times Fréchet differentiable at every x ∈ Ω and the mapping
x 7→ f (n)(x) from Ω to Ln(X,Y ) is continuous on Ω. It is easy to see that f is
C(n)−smooth on Ω if and only if it is n−times Fréchet differentiable at every
point of Ω and for every ε > 0 there is δ > 0 such that

∥

∥

∥

∥

1

τ
[f (n−1)(z + τhn)(h1, . . . , hn−1)− f

(n−1)(z)(h1, . . . , hn−1)]

− L(h1, . . . , hn)

∥

∥

∥

∥

< ε

(2.2)

whenever 0 6= τ ∈ (−δ, δ), z ∈ Ω, ‖z − x‖ < δ, and h1, . . . , hn ∈ BX . We say
that f is C(∞)-smooth on Ω if it is C(n)-smooth on Ω for every n ∈ N. The
C(0)-smoothness means the continuity and we put f (0) = f.

Remark 2.2. Since norms are not differentiable at the origin, we say that
a norm is differentiable (in Gâteaux or Fréchet sense), if it is differentiable at
all nonzero points.

Definition 2.3. A real valued function f on a Banach space X is called a
bump if its support supp f := {x ∈ X : f(x) 6= 0} is nonempty and bounded.
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3. Basic facts on differentiability

Lemma 3.1. Let X be a Banach space and f : Ω → R be a function
defined on an open subset Ω ⊂ X satisfying the following three assumptions:

(i) f is n times Fréchet differentiable on the set Ω.

(ii) For all x ∈ Ω and h1, . . . , hn+1 ∈ X the directional derivative

Dhn+1
f (n)(x)(h1, . . . , hn)

:= lim
τ→0

1

τ
[f (n)(x+ τhn+1)(h1, . . . , hn)− f

(n)(x)(h1, . . . , hn)]

exists.

(iii) The mapping x 7→ Dhn+1
f (n)(x)(h1, . . . , hn) is continuous on Ω for any

h1, . . . , hn+1 ∈ X.

Then for every x ∈ Ω the mapping ϕx : Xn+1 → R defined by

ϕx(h1, . . . , hn+1) = Dhn+1
f (n)(x)(h1, . . . , hn)

is an (n+ 1)-linear and symmetric form in variables h1, . . . , hn+1.

Proof. It is a consequence of the well known Schwarz theorem from ana-
lysis.

Lemma 3.2. Let X, Y be Banach spaces, Ω ⊂ X an open set, and
f : X → Y a mapping.

(i) Let f ∈ LIP(0)(U(Ω, δ)) for some δ > 0 and f ∈ UG(1)(Ω). Then
x 7→ f ′(x)(h) is uniformly continuous on Ω for every fixed h ∈ X.

(ii) Let f ∈ G(1)(Ω) and x 7→ f ′(x)(h) be uniformly continuous on Ω for
every fixed h ∈ X. Then f ∈ UG(1)({x : B(x, δ) ⊂ Ω}) whenever δ > 0.

Proof. (i) Fix h ∈ X and suppose that f ∈ LIP (0)(U(Ω, δ)) for some
δ > 0. Then for sufficiently small τ 6= 0

∥

∥

∥

∥

1

τ
[f(x+ τh)− f(x)]−

1

τ
[f(z + τh)− f(z)]

∥

∥

∥

∥

→ 0 (3.1)
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whenever x, z ∈ Ω and ‖x− z‖ → 0. Then (3.1) and the inequality

‖f ′(x)(h)− f ′(z)(h)‖ ≤

∥

∥

∥

∥

f ′(x)(h)−
1

τ
[f(x+ τh)− f(x)]

∥

∥

∥

∥

+

∥

∥

∥

∥

1

τ
[f(z + τh)− f(z)]− f ′(z)(h)

∥

∥

∥

∥

+

∥

∥

∥

∥

1

τ
[f(x+ τh)− f(x)]−

1

τ
[f(z + τh)− f(z)]

∥

∥

∥

∥

,

complete the proof.
(ii) Fix ε > 0, h ∈ X, δ > 0. Then we can find r > 0 such that

{x : B(x, δ) ⊂ Ω}+ rh ⊂ Ω, and ‖f ′(x)(h)− f ′(z)(h)‖ < ε, whenever x, z ∈ Ω
and ‖x − z‖ < r. Now, pick an arbitrary element y∗ from the dual unit ball
BY ∗ . Clearly y∗ ◦ f ∈ G(1)(Ω) and (y∗ ◦ f)′(x)(h) = 〈y∗, f ′(x)(h)〉. Using the
mean value theorem, we have

|〈y∗, f(x+ τh)− f(x)−f ′(x)(τh)〉|

= |〈y∗, f(x+ τh)〉 − 〈y∗, f(x)〉 − 〈y∗, f ′(x)(τh)〉|

= |τ ||〈y∗, f ′(x+ θτh)(h)− f ′(x)(h)〉|

≤ |τ |‖f ′(x+ θτh)(h)− f ′(x)(h)‖ ≤ |τ |ε.

whenever B(x, δ) ⊂ Ω and |τ | < r. Here θ ∈ (0, 1) is a constant dependent on
x, h, y∗, and τ . Hence

|〈y∗, f(x+ τh)− f(x)− f ′(x)(τh)〉| ≤ ε|τ |

whenever B(x, δ) ⊂ Ω, |τ | < r, and y∗ ∈ BY ∗ . Therefore

‖f(x+ τh)− f(x)− f ′(x)(τh)‖ ≤ ε|τ |

whenever B(x, δ) ⊂ Ω, |τ | < r, which completes the proof.

Remark 3.3. By Lemma 3.2 (ii), if f : X → Y satisfies f ∈ LIP (n)(Ω),
then f ∈ UG(n)({x : B(x, δ) ⊂ Ω}) whenever δ > 0.

Lemma 3.4. Let X, Y and Z be Banach spaces and U, V be open subsets
in X and Y respectively. Further let f be a mapping from U into Y and g be a
Lipschitzian mapping from V into Z. Assume that f is Gâteaux differentiable
at x ∈ U, that y := f(x) ∈ V , and that g is Gâteaux differentiable at y. Then
the composition g ◦ f is Gâteaux differentiable at x and for all h ∈ X

(g ◦ f)′(x)(h) = g′(f(x))(f ′(x)(h)).
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Proof. For h ∈ X and τ 6= 0 we have

1

τ
[(g ◦ f)(x+ τh)− (g ◦ f)(x)] =

1

τ

[

g
(

f(x) + f ′(x)(τh)
)

− g
(

f(x)
)]

+
1

τ

[

g
(

f(x) + f ′(x)(τh) + o(τ)
)

− g
(

f(x) + f ′(x)(τh)
)]

.

Since g is Lipschitzian, the last term tends to zero when τ → 0. Thus

1

τ
[(g ◦ f)(x+ τh)− (g ◦ f)(x)]→ g′(f(x))(f ′(x)(h))

as τ → 0. The linearity of the derivative is clear.

Lemma 3.5. Let X, Y and Z be Banach spaces, let Ω ⊂ X, Ω′ ⊂ Y
be open sets, and let n ∈ N. Further let f : X → Y, g : Y → Z be two
mappings such that f ∈ LIP (n)(Ω), g ∈ LIP(n)(Ω′) and f(Ω) ⊂ Ω′. Then
g ◦ f ∈ LIP(n)(Ω).

Proof. The conclusion is obviously true for n = 0. Consider n ≥ 1 and
assume that the conclusion was verified for n − 1. Further define a mapping
o : L(Y,Z)×L(X,Y )→ L(X,Z) by o(u, v) := u◦v, u ∈ L(Y,Z), v ∈ L(X,Y ).
It is easy to check that the composition mapping o is LIP (∞). Indeed, for
h, a ∈ L(Y,Z) and k, b ∈ L(X,Y ) we have

o′(u, v)(h, k) = h ◦ v + u ◦ k

o′′(u, v)((h, k), (a, b)) = h ◦ b+ a ◦ k

o′′′(u, v) ≡ 0.

Let γ denote the mapping x 7→
(

(g′ ◦f)(x), f ′(x)
)

, x ∈ Ω. By Lemma 3.4, the
derivative (g ◦ f)′ exists and

(g ◦ f)′(x)(h) = g′(f(x))[f ′(x)h] = ([g′(f(x)] ◦ [f ′(x)])(h)

= {o([g′(f(x))], f ′(x))}(h).

Hence
(g ◦ f)′(x) = o([g′(f(x))], f ′(x)) = (o ◦ γ)(x),

and so (g ◦ f)′ = o ◦ γ. By the induction assumption, γ ∈ LIP (n−1)(Ω).
Hence, by the induction assumption used again, o ◦ γ ∈ LIP (n−1)(Ω), i.e.,
(g ◦ f)′ ∈ LIP(n−1)(Ω), and, by (2.1), g ◦ f ∈ LIP (n)(Ω).
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Lemma 3.6. Let X, Y and Z be Banach spaces, Ω ⊂ X, Ω′ ⊂ Y open
sets and n ∈ N. Further let f : X → Y, g : Y → Z be two mappings such
that f(Ω) ⊂ Ω′, that

(i) f ∈ UG(n)(Ω) ∩ LIP(n−1)(U(Ω, ε)) for some ε > 0, and that

(ii) g ∈ LIP(n)(Ω′).

Then for every δ > 0, g ◦ f ∈ UG(n)({x : B(x, δ) ⊂ Ω}) ∩ LIP (n−1)(Ω).

Proof. Suppose first that n = 1. Then, by Lemma 3.5, g ◦ f ∈ LIP (0)(Ω),
and, by Lemma 3.6 (i), for fixed h ∈ X we have ‖f ′(x)(h) − f ′(z)(h)‖ → 0
whenever x, z ∈ Ω and ‖x− z‖ → 0. By Lemma 3.4, the composition g ◦ f is
Gâteaux differentiable and (g◦f)′(x)(h) = g′(f(x))(f ′(x)(h)) if x ∈ Ω, h ∈ X.
Fix h ∈ X and calculate

‖(g ◦ f)′(x)(h)− (g ◦ f)′(z)(h)‖ = ‖g′(f(x))(f ′(x)(h))− g′(f(z))(f ′(z)(h))‖

≤ ‖g′(f(x))− g′(f(z))‖ ‖f ′(x)(h)‖+ ‖g′(f(z))‖ ‖f ′(x)(h)− f ′(z)(h)‖

≤ Lip(g′)
[

Lip(f)
]2
‖h‖ ‖x− z‖+ Lip(g)‖f ′(x)(h)− f ′(z)(h)‖ → 0,

whenever x, z ∈ Ω, ‖x− z‖ → 0. Then, by Lemma 3.2 (ii), g ◦ f ∈ UG(1)({x :
B(x, δ) ⊂ Ω}) for every δ > 0.

Now, assume that n ≥ 2 and that we have verified the claim for n − 1.
Fix δ > 0 and consider f ∈ UG(n)(Ω) ∩ LIP(n−1)(U(Ω, ε)), g ∈ LIP(n)(Ω′).
By Lemma 3.5, g ◦ f ∈ LIP (n−1)(Ω). By the induction assumption, g′ ◦ f ∈
UG(n−1)({x : B(x, δ) ⊂ Ω}). Note that also f ′ ∈ UG(n−1)({x : B(x, δ) ⊂ Ω}).
Then the mapping x 7→ ((g′ ◦ f)(x), f ′(x)) is in UG(n−1)({x : B(x, δ) ⊂ Ω}).
Finally, imitating the proof of Lemma 3.5, we get that g ◦ f ∈ UG(n)({x :
B(x, δ) ⊂ Ω}).

Lemma 3.7. Let X be an at least two-dimensional Banach space, let x ∈
X, x′ ∈ X, and assume that ‖x‖ ≤ ‖x′‖. Then there exists z ∈ X, with
‖z‖ = ‖x‖, and such that

‖(1− t)x+ tz‖ ≥
1

3
‖x‖ for all t ∈ R, (3.2)

and

‖(1− t)x′ + tz‖ ≥
1

3
‖x‖ for all t ∈ [0, 1]. (3.3)
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Proof. First of all, we prove the following
Claim. Let u, v ∈ X be such that ‖v‖ ≤ ‖u‖ and ‖v‖ ≤ ‖v+su‖ for every

s ∈ R. Then for every t ∈ R we have

‖(1− t)u+ tv‖ ≥
1

3
‖v‖.

Indeed, consider t ∈ R. If ‖t(u− v)‖ ≤ 2
3‖u‖, then

‖(1− t)u+ tv‖ = ‖u− t(u− v)‖ ≥ ‖u‖ − ‖t(u− v)‖

≥ ‖u‖ −
2

3
‖u‖ =

1

3
‖u‖ ≥

1

3
‖v‖.

If ‖t(u− v)‖ > 2
3‖u‖, then

|t| >
2

3

‖u‖

‖u− v‖
≥

2

3
·
1

2
=

1

3
,

and so

‖(1− t)u+ tv‖ = |t|

∥

∥

∥

∥

v −
t− 1

t
u

∥

∥

∥

∥

≥
1

3
‖v‖.

This proves the claim. ¤
Now, consider a two-dimensional subspace X2 of X such that x, x′ ∈ X2.

We find f ∈ X∗
2 for which f 6= 0, f(x) = 0, and f(x′) ≥ 0. Let B = {u ∈ X2 :

‖u‖ ≤ ‖x‖}, a compact subset of X2. Find z ∈ B such that f(z) = max f(B).
Then surely

u ∈ X2 and f(u) ≥ f(z) =⇒ ‖u‖ ≥ ‖x‖. (3.4)

Since z ∈ B is not contained in the interior of the set B, we have

‖z‖ = ‖x‖. (3.5)

Now, since f(z + sx) = f(z) + sf(x) = f(z) for every s ∈ R, the implication
(3.4) yields that

‖z‖ ≤ ‖z + sx‖ for all s ∈ R. (3.6)

By (3.5), (3.6) and by our Claim the property (3.2) is satisfied.
In order to prove the property (3.3), consider first the case when

f(x′) ≥ f(z). (3.7)

Then for every t ∈ [0, 1] we have

f((1− t)x′ + tz) = (1− t)f(x′) + tf(z) ≥ f(z).
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Using this and the implication (3.4), we have ‖(1− t)x′ + tz‖ ≥ ‖x‖, which is
(3.3). Second, suppose that

0 ≤ f(x′) < f(z). (3.8)

Find an element y lying in the line determined by the points z and x′, and
satisfying f(y) = 0. Then

x′ = (1− τ)y + τz (3.9)

for some τ ∈ [0, 1). If ‖y‖ < ‖z‖, then y is contained in the interior of the set
B and, because z ∈ B, by (3.9) the point x′ lies in the interior of B as well.
This gives us an inequality ‖x′‖ < ‖x‖, which is in a contradiction with the
assumption of our lemma. Therefore

‖z‖ ≤ ‖y‖. (3.10)

Further for every s ∈ R we have f(z + sy) = f(z) + sf(y) = f(z). Hence, by
(3.4),

‖z‖ ≤ ‖z + sy‖ for all s ∈ R. (3.11)

Now, by (3.10), (3.11) and by our Claim, for every t ∈ R we have

‖(1− t)y + tz‖ ≥
1

3
‖z‖ =

1

3
‖x‖.

The property (3.3) now follows from the fact that the line determined by the
points x′ and z is identical with the line determined by the points y and z.

Lemma 3.8. Let X,Y be Banach spaces, X be at least two-dimensional,
n ∈ N, and 0 < α < 1. Further assume that f : X\{0} → Y is n times Gâteaux
differentiable mapping with f (n) Lipschitzian on the annulus BX \

α
3nBX . Then

f, f ′, . . . , f (n−1) are all Lipschitzian on the annulus BX \ αBX .

Proof. Assume first n = 1. We have to show that f is Lipschitzian on
BX\αBX . Since f ′ is Lipschitzian on BX\(α/3)BX , we have that the number

C = sup{‖f ′(y)‖ : y ∈ BX\
α

3
BX}

is finite. Take any x, x′ ∈ BX\αBX . If [x, x′] ⊂ BX\(α/3)BX , then the mean
value theorem guarantees that

‖f(x)− f(x′)‖ ≤ sup{‖f ′(ξ)‖ : ξ ∈ [x, x′]}‖x− x′‖ ≤ C‖x− x′‖.
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Second, assume that [x, x′]∩(α/3)BX 6= ∅, say ‖tx+(1−t)x′‖ ≤ (α/3) for some
t ∈ (0, 1). By Lemma 3.7, there is z ∈ BX\αBX so that [x, z] ∩ (α/3)BX = ∅
and [z, x′] ∩ (α/3)BX = ∅. Thus

‖f(x)−f(x′)‖ ≤ ‖f(x)−f(z)‖+‖f(z)−f(x′)‖ ≤ C(‖x−z‖+‖z−x′‖) ≤ 4C.

But
α

3
≥ ‖tx+ (1− t)x′‖ ≥ ‖x′‖ − t‖x− x′‖ > α− ‖x− x′‖,

and so ‖x− x′‖ > (2α/3). Therefore

‖f(x)− f(x′)‖ ≤ 4C = 4C ·
3

2α
·
2α

3
<

6C

α
‖x− x′‖.

For n > 1 we proceed by induction, using what we have just proved.

Lemma 3.9. Let X,Y be Banach spaces, n ∈ {0} ∪ N, let f : X → Y be
positively homogeneous mapping bounded on SX . If f ∈ UG

(n+1)(SX), then
f (n) is Lipschitzian on every annulus around 0.

Proof. Note that the homogeneity of the mapping implies that it is bounded
on any annulus around 0 and that for every α > 0, x ∈ SX , k ∈ {1, . . . , n+1},
f (k)(αx) exists and

f (k)(αx) =
1

αk−1
f (k)(x).

We will proceed by induction on n. Let first n = 0 and f ∈ UG(1)(SX). By the
Baire category argument from [8, Remark 2.1] f ′ is bounded on SX . Again by
the homogeneity of f the derivative f ′ is bounded on every annulus around
0. Now from the proof of the Lemma 3.8 it is clear that f is Lipschitzian
on every annulus around 0. Further, assume that the assertion is true for
n = k, k ≥ 0. Then according our assumption f (k−1) is Lipschitzian on every
annulus around 0. Consequently f (k) is bounded on every annulus around 0.
To finish the proof, we will apply the first part of the proof to g := f (k).

Proposition 3.10. Let (X, ‖ · ‖) be a (not necessarily separable) Banach
space, with dimension, at least 2, and let n ∈ N. Then the following three
assertions are equivalent.

(i) ‖ · ‖ ∈ G(n)(SX) and ‖ · ‖(n) is Lipschitzian on the unit sphere SX .

(ii) ‖ · ‖ ∈ LIP(n)(SX).
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(iii) ‖ · ‖ ∈ LIP(n)(A) for any annulus A around 0.

The above assertions are implied by

(iv) ‖ · ‖ ∈ UG(n+1)(SX).

Proof. To prove the equivalence of the first three assertions, it is enough
to show the implication (i)⇒(iii). Fix any 0 < α < 1. We will show that the
n-th derivative ‖ · ‖(n) is Lipschitzian on BX \ αBX . So fix such an α. Let C
be a Lipschitz constant of ‖ · ‖(n) on SX , and fix x0 ∈ SX . Take any x, y ∈ SX

and any α < t ≤ 1. Then, using the homogeneity of the norm, we have :

∥

∥‖ · ‖(n)(x)− ‖ · ‖(n)(ty)
∥

∥ ≤
∥

∥‖ · ‖(n)(x)− ‖ · ‖(n)(y)
∥

∥

+
∥

∥‖ · ‖(n)(y)− ‖ · ‖(n)(ty)
∥

∥

≤C‖x− y‖+
∥

∥‖ · ‖(n)(y)
∥

∥

(

t1−n − 1
)

.

Now,

‖x− y‖ ≤ ‖x− ty‖+ ‖ty − y‖ = ‖x− ty‖+ ‖x‖ − ‖ty‖ ≤ 2‖x− ty‖,

∥

∥‖ · ‖(n)(y)
∥

∥ ≤ C‖x0 − y‖+
∥

∥‖ · ‖(n)(x0)
∥

∥ ≤ 2C +
∥

∥‖ · ‖(n)(x0)
∥

∥ =: C1 ,

and

t1−n − 1 = (1− t)

(

1 + t+ · · ·+ tn−2
)

tn−1
≤ ‖x− ty‖ ·

n− 1

αn−1
.

Thus
∥

∥‖ · ‖(n)(x)− ‖ · ‖(n)(ty)
∥

∥ ≤ C2‖x− ty‖,

where we have put C2 = 2C + C1(n− 1)α1−n.
Now, take any x, y ∈ SX and any α < t ≤ s ≤ 1. Then t

s
> α and so, by

the first paragraph,

∥

∥

∥
‖ · ‖(n)(x)− ‖ · ‖(n)

( t

s
y
)

∥

∥

∥
≤ C2

∥

∥

∥
x−

t

s
y
∥

∥

∥
.

Hence,

∥

∥‖ · ‖(n)(sx)− ‖ · ‖(n)(ty)
∥

∥ = s1−n
∥

∥

∥
‖ · ‖(n)(x)− ‖ · ‖(n)

( t

s
y
)

∥

∥

∥

≤ s1−nC2

∥

∥

∥
x−

t

s
y
∥

∥

∥
= s−nC2‖sx− ty‖

≤ α−nC2‖sx− ty‖.
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Therefore ‖ · ‖(n) is Lipschitzian on the annulus BX\αBX . Now, applying
Lemma 3.8, we get (iii).

(iv)⇒(i). This implication is a direct consequence of Lemma 3.9.

Remark 3.11. It is easy to check that a norm ‖ · ‖ on a Banach spaceX
belongs to UG(n) with respect to any annulus around 0, provided that ‖ · ‖ ∈
UG(n)(SX).

4. Existence of uniform Gâteaux differentiable renorming

Theorem 4.1. Let X be a separable Banach space such that for some
nonnegative integer n its norm is n times differentiable on X \ {0} and its n-
th derivative is Lipschitzian on the unit sphere. Then X admits an equivalent
norm which is, on any fixed annulus around the origin, n+1 times uniformly
Gâteaux differentiable and whose derivatives of degree less than n + 1 are
Lipschitzian there.

Proof. In our proof we will freely follow the constructions from [4] and [3].
Also note that, by Proposition 3.10, we can suppose that the derivatives of
our norm ‖ ·‖ are Lipschitzian on every annulus around 0. So we may not care
about a concrete annulus.

STEP 1. Basic construction. Consider a C(∞)-smooth function φ0 : R → R
such that φ0 ≥ 0, supp φ0 ⊂ [−1/2, 1/2] and

∫

φ0 = 1. Then define the
functions φj(t) = 2jφ0(2

jt), j ∈ N, t ∈ R. Since X is separable, there is a
countable set S = {xj ∈ BX : j ∈ N}, such that S = BX . Now, we will define
a sequence of functions {fm : X → R}∞m=1 by

fm(x) =

∫

Rm

∥

∥

∥
x−

m
∑

j=1

tjxj

∥

∥

∥

m
∏

j=1

φj(tj)dt1 . . . dtm, x ∈ X. (4.1)

Note that the functions fm are well defined since the integrand is continuous
on Rm and zero outside the compact space

[

−
1

4
,
1

4

]

×

[

−
1

8
,
1

8

]

× · · · ×

[

−
1

2m+1
,

1

2m+1

]

.

It is easy to see that

|fm(x)− fm(y)| ≤ ‖x− y‖ (4.2)
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for all m ∈ N, x, y ∈ X. Hence fm are 1-Lipschitzian functions for each m ∈ N.
Now, assume n < m and x ∈ X. Then, using the fact that

∫

φj = 1, we get

|fn(x)− fm(x)| ≤

∫

Rm

∥

∥

∥

m
∑

j=n+1

tjxj

∥

∥

∥

m
∏

j=1

φj(tj)dt1 . . . dtm

≤
m
∑

j=n+1

2−j−1 → 0,

as n → ∞ and m → ∞, uniformly for x ∈ X. Thus, we can put f(x) :=
limm→∞ fm(x), x ∈ X. It is easy to see that f is convex, 1-Lipschitzian, and

‖x‖ −
1

2
≤ f(x) ≤ ‖x‖+

1

2
(4.3)

for all x ∈ X.

STEP 2. The functions fm are C(n)-smooth on X \ 12BX , and for k = 1, . . . , n
we have

f (k)m (x)(h1, . . . , hk)

=

∫

Rm

‖ · ‖(k)(x−
m
∑

j=1

tjxj)(h1, . . . , hk)
m
∏

j=1

φj(tj)dt1 . . . dtm
(4.4)

where x ∈ X \ 12BX and h1, . . . , hk ∈ X.

For k = 0 the claim is trivial. Assume that the claim was verified for k−1
where k ∈ {1, . . . , n}. Fix any x ∈ X\ 12BX and any ε > 0. Since the k-th

derivative ‖ · ‖(k) is Lipschitzian, there is δ ∈ (0, 12‖x‖ −
1
4) such that

∥

∥

∥

∥

‖ · ‖(k)(z −
m
∑

j=1

tjxj)− ‖ · ‖
(k)(x−

m
∑

j=1

tjxj)

∥

∥

∥

∥

< ε (4.5)

whenever z ∈ X, ‖z − x‖ < 2δ, m ∈ N and tj ∈
[

− 1
2j+1 ,

1
2j+1

]

, j = 1, . . . ,m.
Then, if 0 6= τ ∈ (−δ, δ), y ∈ X, ‖y − x‖ < δ, h1, . . . , hk ∈ BX , m ∈ N, using
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(2.2), (4.4), (4.5), and the Newton-Leibniz formula, we have

∣

∣

∣

∣

1

τ
[f (k−1)m (y + τhk)(h1, . . . , hk−1)− f

(k−1)
m (y)(h1, . . . , hk−1)]

−

∫

Rm

‖ · ‖(k)(x−
m
∑

j=1

tjxj)(h1, . . . , hk)
m
∏

j=1

φj(tj)dt1 . . . dtm

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rm

{

1

τ

[

‖ · ‖(k−1)(y + τhk −
m
∑

j=1

tjxj)(h1, . . . , hk−1)

− ‖ · ‖(k−1)(y −
m
∑

j=1

tjxj)(h1, . . . , hk−1)
]

− ‖ · ‖(k)(x−
m
∑

j=1

tjxj)(h1, . . . , hk)

} m
∏

j=1

φj(tj)dt1 . . . dtm

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rm

∫ 1

0

[

‖ · ‖(k)(y + θτhk −
m
∑

j=1

tjxj)(h1, . . . , hk)

− ‖ · ‖(k)(x−
m
∑

j=1

tjxj)(h1, . . . , hk)
]

dθ

m
∏

j=1

φj(tj)dt1 . . . dtm

∣

∣

∣

∣

< ε.

Thus, by (2.2) and by the induction assumption, fm is C(n)-smooth onX\ 12BX

for every n ∈ N.

STEP 3. The function f defined in STEP 1 is C(n)-smooth on X \ 12BX and

‖f (k)m (x)− f (k)(x)‖ → 0 as m→∞,

for k = 0, . . . , n and x ∈ X \ 12BX .

The claim for k = 0 was proved in STEP 1. Let k ∈ {1, . . . , n} and assume
that the claim was verified for k−1. Fix x ∈ X\ 12BX . Since ‖·‖

(k) is Lipschitz,

∥

∥

∥

∥

‖ · ‖(k)(x−
m
∑

j=1

tjxj)− ‖ · ‖
(k)(x−

n
∑

j=1

tjxj)

∥

∥

∥

∥

→ 0

as m,n → ∞ uniformly for {tj}
∞
j=1 where tj ∈

[

− 1
2j+1 ,

1
2j+1

]

. Then, using
STEP 2, we get that

‖f (k)m (x)− f (k)n (x)‖ → 0 as m,n→∞.
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Thus, when we put Lk = limm→∞ f
(k)
m (x), then Lk belongs to L(k)(X). Fix

ε > 0 and let δ be that chosen in STEP 2. Take 0 6= τ ∈ (−δ, δ), h1, . . . , hk ∈
BX , and y ∈ X such that ‖y − x‖ < δ. Then
∣

∣

∣

∣

1

τ
[f (k−1)m (y + τhk)(h1, . . . , hk−1)− f

(k−1)
m (y)(h1, . . . , hk−1)]

− f (k)m (x)(h1, . . . , hk)

∣

∣

∣

∣

< ε

for all m ∈ N. Now, let m→∞. By our induction assumption, we get
∣

∣

∣

∣

1

τ
[f (k−1)(y + τhk)(h1, . . . , hk−1)− f

(k−1)(y)(h1, . . . , hk−1)]

− Lk(h1, . . . , hk)

∣

∣

∣

∣

≤ ε.

By (2.2), f is C(k)-smooth, f (k)(x) = Lk and ‖f
(k)
m (x) − f (k)(x)‖ → 0 as

m→∞ whenever x ∈ X \ 12BX .

STEP 4. Let x ∈ X \ 12BX , h1, . . . , hn ∈ X, i ∈ N, m ≥ i. Then the directional

derivative Dxi
f
(n)
m (x)(h1, . . . , hn) exists.

Indeed, by STEP 2, we can calculate

Dxi
f (n)m (x)(h1, . . . , hn)

= lim
τ→0

1

τ

[

f (n)m (x+ τxi)(h1, . . . , hn)− f
(n)
m (x)(h1, . . . , hn)

]

= lim
τ→0

1

τ

[
∫

Rm

‖ · ‖(n)(x+ τxi −
m
∑

j=1

tjxj)(h1, . . . , hn)
m
∏

j=1

φj(tj)dt1 . . . dtm

−

∫

Rm

‖ · ‖(n)(x−
m
∑

j=1

tjxj)(h1, . . . , hn)
m
∏

j=1

φj(tj)dt1 . . . dtm

]

= lim
τ→0

∫

Rm

‖ · ‖(n)(x−
m
∑

j=1

tjxj)(h1, . . . , hn)

m
∏

j=1
j 6=i

φj(tj)
φi(ti + τ)− φi(ti)

τ
dt1 . . . dtm

=

∫

Rm

‖ · ‖(n)(x−
m
∑

j=1

tjxj)(h1, . . . , hn)
m
∏

j=1
j 6=i

φj(tj)φ
′
i(ti)dt1 . . . dtm.
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Here we used the substitution ti− τ → ti, the fact that φ0 is C
(1)-smooth, and

the Lebesgue’s dominated convergence theorem. Thus, we have

Dxi
f (n)m (x)(h1, . . . , hn)

=

∫

Rm

‖ · ‖(n)(x−
m
∑

j=1

tjxj)(h1, . . . , hn)

m
∏

j=1
j 6=i

φj(tj)φ
′
i(ti)dt1 . . . dtm.

(4.6)

STEP 5. The directional derivative Dxi
f (n)(x)(h1, . . . , hn) exists for all x ∈

X \ 12BX , i ∈ N, and h1, . . . , hn ∈ X.

Fix x ∈ X \ 1
2BX , i ∈ N and h1, . . . , hn ∈ X. Let Ω denote a suitable

annulus around 0 and containing the point x. Since ‖ · ‖(n) is Lipschitzian on
Ω (see Proposition 3.10), there is δ > 0 such that

∥

∥

∥

∥

‖ · ‖(n)(x+ τxi −
m1
∑

j=1

tjxj)− ‖ · ‖
(n)(x+ τxi −

m2
∑

j=1

tjxj)

∥

∥

∥

∥

→ 0 (4.7)

as m1,m2 →∞ uniformly for τ ∈ (−δ, δ), and

(t1, . . . , tm, . . .) ∈

[

−
1

4
,
1

4

]

× · · · ×

[

−
1

2m+1
,

1

2m+1

]

× · · ·

Define the functions

ϕ(τ) = f (n)(x+ τxi)(h1, . . . , hn)

and
ϕm(τ) = f (n)m (x+ τxi)(h1, . . . , hn)

where τ ∈ (−δ, δ). We calculate

ϕ′
m(τ) = Dxi

f (n)m (x+ τxi)(h1, . . . , hn), τ ∈ (−δ, δ).

By (4.6) and (4.7), we have that

|ϕ′
m1

(τ)− ϕ′
m2

(τ)| −→ 0 as m1,m2 →∞

uniformly for τ ∈ (−δ, δ). Moreover, ϕm(0) → ϕ(0) as m → ∞ by STEP 3.
Thus, according to a well known theorem from mathematical analysis, we
know that for all τ ∈ (−δ, δ) the derivative ϕ′(τ) exists and

ϕ′(τ) = lim
m→∞

ϕ′
m(τ), τ ∈ (−δ, δ).
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In particular

Dxi
f (n)(y)(h1, . . . , hn) = ϕ′(0) = lim

m→∞
ϕ′
m(0)

= lim
m→∞

Dxi
f (n)m (y)(h1, . . . , hn).

(4.8)

STEP 6. The directional derivative Dhn+1
f (n)(x)(h1, . . . , hn) exists for all

x ∈ X \ 12BX and all h1, . . . , hn, hn+1 ∈ X.

Let us fix ε > 0, x ∈ X \ 12BX , h1, . . . , hn, hn+1 ∈ BX . Since the set S is
dense in the unit ball, we can find a sequence {zj}

∞
j=1 ⊂ S such that zj → hn+1

as j → ∞. Let C > 0 be a Lipschitz constant of f (n) with respect to some
suitable annulus Ω around 0, containing x. Note that, by Proposition 3.10,
f ∈ LIP(n)(Ω). Find j ∈ N such that

‖hn+1 − zj‖ ≤
ε

2C
.

Using this and the Lipschitzness of f (n), we have

lim sup
τ,τ ′→0

∣

∣

∣

∣

1

τ

[

f (n)(x+ τhn+1)(h1, . . . , hn)− f
(n)(x)(h1, . . . , hn)

]

−
1

τ ′
[

f (n)(x+ τ ′hn+1)(h1, . . . , hn)− f
(n)(x)(h1, . . . , hn)

]

∣

∣

∣

∣

≤ lim
τ,τ ′→0

∣

∣

∣

∣

1

τ

[

f (n)(x+ τzj)(h1, . . . , hn)− f
(n)(x)(h1, . . . , hn)

]

−
1

τ ′
[

f (n)(x+ τ ′zj)(h1, . . . , hn)− f
(n)(x)(h1, . . . , hn)

]

∣

∣

∣

∣

+ 2C‖hn+1 − zj‖ = 2C‖hn+1 − zj‖ ≤ ε.

Hence Dhn+1
f (n)(x)(h1, . . . , hn) exists. Moreover, we have

Dhn+1
f (n)(x)(h1, . . . , hn) = lim

j→∞
Dzj

f (n)(x)(h1, . . . , hn) (4.9)

for all x ∈ X \ 12BX , h1, . . . , hn, hn+1 ∈ X. Also, the limit (4.9) exists uni-
formly for h1, . . . , hn from any bounded subset of X and locally uniformly
in the sense that for each x ∈ X \ 1

2BX and any annulus Ω around 0 such
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that Ω ⊂ X \ 12BX , x ∈ Ω, the limit (4.9) exists uniformly with respect to Ω.
Indeed, if y ∈ Ω, r > 0, and h1, . . . , hn ∈ rBX , then

|Dhn+1
f (n)(y)(h1, . . . , hn)−Dzj

f (n)(y)(h1, . . . , hn)|

= lim
τ→0

∣

∣

1

τ
[f (n)(y + τhn+1)(h1, . . . , hn)− f

(n)(y)(h1, . . . , hn)]

−
1

τ
[f (n)(y + τzj)(h1, . . . , hn)− f

(n)(y)(h1, . . . , hn)]
∣

∣

≤ rnLipΩ(f
(n))‖hn+1 − zj‖.

STEP 7. For any fixed i ∈ N and any h1, . . . , hn ∈ X the mapping x 7→
Dxi

f (n)(x)(h1, . . . , hn) is Lipschitzian on any annulus Ω around 0 such that
Ω ⊂ X \ 12BX .

Fix α, β ∈ R, α > β > 1
2 , h1, . . . , hn ∈ X, and = i ∈ N. Let C > 0

be a Lipschitz constant of the n-th derivative ‖ · ‖(n) with respect to the set
(α+ 1

2)BX \ (β −
1
2)BX , see Proposition 3.10. If x, y ∈ αBX \ βBX , then we

have
∣

∣Dxi
f (n)(x)(h1, . . . , hn)−Dxi

f (n)(z)(h1, . . . , hn)
∣

∣

= lim
m→∞

∣

∣

∣

∣

∫

Rm

[

‖ · ‖(n)(x−
m
∑

j=1

tjxj)(h1, . . . , hn)

− ‖ · ‖(n)(y −
m
∑

j=1

tjxj)(h1, . . . , hn)
]

m
∏

j=1
j 6=i

φj(tj)φ
′
i(ti)dt1 . . . dtm

∣

∣

∣

∣

≤ C22i
∫

R
|φ′0(s)|ds ‖x− y‖ ‖h1‖ . . . ‖hn‖.

Thus
∣

∣Dxi
f (n)(x)(h1, . . . , hn)−Dxi

f (n)(y)(h1, . . . , hn)
∣

∣

≤ C22i
∫

R
|φ′0(s)|ds ‖x− y‖ ‖h1‖ . . . ‖hn‖.

(4.10)

STEP 8. For any h1, . . . , hn, hn+1 ∈ X the function

x 7→ Dhn+1
f (n)(x)(h1, . . . , hn)

is uniformly continuous on an arbitrary annulus Ω around 0 such that Ω ⊂
X \ 12BX , (even uniformly with respect to h1, . . . , hn ∈ BX).



88 d. bednař́ik

Fix such an annulus Ω, ε > 0, and hn+1 ∈ BX . As in STEP 6, we can find
a sequence {zj}

∞
j=1 ⊂ S such that zj → hn+1. By (4.9), there is k ∈ N such

that
∣

∣Dhn+1
f (n)(x)(h1, . . . , hn)−Dzk

f (n)(x)(h1, . . . , hn)
∣

∣ < ε/3

whenever x ∈ Ω and h1, . . . , hn ∈ BX . Further, by STEP 7, there is δ > 0
such that

∣

∣Dzk
f (n)(x)(h1, . . . , hn)−Dzk

f (n)(y)(h1, . . . , hn)
∣

∣ < ε/3

whenever x, y ∈ Ω, ‖x − y‖ < δ, and h1, . . . , hn ∈ BX . Thus, if x, y ∈ Ω,
‖x− y‖ < δ, h1, . . . , hn ∈ BX , then

∣

∣Dhn+1
f (n)(x)(h1, . . . , hn)−Dhn+1

f (n)(y)(h1, . . . , hn)
∣

∣

≤
∣

∣Dhn+1
f (n)(x)(h1, . . . , hn)−Dzk

f (n)(x)(h1, . . . , hn)
∣

∣

+
∣

∣Dzk
f (n)(x)(h1, . . . , hn)−Dzk

f (n)(y)(h1, . . . , hn)
∣

∣

+
∣

∣Dzk
f (n)(y)(h1, . . . , hn)−Dhn+1

f (n)(y)(h1, . . . , hn)
∣

∣

< 3 ·
ε

3
= ε.

STEP 9. f is n + 1 times Gâteaux differentiable on X \ 1
2BX . Moreover

f ∈ UG(n+1)(Ω) for any annulus Ω around 0 such that Ω ⊂ X \ 12BX .

From the assumptions of our Theorem, using Proposition 3.10, and the
construction of f and its derivatives, we get that f ∈ LIP (n)(Ω) on any
annulus Ω around 0 and such that Ω ⊂ X \ 1

2BX . Then, by Lemma 3.2

(ii), f ∈ UG(n)(Ω) for any annulus Ω, with Ω ⊂ X \ 12BX . If x ∈ X \ 12BX ,
then by STEP 6 and 8, and by Lemma 3.1, the mapping (h1, . . . , hn, hn+1) 7→
Dhn+1

f (n)(x)(h1, . . . , hn) is bounded, (n+ 1)-linear, and symmetric. Hence f
is n + 1 times Gâteaux differentiable on X \ 12BX . Now, it remains to show

that f ∈ UG(n+1)(Ω), i.e., thatf (n) ∈ UG(1)(Ω) for any annulus Ω around 0
and such that Ω ⊂ X \ 12BX . Fix such an annulus Ω, ε > 0, and k ∈ BX . By
STEP 8, for sufficiently small δ > 0, we have

sup
h1,...,hn∈BX

∣

∣Dkf
(n)(x+ τk)(h1, . . . , hn)−Dkf

(n)(x)(h1, . . . , hn)
∣

∣ < ε
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whenever x ∈ Ω and |τ | < δ. Then, using the mean value theorem, we obtain
∥

∥f (n)(x+ τk)− f (n)(x)−Dτkf
(n)(x)(·, . . . , ·)

∥

∥

= sup
h1,...,hn∈BX

∣

∣f (n)(x+ τk)(h1, . . . , hn)− f
(n)(x)(h1, . . . , hn)

−Dτkf
(n)(x)(h1, . . . , hn)

∣

∣

≤ |τ | sup
h1,...,hn∈BX

θ∈[0,1]

∣

∣Dkf
(n)(x+ θτk)(h1, . . . , hn)−Dkf

(n)(x)(h1, . . . , hn)
∣

∣

< |τ |ε,

whenever x ∈ Ω and |τ | < δ. Therefore f ∈ UG(n+1)(Ω).

STEP 10. Using the construction from [4, Theorem 1, Step 6] we “improve”
the function f by defining a new function g : X → R as follows

g(x) =

∫

R
f(sx)η(s)ds, x ∈ X, (4.11)

where η : R → [0,∞) is a fixed C(∞)-smooth function, with support in [1, 2],
and such that

∫

R η = 1. It is clear that g is well defined on all of X, that it is
convex, 2-Lipschitzian, and that it satisfies (see (4.3))

‖x‖ −
1

2
≤ g(x) ≤ 2‖x‖+

1

2
, for all x ∈ X. (4.12)

STEP 11. Similarly, as in STEP 2, it can be shown that g is a C(n)-smooth
function on X \ 12BX . Moreover

g(n)(x)(h1, . . . , hn) =

∫

R
f (n)(sx)(h1, . . . , hn)s

nη(s)ds, (4.13)

for all x ∈ X \ 12BX , h1, . . . , hn ∈ X. From (4.13) it even follows that g ∈

LIP(n)(Ω) for any annulus Ω around 0 such that Ω ⊂ X \ 1
2BX . See also

[4, Theorem 1, Step 12].

STEP 12. We claim that:

(i) For x ∈ X \ 1
2BX , h1, . . . , hn, hn+1 ∈ X the directional derivative

Dhn+1
g(n)(x)(h1, . . . , hn) exists and

Dhn+1
g(n)(x)(h1, . . . , hn)

=

∫

R
Dhn+1

f (n)(sx)(h1, . . . , hn)s
n+1η(s)ds.

(4.14)
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(ii) The mapping Xn+1 3 (h1, . . . , hn, hn+1) 7→ Dhn+1
g(n)(x)(h1, . . . , hn) is

bounded, (n+ 1)-linear, and symmetric for every x ∈ X \ 12BX .

(iii) The function g is n + 1 times Gâteaux differentiable on X \ 12BX and

moreover g ∈ UG(n+1)(Ω) for any annulus Ω around 0 such that Ω ⊂
X \ 12BX .

(i) The integral in (4.14) exists by STEP 8. Fix x ∈ X \ 1
2BX , h1, . . . , hn,

hn+1 ∈ X and ε > 0. Then, using STEP 8, we can find δ > 0 and an annulus
Ω around 0 such that Ω ⊂ X \ 12BX , [1, 2]x+ 2δBX ⊂ Ω, and

sup
θ∈[0,1]

∣

∣Dhn+1
f (n)(sx+ θτshn+1)(h1, . . . , hn)

−Dhn+1
f (n)(sx)(h1, . . . , hn)

∣

∣ < ε/2n+1

whenever 0 6= |τ | < δ and s ∈ [1, 2]. Suppose that 0 6= |τ | < δ, then, using the
Newton-Leibniz integral formula, we have

∣

∣

∣

∣

1

τ
[g(n)(x+ τhn+1)(h1, . . . , hn)− g

(n)(x)(h1, . . . , hn)]

−

∫

R
Dhn+1

f (n)(sx)(h1, . . . , hn)s
n+1η(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R

1

τ
[f (n)(sx+ τshn+1)(h1, . . . , hn)− f

(n)(sx)(h1, . . . , hn)]s
nη(s)ds

−

∫

R
Dhn+1

f (n)(sx)(h1, . . . , hn)s
n+1η(s)ds

∣

∣

∣

∣

≤

∫

R

∫ 1

0

∣

∣Dhn+1
f (n)(sx+ θτshn+1)(h1, . . . , hn)

−Dhn+1
f (n)(sx)(h1, . . . , hn)

∣

∣dθsn+1η(s)ds

<

∫

R
(ε/2n+1)sn+1η(s)ds ≤ ε.

This proves (i). (ii) follows directly from (i) and because we already know
that the mapping (h1, . . . , hn, hn+1) 7→ Dhn+1

f (n)(x)(h1, . . . , hn) is bounded,
(n+1)-linear, and symmetric for all x ∈ X \ 12BX . (iii) can be shown similarly
as in STEP 9, using this step and (4.14).

STEP 13. Consider the set

U = {x ∈ X : g(x) ≤ 7}
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From the properties of g it directly follows that U is convex, closed, and
bounded. Since g(0) ≤ 1/2 (see (4.12)), the interior of U contains 0. Let p
denote Minkowski functional of U. It is easy to check that p satisfies all the
properties of an equivalent norm on X but the symmetry. Thus, we can find
a, b > 0 such that

a‖x‖ ≤ p(x) ≤ b‖x‖, x ∈ X. (4.15)

STEP 14. The functional p is C(n)-smooth on X \ {0} and

p′(x) =

[

g′
(

x

p(x)

)(

x

p(x)

)]−1

g′
(

x

p(x)

)

, x ∈ X \ {0}, (4.16)

Fix any x ∈ X such that g(x) = 7. First, let us verify that g′(x)(x) 6= 0.
Define the function σ : R → R by σ(τ) = g(τx), τ ∈ R. It is easy to see that
σ is a convex function, and σ′(1) = g′(x)(x). Since σ(0) = g(0) < σ(1), from
the convexity of σ it follows that 0 6= σ′(1) = g′(x)(x). Now, from the implicit
function theorem we can derive (4.16). This formula together with STEP 11
and [1, Theorem 4.7.1. or Corollary 5.4.5.], guarantees that p is C(n)-smooth
on X \ {0}.

STEP 15. If ‖ · ‖ ∈ LIP (n)(SX), then p ∈ UG(n+1)(Ω) ∩LIP(n)(Ω) whenever
n ∈ {0} ∪ N, Ω = {x : α < p(x) < β}, 0 < α < β.

The case n = 0 was proved in [4]. Let n ≥ 1. Assume that our claim
is true for n − 1, and assume that ‖ · ‖ ∈ LIP (n)(SX). Define the auxillary
mappings

α(t) =
1

t
, 0 6= t ∈ R; β(t, x) = t · x, t ∈ R, x ∈ X;

γ(x) = ((α ◦ p)(x), x), 0 6= x ∈ X; δ(t, ξ) = t · ξ, t ∈ R, ξ ∈ x∗;

r(x) =
x

p(x)
, 0 6= x ∈ X; ψ(x) = g′(x)(x), x ∈ X.

Integration by parts gives

ψ(x) = g′(x)(x) = −

∫

R
f(sx)[sη′(s)]′ds, x ∈ X.

Thus ψ ∈ LIP(n)(Ω) for any annulus Ω around 0 such that Ω ⊂ X \ 12BX .
Further it is easy to see that r(X \ {0}) ⊂ 8BX \ 3BX and that ψ ≥ 13

2 on the
annulus 8BX \ 3BX .
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Since ‖·‖ ∈ LIP(n−1)(SX), then by our induction assumption we have that
p ∈ UG(n)(Ω)∩LIP(n−1)(Ω) whenever Ω = {x : α < p(x) < β} and 0 < α < β.
As α ∈ LIP(∞)(Ω) on any closed bounded set Ω ⊂ (0,+∞), by Lemma 3.6
we have α ◦ p ∈ UG(n)(Ω) ∩ LIP(n−1)(Ω) whenever Ω = {x : α < p(x) <
β} and 0 < α < β. Thus γ ∈ UG(n)(Ω)∩LIP(n−1)(Ω) whenever Ω = {x : α <
p(x) < β} and 0 < α < β. Now, as r = β ◦ γ and β ∈ LIP (∞)(Ω′) whenever
Ω′ ⊂ R×X is bounded, by Lemma 3.6 we have r ∈ UG(n)(Ω) ∩ LIP(n−1)(Ω)
whenever Ω = {x : α < p(x) < β} and 0 < α < β. Again, by Lemma 3.10,
α◦ψ◦r ∈ UG(n)(Ω)∩LIP(n−1)(Ω) whenever Ω = {x : α < p(x) < β} and 0 <
α < β. Finally, we define ω(x) =

(

(α◦ψ ◦ r)(x), (g′ ◦ r)(x)
)

, 0 6= x ∈ X. Then
we can write p′ = δ ◦ ω.

Now, it remains to show that g′ ◦ r ∈ UG(n)(Ω) ∩ LIP(n−1)(Ω), whenever
Ω = {x : α < p(x) < β} and 0 < α < β. Once having this shown, then
Lemma 3.6 guarantees that p′ ∈ UG(n)(Ω) ∩ LIP(n−1)(Ω) whenever Ω = {x :
α < p(x) < β} and 0 < α < β as δ ∈ LIP (∞)(Ω′) for every bounded set
Ω′ ⊂ R×X∗. Thus, by (2.1), p ∈ UG(n+1)(Ω) ∩ LIP(n)(Ω).

To prove this, let us define

Jk(x) := g(k)
(

x

p(x)

)

, 0 6= x ∈ X, k = 1, 2, . . . , n.

We will now proceed by an induction in descending order. First put k = n
and let us show that Jn ∈ UG

(1)(Ω) ∩ LIP(0)(Ω) whenever Ω = {x : α <
p(x) < β} and 0 < α < β. Obviously Jn = g(n) ◦ r ∈ G(1)(Ω) whenever
Ω = {x : α < p(x) < β} and 0 < α < β. Let us show that for any fixed h ∈ X
x 7→ J ′

n(x)(h) is uniformly continuous on Ω whenever Ω = {x : α < p(x) <
β} and 0 < α < β. Using Lemma 3.4, we calculate

Jn = g(n+1)(r(x))(r′(x)(h))

= g(n+1)
(

x

p(x)

)(

p(x)h− (p′(x)(h))x

p2(x)

)

=
1

p(x)
g(n+1)

(

x

p(x)

)

(h)−
p′(x)(h)

p(x)
g(n+1)

(

x

p(x)

)(

x

p(x)

)

.

Since g(n) ∈ UG(1)(Ω′) ∩ LIP(0)(Ω′) whenever Ω′ is any annulus around 0
such that Ω′ ⊂ X \ 1

2BX , by Lemma 3.6 for each fixed h ∈ X we have

‖g(n+1)(x)(h) − g(n+1)(z)(h)‖ → 0 as x, z ∈ 8BX \ 3BX and ‖x − z‖ → 0. If
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x, z ∈ Ω, then we have

‖r(x)− r(z)‖ =

∥

∥

∥

∥

x

p(x)
−

z

p(z)

∥

∥

∥

∥

≤
‖x− z‖

p(x)
+

∥

∥

∥

∥

z

p(z)

∥

∥

∥

∥

·
|p(z)− p(x)|

p(x)

≤
1

α
‖x− z‖+

b

aα
‖x− z‖.

Using this and the fact that sup{‖g(n+1)(x)‖ : x ∈ 8BX \ 3BX} < +∞,
resulting from the Lipschitzness of g(n), we get

∥

∥

∥

∥

1

p(x)
g(n+1)

(

x

p(x)

)

(h)−
1

p(z)
g(n+1)

(

z

p(z)

)

(h)

∥

∥

∥

∥

→ 0

whenever Ω = {x : α < p(x) < β} and 0 < α < β, x, z ∈ Ω, ‖x− z‖ → 0.

By STEP 12, using the integration by parts we get for x ∈ X \ 1
2BX ,

h1, . . . , hn ∈ BX

g(n+1)(x)(x)(h1, . . . , hn) =

∫

R
f (n+1)(sx)(x)(h1, . . . , hn)s

n+1η(s)ds

= −

∫

R
f (n)(sx)(h1, . . . , hn)[s

nη(s)]′ds.

Let C > 0 be the Lipschitz constant of f (n) with respect to 16BX \3BX . Then

‖g(n+1)(x)(x)−g(n+1)(z)(z)‖ ≤ 2C‖x−z‖

∫

R
|snη(s)]′|ds, x, z ∈ 8BX \3BX .

Using this, and the fact that g(n) ∈ LIP(0)(8BX \ 3BX), we get

∥

∥

∥

∥

−p′(x)(h)

p(x)
g(n+1)

(

x

p(x)

)(

x

p(x)

)

−
−p′(z)(h)

p(z)
g(n+1)

(

z

p(z)

)(

z

p(z)

)
∥

∥

∥

∥

→ 0

whenever x, z ∈ Ω, ‖x − z‖ → 0, Ω = {x : α < p(x) < β} and 0 < α < β.
Consequently for every fixed h ∈ X ‖J ′

n(x)(h) − J
′
n(z)(h)‖ → 0 whenever

x, z ∈ Ω, ‖x−z‖ → 0, Ω = {x : α < p(x) < β} and 0 < α < β. By Lemma 3.2,
Jn ∈ UG

(1)(Ω)∩LIP(0)(Ω) whenever Ω = {x : α < p(x) < β} and 0 < α < β.
Now, assume that for some k ∈ {n, n−1, . . . , 3, 2} we have already showed that
Jk ∈ UG

(n−k+1) ∩ LIP(n−k)(Ω) whenever Ω = {x : α < p(x) < β} and 0 <
α < β. We will show that Jk−1 ∈ UG

(n−k+2)(Ω) ∩ LIP(n−k+1)(Ω), whenever
Ω = {x : α < p(x) < β} and 0 < α < β. Since Jk−1 = g(k−1) ◦ r, then by
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Lemma 3.4 Jk−1 ∈ G
(1)(Ω) whenever Ω = {x : α < p(x) < β} and 0 < α < β.

Moreover

J ′
k−1(x) = [g(k)(r(x))] ◦ [r′(x)] = [Jk(x)] ◦ [r

′(x)], x ∈ Ω.

Here r′ ∈ UG(n−1)(Ω) ∩ LIP(n−2)(Ω) ⊂ UG(n−k+1)(Ω)∩ = LIP(n−k)(Ω)
whenever Ω = {x : α < p(x) < β} and 0 < α < β. Clearly also x 7→
(Jk(x), r

′(x)) is in UG(n−k+1)(Ω) ∩ LIP(n−k)(Ω) whenever Ω = {x : α <
p(x) < β} and 0 < α < β. Then, using the properties of the composition
mapping “o” (used in the proof of Lemma 3.5), we can conclude by Lemma 3.6
that J ′

k−1 ∈ UG
(n−k+1)(Ω)∩LIP(n−k)(Ω) and consequently, by (2.1), Jk−1 ∈

UG(n−k+2)(Ω) ∩ LIP(n−k+1)(Ω) whenever Ω = {x : α < p(x) < β} and 0 <
α < β. Thus, we proved that g′◦r (= J1) ∈ UG

(n)(Ω)∩LIP(n−1)(Ω) whenever
Ω = {x : α < p(x) < β} and 0 < α < β. Finally putting |‖x‖| := p(x)+p(−x),
x ∈ X we get an equivalent norm satisfying the conclusion of our Theorem.

An inspection of the first nine steps of the proof of Theorem 4.1 yields the
following

Theorem 4.2. Let X be a separable Banach space such that for some
nonnegative integer n there exists an n times differentiable bump on X, with
its n-th derivative Lipschitzian. Then X admits an n + 1 times uniformly
Gâteaux differentiable bump whose derivatives of degree less than n + 1 are
Lipschitzian.

From our Theorem 4.1 we can also derive the following two propositions.

Proposition 4.3. Let X be a separable Banach space which admits a
bounded UG(2)-smooth bump. Then X admits an equivalent norm, UG(2)-
smooth on any annulus around 0 and whose first derivative is Lipschitzian on
the unit sphere.

Proof. Let b denote a bounded UG(2)-smooth bump on X. By [6] we
know that b is Fréchet smooth with Lipschitzian derivative on X. Then, by
[2, Theorem V.3.2], X admits a norm whose first derivative is Lipschitzian on
the unit sphere. Finally, our Theorem 4.1 gives an equivalent UG(2)-smooth
norm with first derivative Lipschitzian on the unit sphere.

Problem. LetX be a nonseparable Banach space which admits a bounded
UG(2)-smooth bump. Does then X admit an equivalent UG(2)-smooth norm?
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Proposition 4.4. Let X be a separable Banach spacecontaining no iso-
morphic copy of c0, and assume that X admits a C(2)-smooth bump. Then X
admits an equivalent norm which is UG(2) smooth on each annulus around 0
and whose first derivative is Lipschitzian on the unit sphere.

Proof. First note that if X admits a C(2)-smooth bump, then its first de-
rivative must be locally Lipschitzian on X. By [2, Theorem V.3.1], X then
admits a smooth bump whose first derivative is Lipschitzian on X. Then, by
[2, Theorem V.3.2], X admits a norm whose first derivative is Lipschitzian on
the unit sphere SX . Consequently, Theorem 4.1 completes the proof.

Let us mention that it is unknown whether a separable Banach spaceadmits
a C(2)-smooth norm if it admits a C(2)-smooth bump.
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