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1. Introduction

We are interested on strong solvability of the Cauchy-Neumann problem
for a class of nonlinear parabolic operators

(∗) a(x, t, u, ux, uxx)− ut = f(x, t, u, ux)

in rectangle Q = {(x, t) ∈ (0, X) × (0, T )}. The data a(x, t, z, p, ξ) and
f(x, t, z, p) are supposed to be Carathéodory’s functions, i.e, they are mea-
surable in (x, t) ∈ R× R+ and continuous with respect to the other variables
(z, p, ξ) ∈ R×R×R. The operator satisfies the condition of Campanato (see
[2]) which ensures its “nearness” to the heat equation uxx−ut both considered
as mappings in the Sobolev space W 2,1

2 (Q). Concerning the right-hand side
f(x, t, z, p) we suppose the optimal (quadratic) growth with respect to p.

Strong solvability results for initial-boundary value problems for linear
and quasilinear operators have been obtained in [6], [8], [12] supposing sub-
quadratic growth of f with respect to p. In [13], [14] and [9] there are consid-
ered other kinds of boundary problems for elliptic and parabolic Campanato’s
operators supposing the optimal growth of the right-hand side with respect
to the gradient.

It is worth noting that the Campanato’s condition is a nonlinear variant
of the famous linear Cordes condition (see [4], [5]) which ensures isomorphic
properties of a linear elliptic operator with solely bounded and measurable
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coefficients. In fact, the both conditions coincide if a(x, t, z, p, ξ) would be
linear with respect to (z, p, ξ). We refer the reader to the recent monograph
[9] where detailed study on elliptic and parabolic operators with various kinds
of discontinuous coefficients is presented.

General second order parabolic equations, like the ones discussed here,
describe in physical applications the time-evolution of the density of some
quantity u (say chemical concentration, temperature, electrostatic potential).
The principal part a(x, t, u, ux, uxx) describes analytically a relation between
nonlinear characteristic of the medium at the point x and the moment t,
the diffusion of the quantity uxx, its linear transport ux, and creation or
depletion of the quantity u.

The existence of a W 2,1
2 (Q) solution to the Cauchy-Neumann problem for

the operator (∗) is established by the Leray-Schauder fixed point theorem. It
is reduced to deriving of a priori estimates for the L∞-norm of the solution and
for the L4-norm of its spatial derivative. The first one is reached by applying
the maximum principle due to Nazarov [10]. The second one is obtained
making use of a technique developed by Tomi [15] and Von Wahl [16] (see also
[1]).

In our considerations we essentially exploit the near mappings theory (see
[2]) which restricts us to the Sobolev space W 2,1

2 (Q). On the other hand, the
maximum principle has to do with solutions belonging to W 2,1

n+1(Q) where n is
the dimension of the spatial variable x. That is why we are forced to consider
our problem for one dimensional spatial variable.

The unicity of the solution follows by the maximum principle imposing
additional structure conditions on the data.

2. Statement of the problem

We are interested of the next Cauchy-Neumann problem

(1)





a(x, t, u, ux, uxx)− ut = f(x, t, u, ux) a.e. in Q,

u(x, 0) = ϕ(x) x ∈ (0, X),
ux(0, t) + αu(0, t) = ψ1(t)
ux(X, t) + αu(X, t) = ψ2(t) t ∈ (0, T ).

defined in the rectangle Q = {(x, t) ∈ (0, X)×(0, T )}. Under a strong solution
of (1) we mean a function u lying in the Sobolev space

W 2,1
2 (Q) =

{
u ∈ L2(0, T ;H2(0, X)) :

∂u

∂t
∈ L2(Q)

}
,
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satisfying the equation above almost everywhere in Q and the conditions on
the boundary hold in the trace sense. The space W 2,1

2 (Q) is equipped with
the norm

‖u‖
W 2,1

2 (Q)
=

(∫

Q
(|u|2 + |uxx|2 + |ut|2) dxdt

)1/2

.

The Banach space Hk(0, X) with a positive integer k consists of all L2-
functions having weak derivatives up to order k, that are 2th-power summable
on (0, X). Because of the trace theorems, the lateral boundary data should
belong to the corresponding Besov spaces H l(0, T ) (0 < l < 1). Let us recall
that H l(0, T ) consists of all L2-functions for which the following norm is finite

‖g‖Hl(0,T ) = ‖g‖L2(0,T ) +
(∫ T

0
dt

∫ T

0

|g(t)− g(τ)|2
|t− τ |1+2l

dτ

)1/2

.

The data a and f are supposed to be Carathéodory’s functions and together
with ϕ(x), ψ1(t) and ψ2(t) satisfy the following conditions:

(A) Campanato’s condition: there exist positive constants γ and K, K < 1,
such that

{ ∣∣∣τ − γ[a(x, t, z, p, ξ + τ)− a(x, t, z, p, ξ)]
∣∣∣ ≤ K|τ |,

a(x, t, z, p, 0) = 0

for a.a. (x, t) ∈ Q and all z, p, ξ, τ ∈ R.

(B1) Monotonicity of f with respect to z:

{
sign z · f(x, t, z, p) ≥ −µ1(x, t)p− µ2(x, t)z − µ3(x, t)

µ1, µ2 ∈ L∞(Q), µ3 ∈ L4(Q), µ1, µ2, µ3 ≥ 0

for all z ∈ R such that |z| ≥ M0 for some positive constant M0.

(B2) Quadratic gradient growth:

{ |f(x, t, z, p)| ≤ f1(|z|)[f2(x, t) + |p|2]
f1, f2 ≥ 0, f1 ∈ C0(R+), f2 ∈ L2(Q),

and f1 is monotone nondecreasing function.
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(C) Regularity of the initial and boundary data and compatibility condition:

ϕ(x) ∈ H1(0, X); ψ1(t), ψ2(t) ∈ H1/4(0, T ),

ϕx(0) + αϕ(0) = ψ1(0), ϕx(X) + αϕ(X) = ψ2(0).

Theorem. (Existence theorem) Under the assumptions (A), (B1), (B2)
and (C) the problem (1) has a solution u ∈ W 2,1

2 (Q).

It is worth noting that (B1) and (B2) do not ensure uniqueness of this
solution. However, as shows the next theorem, some additional requirements
on the structure of the functions a and f imply unique strong solvability of
(1).

Theorem. (Uniqueness theorem) Suppose (A) and (C). Let the function
a be independent of z and p. Assume further that for almost all (x, t) ∈ Q
and for each p, p′ ∈ R, f(x, t, z, p) is nondecreasing in z and

|f(x, t, z, p)− f(x, t, z, p′)| ≤ f3(x, t, z)|p− p′|
where sup|z|≤M f3(·, z) = f4(x, t) ∈ L∞(Q).

Then, if u, v ∈ W 2,1
2 (Q) solve the problem (1) they coincide in Q.

Remark 1. It is easy to see that the principal part a(x, t, z, p, ξ) is a
Lipschitz continuous function with respect to ξ. By virtue of the Rademacher
theorem, it follows the existence almost everywhere of the derivative aξ and its
boundedness. This implies the standard ellipticity condition 1−K

γ ≤ aξ ≤ 1+K
γ

(see [12]). However we use the condition (A), in order to apply the Campanato
theory on near operators (cf. [2], [3], [9]).

Remark 2. By virtue of the Sobolev imbedding theorem [7, Chapter II]
the solution of (1) is a Hölder function with an exponent 1/2.

3. A priori estimates

We start with a useful construction that reduces the problem (1) to one
with zero data on the boundary. It is well known from the linear theory (cf.
[7]), that the Cauchy–Neumann problem

(2)





yxx − yt = 0 a.e. in Q,
y(x, 0) = ϕ(x) x ∈ (0, X),
yx(0, t) + αy(0, t) = ψ1(t)
yx(X, t) + αy(X, t) = ψ2(t) t ∈ (0, T )
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with initial and boundary data satisfying condition (C) is uniquely solvable in
the space W 2,1

2 (Q). Taking h = u−y we have the following nonlinear problem
for the new function h

(3)





ã(x, t, h, hx, hxx)− ht = f̃(x, t, h, hx) a.e. in Q
h(x, 0) = 0 x ∈ (0, X),
hx(0, t) + αh(0, t) = 0
hx(X, t) + αh(X, t) = 0 t ∈ (0, T ).

where ã(x, t, h, hx, hxx) = a(x, t, h+y, hx+yx, hxx+yxx)−yxx and f̃(x, t, h, hx)
= f(x, t, h+y, hx +yx). It is easy to see that also the functions ã and f̃ satisfy
the conditions (A), (B1), and (B2).

Moreover, introducing a new function v = ueαx we reduce the problem (1)
to the next one





â(x, t, v, vx, vxx)− vt = f̂(x, t, v, vx) a.e. in Q,

v(x, 0) = 0 x ∈ (0, X),
vx(0, t) = vx(X, t) = 0 t ∈ (0, T ),

where â = eαxã(x, t, ve−αx, vxe−αx−αve−αx, vxxe−αx− 2αvxe−αx + vα2e−αx)
and f̂ = eαxf̃(x, t, ve−αx, vxe−αx − αve−αx). Simple calculations show that
the new functions satisfy the conditions (A), (B1) and (B2), respectively.

Thus, without loss of generality, we may concentrate our attention to the
problem

(4)





a(x, t, u, ux, uxx)− ut = f(x, t, u, ux) a.e. in Q,

u(x, 0) = 0 x ∈ (0, X),
ux(0, t) = ux(X, t) = 0 t ∈ (0, T ),

instead of (1). The solution that we are looking for will belong to the space

◦
W 2,1

2 (Q) =
{

u ∈ L2(0, T ; H2(0, X)) :
∂u

∂t
∈ L2(Q);u|t=0 = 0, ux|x=0, X = 0

}

equipped with the norm (cf. [3])

‖u‖(β) = ‖u‖ ◦
W 2,1

2 (Q)
=

(∫

Q
(|uxx|2 + β2|ut|2)dxdt

)1/2

with β > 0.

To obtain existence of a strong solution to the problem (4) we are going
to apply the Leray–Schauder fixed point theorem. For this goal we need of
suitable a priori estimates.



428 l.g. softova

Lemma 1. If the problem (4) has a strong solution then it is bounded and
satisfies

(5) ‖u‖∞,Q ≤ X2 exp{2MT}
√

γ/(1−K)‖µ3‖4,Q.

Proof. According to Remark 1 we can transform the equation in (4) in a
linear one with bounded coefficients

A(x, t)uxx − ut = f(x, t, u, ux) with A(x, t) =
∫ 1

0
aξ(x, t, u, ux, suxx)ds.

The assertion follows from the maximum principle due to Nazarov [10].

To derive L4 estimate for the derivative ux, we rewrite the equation in (4)
in the equivalent form

a(x, t, u, ux, uxx) + b(x, t)u2
x − f2(x, t)u− ut = F (x, t)

where

b(x, t) = − f(x, t, u, ux)
f2(x, t) + u2

x

∈ L∞(Q) (see (B2)),(6)

F (x, t) =
f(x, t, u, ux)f2(x, t)

f2(x, t) + u2
x

− f2(x, t)u ∈ L2(Q).(7)

Let δ ∈ [0, 1] be a parameter and u be a fixed solution of (4). The problem

(8)

{
a(x, t, u, ux, vxx) + b(x, t)v2

x − f2(x, t)v − vt = δF (x, t) a.e. in Q,

v ∈
◦

W 2,1
2 (Q)

has a trivial solution v ≡ 0 for δ = 0 and coincides with (4) for δ = 1. A
natural question that arise is the uniqueness of that solution.

Lemma 2. Let v1 and v2 be two solutions of (8) corresponding to the
values δ1 < δ2 of the parameter. Then

‖v1 − v2‖∞,Q ≤ (δ2 − δ1)[f1(‖u‖∞,Q) + ‖u‖∞,Q].

The proof is based on the maximum principle [10] and is analogous to that of
[14, Proposition 3]. The uniqueness of the solution of (8) follows immediately
from Lemma 2 taking δ1 = δ2.
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Lemma 3. If the problem (8) is solvable in
◦

W 2,1
2 (Q), then its solution has

a derivative in L4 and

(9) ‖vx‖2
4,Q ≤ C(α,K, ‖f1‖∞,Q, ‖f2‖2,Q, ‖u‖∞,Q).

Proof. We consider solutions v′ and v′′ corresponding to values δ′ < δ′′ of
the parameter. Hence the difference w = v′ − v′′ is a solution of the problem

{
a(x, t, u, ux, (w + v′′)xx)− a(x, t, u, ux, v′′xx)− wt = G(x, t) a.e. in Q,

w ∈
◦

W 2,1
2 (Q)

where

G(x, t) = F (x, t)(δ′ − δ′′)− b(x, t)
(
(wx + v′′x)2 − v′′x

2) + f2(x, t)w.

Having in mind condition (A) and Young’s inequality, we obtain

|wxx − γwt|2 ≤ K2(1 + ε)|wxx|2 +
(

γ2 +
γ2

ε

)
|G(x, t)|2

where w = v′ − v′′. On the other hand, Lemma 2.3 in [3] yields

‖w‖2
(γ) ≤

∫

Q

K2(1 + ε)|wxx|2dxdt +
∫

Q

(
γ2 +

γ2

ε

)
|G(x, t)|2dxdt.

Choosing ε so small that K2(1 + ε) < 1 and making use of Lemma 2, we get

‖w‖(β) ≤ C‖G(x, t)‖2,Q ≤ C
[
1 + ‖v′x‖2

L4(Q) + ‖v′′x‖2
L4(Q)

]

≤ C
[
1 + ‖v′x‖2

4,Q + ‖wx‖2
4,Q

]
,

where β2 = γ2/
(
1−K2(1 + ε)

)
. From the Gagliardo-Nirenberg interpolation

inequality (cf. [7], [11]) follows

‖wxx‖2,Q ≤ ‖w‖(β) ≤ C
{

1 + ‖v′x‖2
4,Q + M‖wxx‖2,Q

}

with M = N(δ′′−δ′)
[
f1(‖u‖∞,Q)+‖u‖∞,Q

]
and N is a constant which depends

only on Q.
If δ′′−δ′ = τ is so small that CNτ [f1(‖u‖∞,Q)+‖u‖∞,Q] < 1 we can write

‖wxx‖2,Q ≤ C(1 + ‖v′x‖2
4,Q).



430 l.g. softova

Hence

(10) ‖v′′x‖2
4,Q ≤ C ′ + C ′′‖v′x‖2

4,Q.

In the case of δ′ = 0 and δ′′ = τ we have v′ = 0 and v′′ = vτ and it follows
immediately an estimate for the L4 norm of the derivative of vτ . To complete
the proof of Lemma 3 we separate the interval [0, 1] of m subintervals each of
length less than or equal to τ and repeat the above procedure m times.

Lemma 4. Let the conditions (A), (B1) and (B2) be fulfilled. Then for
any τ small enough, the problem (8) with δ = τ has a strong solution vτ ∈
◦

W 2,1
2 (Q).

Proof. In order to prove our assertion we are going to exploit the Leray-
Schauder fixed point theorem. Define the space

S =
{
y : y ∈ L∞(Q), yx ∈ L4(Q), ‖y‖S = ‖y‖∞,Q + ‖yx‖4,Q

}
,

and consider the operator M : [0, 1]×S −→
◦

W 2,1
2 (Q) defined by the problem

(11)





a(x, t, u, ux, zxx)− zt =

σ
[
τF (x, t)− b(x, t)|yx|2 + f2(x, t)y

]
a.e. in Q,

z ∈
◦

W 2,1
2 (Q).

From conditions (B2), (6) and the definition of S follows that the right-hand
side is L2 function. On the other hand the condition (A) and [2, Theorem 9]
mean “nearness” between the operators a(x, t, u, ux, zxx) − zt and zxx − γzt

which gives that the problem (11) has a solution if and only if the next problem
is solvable

(12)





zxx − γzt = σ
[
τF (x, t)− b(x, t)|yx|2 + f2(x, t)y

]
a.e. in Q,

z ∈
◦

W 2,1
2 .

The linear theory (see [7]) asserts strong solvability of (12) and hence also of
(11). In such a way, the operator M is well defined. Further on, having in

mind the imbedding theorem ([7]), we get
◦

W 2,1
2 (Q) ⊂ S compactly and thus

we can consider M to act from [0, 1]× S into S.
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The condition a(x, t, u, ux, 0) = 0, required in (A), shows that M(0, y) = 0
for each y ∈ S.

The continuity of the operator M with respect to y follows by standard
arguments (see [8], [12]).

Finally, the a priori estimate (10) provides a uniform with respect to σ and
y bound for each solution to the equation M(σ, y) = y. Therefore, the Leray-
Schauder theorem implies existence of a fixed point of the mapping M(1, ·)
which, in view of the definition of M, becomes a solution of the problem (8)
with δ = τ.

4. Proof of the Existence theorem

Proof. We are going to use ones again the Leray-Schauder theorem. For
this goal we take u ∈ S and σ ∈ [0, 1] and consider

(13)

{
a(x, t, u, ux, yxx)− yt = σf(x, t, u, ux) a.e. in Q,

y ∈
◦

W 2,1
1 (Q).

Since the operator above is “near” to the heat operator and f ∈ L2(Q) in

view of (B2) the problem (13) admits a unique solution y ∈
◦

W 2,1
2 (Q). Define

now the operator

N (σ, u) : [0, 1]× S →
◦

W 2,1
2 (Q) ↪→ S.

As before N is a continuous and compact one and from (5) and (9) follows
‖u‖S ≤ C for each solution u of the problem N (σ, u) = u with C independent
of u and σ. Thus the Leray-Schauder theorem asserts existence of a fixed
point of the mapping N (1, ·) which is the desired solution of (4).

5. Proof of the Uniqueness theorem

Proof. Let u and v be two solutions of (4). Introduce the function w =

u− v ∈
◦

W 2,1
2 (Q). Since f(x, t, z, p) is nondecreasing in z, we have

−f(x, t, u, vx) + f(x, t, v, vx) ≤ 0 a.e. in Q+,

where Q+ = {x ∈ Q : w(x, t) = u(x, t)− v(x, t) > 0}.
On the other hand

a(x, t, uxx)− a(x, t, vxx) = wxx

∫ 1

0
aξ(x, t, swxx + vxx)ds = A(x, t)wxx.
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Moreover, we can linearize in the same manner the function f , i.e.

f(x, t, u, vx)− f(x, t, u, ux) = −wx

∫ 1

0
fp(x, t, u, swx + vx)ds = wxF (x, t).

Note that f is Lipshitz continuous with respect to p and hence the derivative
fp exists almost everywhere and is bounded. Then

{
A(x, t)wxx + F (x, t)wx − wt ≥ 0 a.e. in Q+,

w ∈
◦

W 2,1
2 (Q),

with A,F ∈ L∞(Q). The Nazarov maximum principle (cf. [10]) implies that
supQ+

w ≤ 0 whence w ≤ 0 almost everywhere in Q. Analogously infQ− w ≥
0, whence w ≥ 0 almost everywhere in Q and this completes the proof of
Theorem 2.
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