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1. INTRODUCTION

Recently, from the branching model introduced in [1], new bisexual Galton-
Watson branching processes allowing immigration have been developed in [2]
and some probabilistical analysis about them has been obtained. In particular,
for the bisexual Galton-Watson process allowing the immigration of females
and males, it has been proved (see [3]) that, under certain conditions, the
sequence representing the number of mating units per generation converges in
distribution to a positive, finite and non-degenerate random variable. The aim
of this paper is to provide, through a different methodology, an alternative
proof of this limit result. In this new, and more technical proof, we make
use of the underlying probability generating functions. In Section 2, a brief
description of the probability model is considered and some basic definitions
and results are given. Section 3 is devoted to prove the asymptotic result
previously indicated.

2. THE PROBABILITY MODEL

The bisexual Galton-Watson process with immigration of females and
males (BGWPI) denoted by {(Fy, M), n = 1,2,...} is defined, see [2], in
the form:
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A

n

ZS =N, (F;+17M;+1) - Z:l(fmymm> + (Fé-s-lvMéH) s
i=
(1)
ZZ+1:L<F;+17M;+1)7 n=0,1,...

where N is a positive integer and the empty sum is considered to be (0,0).
{(fni,mni)} and {(F!, M)} are independent sequences of i.i.d. non-negative
integer-valued random variables with mean vectors p = (u1,p2) and pu! =
(ud, pd), respectively. Intuitively f.; (my;) represents the number of females
(males) produced by the ith mating unit in the nth generation and F! (M][)
may be viewed as the number of immigrating females (males) in the nth
generation. The mating function L : RT x RT™ — RT is non-decreasing in
each argument, integer-valued for integer-valued arguments and such that
L(z,y) < xy. Consequently, from an intuitive outlook, F}; (M) will be the
number of females (males) in the nth generation, which form Z} = L(F), M)
mating units. These mating units reproduce independently through the same
offspring distribution for each generation.

It can be shown that {Z*} and {(F), M)} are Markov chains with sta-
tionary transition probabilities. We denote by pr; = P[(fo1,mo01) = (k,1)],
k,1=0,1,... and assume that p and pu! are finite.

DEeFINITION 2.1. A BGWPI is said to be superadditive if the mating func-
tion L is superadditive, i.e. satisfies, for every positive integer n, that

n n
L <Z(x27yl)> ZZL(xlvy’L), Ti,y Yi €R+a Z:]-avn
=1 i=1

DEFINITION 2.2. For a BGWPI and each positive integer k, we define the
average reproduction rate per mating unit, denoted by 7}, as:

ri=k"'B[Z} | ZE =k, k=12,....

For a superadditive BGWPI with finite mean vector y and mating function
verifying that L(z,y) < z + y it is derived (see [3]) that klirn r; = r being r
—00

the named asymptotic growth rate (or growth rate).

DEFINITION 2.3. A superadditive BGWPI is said to be subcritical, critical
or supercritical if r is <, = or > 1, respectively.
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3. A LIMIT RESULT FOR THE SEQUENCE {Z}

In this section we consider a subcritical and superadditive BGWPI defined
by (1) and, considering as a tool the underlying probability generating func-
tions, we provide an alternative proof to theorem 3.2 in [3]. Previously it will
be necessary to introduce the following lemma:

LEMMA 3.1. Let ¢ a positive, non decreasing and continuous function on
[0,1] such that (1) =1 and ¥'(17) € (0,00). Then for § € (0,1) it is verified
that

> (=91 -6%)) < oo.

k=1

Proof. Consider h(z) = 1—(1—-§%), z € R*. Tt is clear that h is a positive,

non increasing and continuous function. Moreover, it follows that lim h(z) =
r—00

0. Then, from the integral criteria for convergence of series, it will be sufficient
to prove that [ h(z)dz < co. Making use of the transformation s = 1 — §*
we get that [ h(z)dz is proportional to fol(l — 8)7H(1 — 9(s))ds which is
convergent taking into account that ¢'(17) < oo and (1 — s)~(1 — ¥(s)) is
bounded on [0,1]. 1

THEOREM 3.1. If E[L(fo1,m01)] > 0, E[L(Ff, M{)] > 0, poo > 0 and
there exists a > 0 and No > 1 such that for k > Ng, r; < r+ k1o then
{Z}} converges in distribution to a positive and finite random variable Z* as
n — 00.

Proof. Under the considered assumptions, it can be proved in [2] that
{Z*} is an irreducible Markov chain. If kg = inf{k : P[L(F{, M{) = k] > 0}
then, using that L is non decreasing in each argument, it is derived that
P[Z} > ko] =1, n = 1,2,..., and therefore if k* is an essential state it is
obtained that k&* > k.

Thus, if f; and hj, denote the probability generating functions associated
with Z* and with the kth row of the transition matrix of {Z}}, respectively,
ie. fi(s) = E[s%] and hi(s) = E[s%+1 | Z5 = k], s € [0,1], then it is
followed that:

fils)=>_ §'PlZy =4 and hi(s)= Y §P[Zi . =j|Z; =k
Jj=ko Jj=ko
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From Jensen’s inequality we obtain:
(hi()* = r(s), s €10,1], (2)

where

op(s) = B | L Unimni) H(F oMo 0) |

Since, for some & € (s,1):

or(s) =1 —15(1 — ) + “0%2(5)(1 _5)?

we have for k > Ny, that

or(s) 2 ate) (1- G0 ®)
being a(s) =1 —7r(1 —s). Now
(1—s)a _
ogmg(l—r) Yo, s€0,1].

Therefore for k > N; > max{ Ny, (1 —7)"la}, taking into account (2) and
(3), it is deduced that:

— S)x k
i) < (e (1- o 9%) < @) i), se

N
where A(s) = (1 - g\lfl_as()sc)t) g

It is clear that A is a positive, non decreasing and continuous function
on RT verifying that A(1) = 1 and A’(1) = a. Let u(s) be an arbitrary
probability generating function such that u/(1) < « (for example the proba-
bility generating function of a Poisson distribution with mean A < «) and for
s € [0,1] we define the function:

~ (a(s))*u(s) iftk=1,..., Ny,
B (s) k>N +1.
If ¢ (s) = min{u(s), A(s)}, it follows that

hie(s) > (a(s)F(s), sel0,1], k=1,2,...
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and from the comparison theorem for Markov chains (see [4], p.45) it will be
sufficient to prove that kg is a positive recurrent state for the Markov chain
with transition matrix rows associated to /i\zk(s) If we denote this Markov
chain by {Zn} then, without loss of generality, it may be assumed that kg = 0.
Let R R
fm(s) = E[s?+m | Z,=0], m=0,1,....

It is not difficult to verify that:
R m—1
fm(s) = [ wlai(s)), s €0.1], (4)
§=0

where a; denotes the j times composition of the function a and ap(s) = s.
Consequently, if pggf) represents the m step transition probability from 0 to 0,

taking into account (4) we deduced that

Tim pp) = lim f(0) > [T (1 =)
j=0

and therefore 0 will be a positive recurrent state if the limit above is positive
0 .
or, equivalently, if > (1 —¢(1 — 7)) < oo which holds as a consequence of
§=0

Lemma 1. From Markov chains theory we deduce that {Z}} converges in
distribution to a positive and finite random variable Z* whose probability

distribution will be the corresponding stationary distribution. [
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