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Introduction

Norms and bump functions on a Banach space X that locally depend on
finitely many elements of the dual space X∗ (sometimes called coordinates)
are useful in renorming theory (cf. e.g. [3, Ch. V], [16]) or in the area of poly-
hedral spaces (cf. e.g. [11] and references therein). Such norms share some
properties of norms on finite dimensional spaces and can be used in situa-
tions, where there are difficulties even with Hilbertian norms (cf. the results
of Toruńczyk and others on smooth partitions of unity in nonseparable Ba-
nach spaces, (cf. e.g. [3, Ch. VIII]). Norms that locally depend on countably
many coordinates are in turn closely related to countable tightness of the
weak∗ topology of dual balls and can often substitute for Gâteaux differen-
tiable norms. We show here that they can be used in questions on projectional
resolutions of the identity, Valdivia compacts and biorthogonal systems, es-
pecially in spaces of continuous functions on scattered compacts.

We will work in real Banach spaces and keep the standard notation ([21],
[3], [12], [6], [8]). In particular, BX = {x ∈ X : ‖x‖ ≤ 1} is the unit ball
of a Banach space X and SX = {x ∈ X : ‖x‖ = 1} is the unit sphere of X.
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The symbol χT denotes the characteristic function of a set T . If A ⊂ X∗,
then A⊥ = {x ∈ X : f(x) = 0 for all f ∈ A}. A norm closed subspace Y of
X∗ is a 1-norming subspace of X∗, if ‖x‖ = sup{f(x) : f ∈ BY } for every
x ∈ X. If W is a subspace of a Banach space X and x ∈ X, then x̂ denotes the
coset of x in X/W and the norm ‖x̂‖ is the canonical norm of x̂ in X/W , i.e.
‖x̂‖ = infx∈x̂ ‖x‖. If A ⊂ X∗, then the weak∗ closed linear hull of A in X∗ is
denoted by span w∗A. The ordinal ω0 (ω1) is the least infinite (uncountable)
ordinal and ℵ0 (ℵ1) is the least infinite (uncountable) cardinal. The symbol
`∞ (respectively c0) denotes the space `∞(N) (respectively c0(N)) and `1(c)
denotes the space `1(Γ), where Γ is a set of cardinality of the continuum c.
The space `n∞ is the space Rn with the usual maximum norm. The density
character or density of a Banach space X (densX) is the minimal cardinality
of a norm dense set in X. The dual space X∗ is called weak∗ sequentially
separable if there is a countable set D ⊂ X∗ such that for each f ∈ X∗

there is a sequence {fn} in D such that fn → f in the weak∗ topology. By
a subspace in a Banach space we mean a norm closed subspace and by a
norm on a Banach space X we mean an equivalent norm on X. We say that
f ∈ X∗ attains its norm if there is x ∈ SX such that f(x) = ‖f‖. The
Bishop-Phelps theorem asserts that for every Banach space X, the set of all
norm attaining functionals is norm dense in X∗ (cf. e.g. [3, p. 13]). The
Čech-Stone compactification of the positive integers is denoted by β(N). A
Corson compact is a compact space K that is homeomorphic to a set S in
some [−1, 1]Γ in its pointwise topology such that each point of S is countably
supported, i.e. {γ ∈ Γ : x(γ) 6= 0} is countable for every x ∈ S. A compact
space K is called a Valdivia compact if K is homeomorphic to a set S in some
[−1, 1]Γ in its pointwise topology such that the set of all elements of S that
are countably supported is dense in S. A topological space T has countable
tightness if whenever S ⊂ T and a ∈ S, then there is a countable set C ⊂ S
such that a ∈ C. A Banach space X is weakly Lindelöf determined (WLD) if
BX∗ in its weak∗ topology is a Corson compact (cf. e.g. [6, p. 131], [8, Ch. II]).
A bump function on a Banach space X is a real valued function on X with
bounded nonempty support.

Definition 1. Let X be a Banach space and G be a subspace of X∗.
We say that a continuous real valued function ϕ on X locally depends on
countably many (finitely many) elements of G if for every x ∈ X, there are
a neighborhood U of x in X, countably many elements {fi} ⊂ BG (finitely
many elements {f1, . . . , fn} ⊂ BG), and a continuous function ψ on `∞ (on
`n∞) such that ϕ(z) = ψ(f1(z), f2(z), . . . ) for each z ∈ U . If G = X∗, we
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say that ϕ locally depends on countably many coordinates. If we speak of
standard coordinate functionals in some spaces we say that ϕ locally depends
on countably many standard coordinates.

If G = X∗ and, moreover, for every point x ∈ X, the functionals {fi} ⊂
BX∗ above can be chosen so that X/{fi}⊥ is separable, we say that ϕ locally
factors through separable quotients or that ϕ is an LFS function.

We say that the norm ‖ · ‖ is an LFS norm on X if the function ϕ = ‖ · ‖
is an LFS function on X \ {0}.

If a function ϕ on a Banach space X locally depends on finitely many
coordinates, then ϕ locally factors through finite dimensional quotients as
X/({fi}n

i=1)⊥ has finite dimensional dual, isomorphic to span{fi}n
i=1. If ‖ · ‖

is an LFS norm on a Banach space X, then by a composition of ‖ · ‖ with a
suitable real valued function on the real line we can construct an LFS bump
function on X

We will frequently use the following proposition.

Proposition 2. The norm ‖ · ‖ of a Banach space X is an LFS norm if
and only if for every x ∈ SX , there are a neighborhood U of x in X and a
subspace W ⊂ X such that X/W is separable and ‖z‖ = ‖ẑ‖ for all z ∈ U ,
where ẑ is the coset of z in X/W . This happens if for each x ∈ SX there are
a neighborhood U of x in X and a norm 1 linear projection P : X → X, with
PX separable and containing x, and such that ‖u‖ = ‖Pu‖ for every u ∈ U .

The norm ‖·‖ of X locally depends on finitely many coordinates if and only
if given x ∈ SX , there are a neighborhood U of x and a finite codimensional
subspace W of X such that ‖z‖ = ‖ẑ‖ for every z ∈ U .

Proof. Assume that ‖ · ‖ is an LFS norm. Given x ∈ SX , let U , Cx = {fi}
and ψ be from Definition 1 for the point x. Put Sx = spanw∗Cx. Since X/Cx

⊥
is separable, BSx is weak∗ metrizable and separable (cf. e.g. [12, p. 45]). Let
z ∈ U and let f ∈ BX∗ be such that f(z) = ‖z‖. Then for h ∈ Cx

⊥ with
‖h‖ sufficiently small, f(z ± h) ≤ ‖z ± h‖ = ‖z‖ = f(z) and hence f(h) = 0.
Therefore f ∈ BSx and we can put W = Sx

⊥ = Cx
⊥. Indeed, if z ∈ U and

ẑ ∈ X/W , then ‖z‖ = f(z) ≤ supg∈BSx g(z) = ‖ẑ‖ ≤ ‖z‖.
If the condition holds, given x ∈ SX , choose a weak∗ dense sequence {fi}

in BW⊥ . Then for z ∈ U , ‖z‖ = ‖ẑ‖ = sup{fi(z)}.
In order to observe the second part of the statement, put W = P−1(0)

and note that ‖Py‖ = ‖ŷ‖ for every y ∈ X.
The third part can be proved as the first part.
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Note that if ‖ · ‖ is an LFS norm on X and Y is a subspace of X, then
the restriction of ‖ · ‖ to Y is an LFS norm on Y . Indeed, if y ∈ Y , U and W
are from Proposition 2 for y, and for z ∈ Y , the coset of z in Y/(Y ∩W ) is
denoted by ˆ̂z, then for z ∈ Y ∩ U we have ‖z‖ = ‖ẑ‖ ≤ ‖ˆ̂z‖ ≤ ‖z‖.

Proposition 3. If a real valued function ϕ on a WLD Banach space
locally depends on countably many coordinates, then ϕ is an LFS function.

Proof. If {fi} ⊂ X∗, then there is a norm one projection P of X such that
P (X) is separable and {fi} ⊂ P ∗(X∗) (cf. e.g. [6, Ch. 6, 8]). Then X/{fi}⊥
is separable as X/P−1(0) is separable, being isometric to P (X).

We will first discuss some examples.

Examples

First of all, any equivalent norm on a separable Banach space X depends
(globally) on countably many coordinates. Indeed, if {fi} is a countable dense
set in BX∗ in its weak∗ topology (cf. e.g. [12, p. 61]), then ‖x‖ = supi fi(x)
for any x ∈ X. On the other hand, if X∗ is not weak∗ separable and the
norm ‖ · ‖ of X depended globally on countably many fi ∈ X∗, then choosing
z ∈ ∩if

−1
i (0), z 6= 0, we would have ‖z‖ = 2‖z‖, a contradiction.

The situation with local dependence of the norm on countably many
coordinates is more involved. Before we start on it, we should note that if Γ
is uncountable, then the Hilbertian norm of `2(Γ) does not locally depend on
countably many coordinates. Indeed, if x ∈ S`2(Γ) and, on a neighborhood of
x, the norm of `2(Γ) depends on some countable collection Cx ⊂ `2(Γ)∗ and
0 6= y ∈ ∩f∈Cxf−1(0), then a small line segment centered at x in the direction
y would lie in S`2(Γ), a contradiction. The existence of such a nonzero y is
guaranteed by the fact that `2(Γ) is not weakly separable (cf. e.g. [12, p. 61]).

1. The space `2 is an obvious example of the space whose norm is LSF.
However, `2 does not admit any continuous bump function that would locally
depend on finitely many coordinates as any such space necessarily contains an
isomorphic copy of c0 (cf. e.g. [3, p. 198]). An example of a space that does
not admit any continuous bump function that locally depends on countably
many coordinates is `2(Γ), where Γ is uncountable. Indeed, `2(Γ) does not
contain any isomorphic copy of c0 since it is reflexive and it is not isomorphic
to any subspace of `∞ as its dual is not (weak∗) separable. The statement
thus follows from Theorem 4 below.
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2. It is a basic fact that `1(c) is isometric to a subspace of C[0, 1]∗

(cf. e.g. [12, p. 35]). The dual of any separable space is isometric to a subspace
of `∞ (cf. e.g. [12, p. 71]). Thus `1(c) is isometric to a subspace of `∞. The dual
ball of `∗∞ is weak∗ separable by the Goldstine theorem (cf. e.g. [12, p. 46]).
Hence the dual ball of `1(c)∗ is weak∗ separable (use the restriction map).
Therefore the canonical norm of `1(c) locally depends on countably many
coordinates. Indeed, if {fi} is weak∗ dense in B`1(c)∗ , then ‖x‖ = supi{fi(x)}
for x ∈ `1(c). The space `1(c) is not WLD as its dual ball does not have
countable tightness in its weak∗ topology (use the fact that all elements of c0(c)
have countable support, Goldstine’s theorem and the fact that any Corson
compact has countable tightness, cf. e.g. [12, p. 252]).

It follows from Theorem 11 below that `1(c) does not admit any contin-
uous bump function that would locally depend on countably many standard
coordinates.

By Theorem 9 below, the space `1(c) does not admit any LFS norm as
dens `1(c)∗ = dens `∞(c) = 2c > c = card `1(c) (the elements of `1(c) have
countable support). Also, the space `∞ does not admit any LFS norm as it
contains a copy of `1(c) and thus dens `∗∞ ≥ dens `1(c)∗ ≥ 2c > c = card `∞.
On the other hand, by its definition, the supremum norm on `∞ depends on
countably many standard coordinates.

3. For any infinite set Γ, the supremum norm ‖·‖ on c0(Γ) depends locally
on finitely many coordinates. Indeed, let x ∈ Sc0(Γ). Find a finite set F ⊂ Γ
such that supγ∈Γ\F |x(γ)| < 1

2 . If z ∈ c0(Γ) is such that ‖z − x‖ < 1
4 , then

sup
γ∈Γ

|z(γ)| = max
{

sup
γ∈Γ\F

|z(γ)|, sup
γ∈F

|z(γ)|
}

= sup
γ∈F

|z(γ)| = ‖Pz‖ ,

where P is the projection in c0(Γ) defined for x ∈ c0(Γ) by Px = (χF )x.
Hájek showed in [14] that every C2-smooth function on c0(Γ) locally de-

pends on countably many coordinates, and hence, by Proposition 3, it is an
LFS function.

It is proved in [3, p. 189] that for every infinite set Γ, c0(Γ) admits an
equivalent locally uniformly rotund norm that is a limit, uniform on bounded
sets, of norms that locally depend on finitely many coordinates. We recall
that a norm ‖ · ‖ of X is locally uniformly rotund if ‖xn − x‖ → 0 whenever
xn, x ∈ X and 2‖xn‖2 + 2‖x‖2 − ‖x + xn‖2 → 0. We do not know if every
norm on c0(Γ) can be approximated by norms that locally depend on finitely
many coordinates. If Γ is countable, then the answer is in the positive ([15]).
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If Γ is uncountable, then equivalent norms on c0(Γ) that locally depend
on countably many coordinates do not form a residual set in the metric space
of all equivalent norms on c0(Γ) endowed with the metric of uniform conver-
gence on the ball of c0(Γ). Indeed, otherwise, by the Baire category theorem,
there would be a strictly convex norm on c0(Γ) that would locally depend on
countably many coordinates (cf. e.g. [3, p. 52]), which is obviously not true
(cf. e.g. the argument above in `2(Γ)).

4. Let C[0, ω1] denote the Banach space of all continuous functions on the
ordinal segment [0, ω1] in its supremum norm, where [0, ω1] is considered in
its usual order topology (cf. e.g. [5, p. 59]). The symbol C0[0, ω1] denotes the
hyperplane in C[0, ω1] formed by all elements in C[0, ω1] that vanish at ω1.
Note that C0[0, ω1] is isomorphic to C[0, ω1]. Indeed, consider an operator
T : C[0, ω1] → C0[0, ω1] defined by Tx = (x(ω1), x(0) − x(ω1), . . . , x(t) −
x(ω1), . . . , x(ω1)−x(ω1)). The space c0[0, ω1]∗ is not weak∗ separable as every
element of c0[0, ω1]∗ has countable support on the standard unit vectors of
c0[0, ω1]. Indeed, assuming that c0[0, ω1]∗ is weak∗ separable, the total support
of all the elements of c0[0, ω1]∗ would be countable. This is a contradiction
as [0, ω1] is uncountable. The space c0[0, ω1] is isomorphic to a subspace of
C0[0, ω1]. Indeed, define a mapping T from c0[0, ω1] into C0[0, ω1] by

Tx(α) =

{
x(β) if there is β such that β + 1 = α ,

0 if there is no such β ;

this is an isometry into. If C0[0, ω1]∗ were weak∗ separable, so would be
c0[0, ω1]∗ (via the restriction map), which is not the case.

The supremum norm ‖ · ‖ of C0[0, ω1] is an LFS norm. Indeed, given
x ∈ SX , let α ∈ [0, ω1) be such that x(β) = 0 for all β ≥ α. Let U = {u ∈
X : ‖u − x‖∞ < 1

4} and let the projection P on C0[0, ω1] be defined by
Px = (χ[0,α])x for x ∈ C0[0, ω1]. Then for u ∈ U ,

3
4
≤ ‖u‖ = max

{
sup

0≤β≤α
|u(β)|, sup

α+1≤β≤ω1

|u(β)|
}

≤ max
{

sup
0≤β≤α

|u(β)|, 1
4

}
= sup

0≤β≤α
|u(β)| = ‖Pu‖ .

Moreover, P (C0[0, ω1]) is isometric to C[0, α] and is thus separable. Hence
Proposition 2 applies.

BC0[0,ω1]∗ in its weak∗ topology is not a Valdivia compact ([19]). Indeed,
otherwise, C0[0, ω1] would be WLD by Corollary 8 below. And this is not the
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case, as [0, ω1] is a subspace of BC[0,ω1]∗ and this weak∗ compact is homeo-
morphic with the weak∗ compact BC0[0,ω1]∗ (since C0[0, ω1] is isomorphic to
C[0, ω1]). Any Corson compact has countable tightness (cf. e.g. [12, p. 252])
and the segment [0, ω1] does not have countable tightness as ω1 is not in the
closure of any countable set of ordinals strictly less than ω1.

Recall that a projectional resolution of the identity (PRI ) on a Banach
space X with densX = ℵ1 is a transfinite sequence of linear projections
Pα, 0 ≤ α ≤ ω1, on X such that P0 = 0, Pω1 = Identity , ‖Pα‖ = 1 for
α > 0, PαPβ = PβPα = Pmin{α,β}, Pα(X) is separable for all α < ω1 and the
map α → Pαx is continuous from the ordinals into the norm topology of X for
each x ∈ X. Since BC0[0,ω1]∗ is not a Valdivia compact in its weak∗ topology,
the space C0[0, ω1] does not admit any projectional resolution of the identity
with respect to its supremum norm (cf. e.g. [3, p. 251] or [7]). On the other
hand, BC[0,ω1]∗ is a Valdivia compact in its weak∗ topology (in order to see
this, check the Dirac measures δα, α < ω1, against the characteristic functions
of [α + 1, ω1], α < ω1). Hence the weak∗ to weak∗ continuous restriction map
of C[0, ω1]∗ to C0[0, ω1]∗ maps a Valdivia compact onto a compact set that is
not a Valdivia compact. The first example of a non Valdivia compact that is
a continuous image of a Valdivia compact was found in [26].

The projections Pα of C0[0, ω1] defined by Pα(x) = χ[0,α]x have all the
properties of projectional resolution of identity but that one concerning the
continuity of the map α → Pαx on ordinals for all x. In fact, if β is a limit
ordinal less than ω1, then the closure of ∪α<βPα(C0[0, ω1]) is a hyperplane in
Pβ(C0[0, ω1]) formed by all the functions in Pβ(C0[0, ω1]) that vanish at β. For
β = ω1, this union itself is the whole space C0[0, ω1] as any function in C0[0, ω1]
has a countable support. Moreover, ∪α<ω1P

∗
α(C0[0, ω1]∗) = C0[0, ω1]∗. Indeed,

assume that f ∈ SC0[0,ω1]∗ and x ∈ SC0[0,ω1] are such that f(x) = 1. Find
α < ω1 such that x(β) = 0 for all β ≥ α. If the projection Pα is defined for
α ≤ ω1 and y ∈ C0[0, ω1] by Pαy = χ[0,α]y, then f(x±w) ≤ ‖x±w‖ = 1 = f(x)
for all w ∈ P−1

α (0). Hence f(w) = 0 for all w ∈ P−1
α (0) and thus f(y) =

f(Pαy + (I − Pα)(y)) = f(Pαy) = P ∗
αf(y) for all y ∈ C0[0, ω1]. Therefore

f ∈ P ∗
αC0[0, ω1]∗. If f ∈ SC0[0,ω1]∗ , by the Bishop-Phelps theorem, there are

fn ∈ SC0[0,ω1]∗ that attain their norms and ‖fn−f‖ → 0. If fn ∈ P ∗
αn

C0[0, ω1]∗

for some αn < ω1, then f ∈ P ∗
sup{αn}C0[0, ω1]∗.

For α ≤ ω1 and x ∈ C[0, ω1], put

Pαx(β) =

{
x(β) if 0 ≤ β ≤ α ,

x(α) if α < β ≤ ω1 ,
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for β ∈ [0, ω1]. Then Pα, 0 ≤ α ≤ ω1, form a PRI for C[0, ω1] endowed with
the supremum norm.

Speaking about the space C[0, ω1], let us note in passing that Semadeni
proved in [24] that the codimension of C[0, ω1] in the Banach space of all
weak∗ sequentially continuous linear funtionals on C[0, ω1]∗ is one and thus
C[0, ω1]× C[0, ω1] is not isomorphic to C[0, ω1].

Although the standard norm of C0[0, ω1] is an LFS norm, by considering
x = χ[0,ω0], we can see that the supremum norm of C0[0, ω1] does not locally
depend on finitely many coordinates. Indeed, otherwise, let {fi} be a finite
number of elements of C0[0, ω1]∗ that comes from the definition of the local
dependence on finitely many coordinates for the supremum norm and x. Con-
sider the infinite dimensional subspace Z of C0[0, ω1] formed by all functions
in C0[0, ω1] with supports in [0, ω0] and take a nonzero point h in the inter-
section of Z with {fi}⊥. It is not true that ‖x + th‖ = 1 for all small |t|,
which should be so by Definition 1. As C[0, ω1]∗ is not weak∗ separable, it
can similarly be shown that the supremum norm of C[0, ω1] does not locally
depend on countably many coordinates (consider x = χ[0,ω1]).

This is in contrast with the following fact that comes from the work of
Talagrand [25] (cf. e.g. [16], [8, Ch. II]). Let the operator T from C0[0, ω1] into
c0[0, ω1] be defined by

Tx(α) =

{
x(α + 1)− x(α) if α < ω1 ,

0 if α = ω1 .

Then the norm ‖ · ‖ defined on C0[0, ω1] by

‖x‖ = sup
t∈[0,ω1]

{|x(t)|+ |Tx(t)|}

is an equivalent norm on C0[0, ω1] that locally depends on finitely many co-
ordinates.

In order to see this, assuming that ‖x‖∞ = 1, let α < ω1 be the supre-
mum of γ < ω1 such that |x(γ)| = 1. Observe that δ := 1

3 |Tx(α)| > 0
as |x(α + 1)| < |x(α)|. Let F ⊂ [0, ω1] be the (finite) set of all ordinals
β ∈ [0, ω1] such that |Tx(β)| ≥ δ. Then supt∈F {|x(t)| + |Tx(t)|} ≥ (|x(α)| +
|Tx(α)|) = 1+3δ and supt∈[0,ω1]\F {|x(t)|+ |Tx(t)|} ≤ 1+ δ. As the functions
y 7→ supt∈F {|y(t)| + |Ty(t)|} and y 7→ supt∈[0,ω1]\F {|y(t)| + |Ty(t)|} are both
Lipschitz, there is a neighborhood U of x such that supt∈F {|y(t)|+ |Ty(t)|} >
1 + 2δ > supt∈[0,ω1]\F {|y(t)|+ |Ty(t)|} for every y ∈ U . Hence the norm ‖ · ‖
depends on U only on coordinates in F . As C[0, ω1] is isomorphic to C0[0, ω1],
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the space C[0, ω1] admits an equivalent norm that locally depends on finitely
many coordinates.

5. Assuming the Continuum Hypothesis, Kunen constructed a nonsepa-
rable Asplund C(K) space such that C(K)∗ is hereditarily weak∗ separable
([18], [17]). This C(K) space does not admit any equivalent norm that would
locally depend on finitely many coordinates. Indeed, by Theorem 7(iii), on the
dual ball B of such a norm, the weak∗ and norm topologies coincide at each
point that attains its norm. Let all points of such sphere S that attain their
norm be denoted by P and let C be a countable weak∗ dense set in P (which
is thus norm dense in P ). As P is norm dense in S by the Bishop-Phelps
theorem, C is norm dense in S. Thus S, and hence C(K)∗, would be norm
separable, a contradiction. We do not know if Kunen’s C(K) admits an LFS
norm.

Results

If an infinite dimensional Banach space X admits a bump fuction that
locally depends on finitely many coordinates of X∗, then X contains an iso-
morphic copy of c0 and it is an Asplund space, i.e., each separable subspace
of X has separable dual ([3, p. 198] and [10]). The following statement is
related to this result.

Theorem 4. Assume that a Banach space X admits a continuous bump
function ϕ that locally depends on countably many coordinates and that X is
not isomorphic to any subspace of `∞. Then X contains an isomorphic copy
of c0.

Proof. Assume that X does not contain any isomorphic copy of c0, admits
a continuous bump function that locally depends on countably many coordi-
nates and that X is not isomorphic to any subspace of `∞. We will derive
a contradiction. Let f be a continuous function on X such that f locally
depends on a countably many coordinates, f(0) = 0 and f(x) = 1 when-
ever ‖x‖ ≥ 1. Assume, without loss of generality, that f is an even function
(otherwise consider x 7→ 1

2(f(x) + f(−x))). Put U = {x ∈ X : f(x) 6= 1}.
Applying a compact variational principle [3, Theorem V.2.6], we find a

compact symmetric set K ⊂ U and δ0 > 0 such that for every δ ∈ (0, δ0) there
is ∆δ > 0 such that

fK(x) > ∆δ whenever x ∈ X and ‖x‖ = δ ,
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where fK = max{f(k + ·) : k ∈ K}.
Claim. The function fK is continuous on X and locally depends on count-

ably many coordinates.
In order to verify the claim, we first check that xn → x ∈ X implies that

f(xn+k) → f(x+k) uniformly for k ∈ K. Thus fK is continuous. Now fix any
x ∈ X. We will show that fK locally depends on countably many coordinates.
Without loss of generality, we may assume that x = 0. (Actually, 0 is the only
point that will be used later.) Given y ∈ X and δ > 0 we say that δ is good
for y if there are a continuous function ψy : `∞ → R and fy

1 , fy
2 , . . . ∈ BX∗

such that

f(z) = ψy(fy
1 (z), fy

2 (z), . . . ) whenever z ∈ X and ‖z − y‖ < δ .

Now, for every k ∈ K let δk > 0 be good. From compactness we find
k1, . . . , km ∈ K so that K ⊂ ⋃m

i=1

(
ki+ 1

2δki
BX

)
. Put δ = 1

2 min{δk1 , . . . , δkm}.
We will show that δ is good for every point of K. So fix any k ∈ K. Find
i ∈ {1, . . . , m} so that k ∈ ki + 1

2δki
BX . Then, if z ∈ X and ‖z‖ < δ, we have

k + z ∈ ki +
1
2
δki

BX + δBX ⊂ ki + δki
BX ,

and so,
f(k + z) = ψki(fki

1 (k + z), fki
2 (k + z), . . .) .

Put
F = {ψk1 , . . . , ψkm} ,

G = {(fk1
1 , fk1

2 , . . .), . . . , (fkm
1 , fkm

2 , . . .)} .

Let {hj : j ∈ N} be a countable dense subset in K. From the above we can
see that for every j ∈ N there are ψj ∈ F and (gj

1, g
j
2, . . .) ∈ G such that

f(hj + z) = ψj(g
j
1(hj + z), gj

2(hj + z), . . .)

whenever z ∈ X and ‖z‖ < δ. Thus

fK(z) = sup
j∈N

ψj

(
gj
1(hj) + gj

1(z), gj
2(hj) + gj

2(z), . . .
)

whenever z ∈ X and ‖z‖ < δ. Note that the family {gj
i : j, i ∈ N} is

countable. So it remains to prove that the function ψ : `∞(N × N) → R
defined by

ψ(uj
i : j, i ∈ N) = sup

j∈N
ψj

(
gj
1(hj) + uj

1, g
j
2(hj) + uj

2, . . .
)
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is continuous. To check this, we observe that {ψj : j ∈ N} ⊂ F , and that,
from compactness, for every j ∈ N the functions

(uj
1, u

j
2, . . .) 7→ ψj

(
gj
1(k) + uj

1, g
j
2(k) + uj

2, . . .
)

are equicontinuous with respect to k ∈ K. Therefore ψ is continuous, and the
local dependence of fK on a neighbourhood on countably many coordinates
is proved.

By the claim find δ ∈ (0, δ0), a continuous function ψ on `∞, and f1, f2, . . .
∈ BX∗ such that fK(z) = ψ(f1(z), f2(z) . . . ) whenever z ∈ X and ‖z‖ ≤ δ.
Note that

0 = fK(0) = ψ(f1(0), f2(0), . . .) = ψ(0, 0, . . .) .

Find γ > 0 so that ψ(u1, u2, . . .) < 1
2∆δ whenever sup{|u1|, |u2|, . . .} < γ. As

X is not isomorphic to any subspace of `∞, there is x ∈ X such that ‖x‖ = δ
and sup{|f1(x)|, |f2(x)|, . . .} < γ. Then

∆δ ≤ fK(x) = ψ(f1(x), f2(x), . . .) <
1
2
∆δ ,

a contradiction.

Corollary 5. Let X be a Banach space. Assume that X∗ admits an
equivalent (not necessarily dual) LFS norm. Then X∗ is isomorphic to a
subspace of `∞.

Proof. If not, then X∗ would contain an isomorphic copy of c0 by Theorem
4. Thus X∗ would then contain an isomorphic copy of `∞ (cf. e.g. [21, p. 103]).
The space `∞ does not admit any LFS norm (see Example 2).

Proposition 6. Let X be a separable Banach space such that X∗ admits
an equivalent (not necessarily dual) LFS norm. Then X does not contain any
isomorphic copy of `1.

Proof. Assume that X contains an isomorphic copy of `1. Then X∗ con-
tains an isomorphic copy of `1(c), by the result of PeÃlczyński (cf. e.g. [12,
p. 213]). As a subspace of X∗, `1(c) would then admit an LFS norm. This is
not the case (see Example 2).

A variant of the following result for Gâteaux differentiable norms was
proved in [7].
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Theorem 7. (i) Assume that the norm of a Banach space X is an LFS

norm. Let M ⊂ BX∗ be such that M
w∗ = BX∗ . Then given f ∈ BX∗ , there

is a countable set C ⊂ M such that f ∈ C
w∗

.

(ii) Assume that the norm of a Banach space X is an LFS norm and
that BX∗ in its weak∗ topology is separable. Then X∗ is weak∗ sequentially
separable.

(iii) Assume that the norm of X locally depends on finitely many coordi-
nates. Let f ∈ SX∗ attain its norm. Then the norm and weak∗ topologies on
BX∗ coincide at f .

Proof. (i) According to Josefson-Niezesweig theorem (cf. e.g. [4, Ch. XII,
Exercise 2 (i)]), any element of BX∗ is the weak∗ limit of a sequence from
SX∗ . Using this result and the Bishop-Phelps theorem, we can see that it
suffices to show that if M ⊂ BX∗ is such that M

w∗ = BX∗ and g ∈ SX∗ is
such that g(x) = 1 for some x ∈ SX , then there is a countable set C ⊂ M

such that g ∈ C
w∗ . Let B be a countable set in BX containing x and such

that the set B̂ of corresponding cosets is dense in X/W , where W = {fi}⊥
is chosen for x as in Definition 1. Now, if h ∈ W is such that x ± h ∈ U ,
where U is as in Definition 1, then ‖x±h‖ = ‖x‖. Let {gn} ⊂ M be so chosen
that g(x) = lim gn(x) and g = lim gn in the topology of pointwise convergence
on B. From the proof of Šmulyan’s lemma on the differentiability of norms
(cf. e.g. [3, p. 3] or [12, p. 92]), we get supBW

(gn − g) → 0 as n → ∞. In
particular, gn(w) → g(w) as n →∞ for all w ∈ W . Thus gn → g in the weak∗

topology.
(ii) Let C be a countable set in BX∗ that is weak∗ dense in BX∗ . Let

D be the set of all finite linear combinations of elements of C, with rational
coefficients. We note that D will still be countable. Let A denote the set of
all norm attaing elements of X∗. By the first part of the proof of (i) we know
that for every f ∈ A there is a sequence dn ∈ D, n ∈ N, such that ‖dn‖ ≤ ‖f‖
and dn → f weak∗.

Now fix any f ∈ X∗. We will show that this f can also be reached as
the weak∗ limit of a sequence from D. Find f1 ∈ A such that ‖f − f1‖ < 1

2 .
Assume that for some i ∈ N we have already found elements f1, . . . , fi ∈ A
such that ‖f2‖ < 1

2 , . . . , ‖fi‖ < 1
2i−1 and ‖f − f1 − · · · − fi‖ < 1

2i . Find then
fi+1 ∈ A such that ‖fi+1‖ < 1

2i and ‖f − f1 − · · · − fi − fi+1‖ < 1
2i+1 . Then

‖f − f1 − · · · − fi‖ → 0 as i →∞.
Further we will immitate a standard method from working with Baire

one functions, cf. e.g. [22, Ch. XV.1, Theorem 4]. For every i ∈ N find
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din ∈ D, n ∈ N, such that ‖din‖ ≤ ‖fi‖ and din → fi weak∗. Put then
gn = d1n + · · ·+ dnn, n ∈ N. We note that every gn belongs to the countable
set D. So it remains to prove that gn → f weak∗. Fix any ε > 0 and any
0 6= x ∈ X. Find k ∈ N so that 2−k+1 < ε

3‖x‖ and ‖f − f1 − · · · − fk‖ < ε
3‖x‖ .

Find then m > k so that

|〈din − fi, x〉| < ε

3k
whenever i ∈ {1, . . . , k} and n > m .

Then, if n > m, we have

∣∣〈gn − f, x
〉∣∣ ≤

k∑

i=1

∣∣〈din − fi, x
〉∣∣ +

∞∑

i=k+1

‖din‖‖x‖+
∣∣∣
〈 k∑

i=1

fi − f, x
〉∣∣∣

< k · ε

3k
+

∞∑

i=k+1

1
2i−1

‖x‖+
∥∥∥

k∑

i=1

fi − f
∥∥∥‖x‖

<
ε

3
+

ε

3‖x‖ · ‖x‖+
ε

3‖x‖ · ‖x‖ = ε ,

and the proof of (ii) is finished.
(iii) Let x ∈ SX be such that f(x) = 1. Let U , f1, . . . , fn ∈ BX∗ and ψ

be chosen as in Definition 1 for the point x. Let W = {fi}⊥. If h ∈ W is
such that x±h ∈ U , then ‖x±h‖ = ‖x‖. Similarly as above in this proof, we
find that whenever fµ → f in the weak∗ topology, then supBW

(fµ − f) → 0.
Therefore fµ → f in the norm as X/W is finite dimensional.

Theorem 7 (i) has the following consequence.

Corollary 8. Assume that the dual ball of an LFS norm in its weak∗

topology is a Valdivia compact. Then X is a WLD space.

Note that the space `1(c) shows that the LFS norm here cannot be replaced
by a norm that locally depends on countably many coordinates. Indeed, the
dual ball of the standard norm of `1(c) is a Valdivia compact in its weak∗

topology (use Goldstine’s theorem) and the canonical norm of `1(c) depends
on countably many coordinates (see Example 2 above). However, `1(c) is
not WLD. Also, it is not true that in the statement of Theorem 7 (iii), the
norm and weak∗ topology coincide at each point of the sphere, see Example
4. Indeed, it is known that C[0, ω1]∗ does not admit any dual norm with the
latter property. (Otherwise, C[0, ω1]∗ would then admit a dual locally uni-
formly rotund norm ([23]) which is impossible by Talagrand’s result (cf. e.g. [3,
p. 313])).
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For Gâteaux differentiable norms, a variant of the following result can be
found in [3, p. 58].

Theorem 9. Assume that the norm of a Banach space is an LFS norm.
Then densX∗ ≤ cardX.

Proof. Given x ∈ SX , the cardinality of the set of supporting functionals
to BX at x is less than or equal to c. Indeed, let {xn} ⊂ X be a sequence such
that {x̂n} is dense in X/W , where W is from Definition 1. As in the proof
of Theorem 7 (i), we can show that if f and g are two supporting functionals
to BX at x, then f(w) = g(w) for every w ∈ W . Thus for any two different
supporting functionals f, g to BX at x, there must be n available such that
f(xn) 6= g(xn). By the Bishop-Phelps theorem, the density of X∗ is then less
than or equal to c · cardX which is less than or equal to cardX.

Assuming the Continuum Hypothesis, one can give a short proof of the
following result, which for the case of Gâteaux differentiable norms is usually
proved by the smooth variational principle (cf. eg. [8, Ch. II], for the smooth
variational principle cf. e.g. [3, p. 9]). Note that this principle cannot hold
true in c0(Γ) for LFS norms if Γ is uncountable (otherwise, one could apply
it to a strictly convex norm on c0(Γ) and get a contradiction).

Corollary 10. Assume the Continuum Hypothesis. Let the norm of
a Banach space X be an LFS norm. Then BX∗ in its weak∗ topology is
sequentially compact.

Proof. We follow [13]. Assume that a sequence {fn} ⊂ BX∗ has no weak∗

convergent subsequences. For every subsequence {fnk
} of {fn}, choose a point

x in BX such that {fnk
(x)} is not convergent. We thus get a subspace Y of X

of density character c such that BY ∗ is not sequentially compact in its weak∗

topology. Moreover, the norm of Y is an LFS norm. Hence in order to finish
the proof, we can assume that the density character of X is c and that BX∗ in
its weak∗ topology is not sequentially compact. Čech and Posṕı̌sil showed in
[2] that if a compact space K is not sequentially compact, then cardK ≥ 2ℵ1 .
By using Theorem 9 and this result, under the Continuum Hypothesis, we
have

cardX∗ ≤ (densX∗)ℵ0 ≤ (cardX)ℵ0 ≤ ((densX)ℵ0)ℵ0

= (cℵ0)ℵ0 = cℵ0 = c = ℵ1 < 2ℵ1 ≤ cardBX∗ = cardX∗,

a contradiction.
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Note that the statement of Corollary 10 does not hold true in general for
norms that locally depend on countably many coordinates. This is can be
seen on the space `1(c) (Example 2), as B`∞(c) is not sequentially compact in
its weak∗ topology (cf. e.g. [12, p. 65]).

Note that Corollary 10 implies that under the Continuum Hypothesis,
`∞ = C(βN) is not a quotient space of any Banach space with an LFS norm.
Indeed, otherwise βN would be sequentially compact. It is well known that this
is not the case: βN contains no convergent sequence as otherwise, by Tietze
extension theorem, c0 would be isomorphic to a quotient of `∞, which is not
the case, cf. e.g. [12, p. 254]. Similarly, under the Continuum Hypothesis,
`∞/c0 = C(βN \ N) admits no LFS norm for otherwise βN \ N would be
sequentially compact by Corollary 10.

The following theorem relates to some results in [27].

Theorem 11. Let X be a Banach space and let M ⊂ BX be such that
spanM = X. Let G ⊂ X∗ be the set of all points of X∗ that are countably
supported on M . Assume that X admits a continuous bump function that
locally depends on countably many elements of G. Then X is WLD.

Proof. Let ϕ be a continuous bump function on X that locally depends on
countably many elements of G. We will prove that each element of X∗ has a
countable support on M . This will show that BX∗ in its weak∗ topology is a
Corson compact. Thus it suffices to show the following

Claim: Given f ∈ X∗ and ε > 0, there is an fε ∈ X∗ such that its support
on M is countable and ‖fε − f‖ ≤ ε.

In order to prove the claim, let f ∈ X∗ and ε > 0 be given. Define the
function Φ on X by

Φ(x) =

{
ϕ−2(x) if ϕ(x) 6= 0 ,

+∞ if ϕ(x) = 0 .

It follows that Φ is a bounded below lower semicontinuous function on X
such that {x ∈ X : Φ(x) < +∞} is open and on its domain, Φ locally de-
pends on countably many elements in G. By the Ekeland variational principle
(cf. e.g. [3, Theorem I.2.4.]), there is x0 ∈ X such that

(Φ− f)(x) ≥ (Φ− f)(x0)− ε‖x− x0‖ (1)

for all x ∈ X. Let U , {fi} ⊂ G and ψ be as in the definition of the local
dependence for Φ at x0. Let W =

⋂
i

f−1
i (0). Finally let δ > 0 be such that
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x0 + h ∈ U whenever h ∈ X is such that ‖h‖ < δ. If h ∈ W and ‖h‖ < δ, we
have

Φ(x0 + h)− Φ(x0) = ψ
(
f1(x0 + h), . . . , fn(x0 + h), . . .

)

− ψ
(
f1(x0), . . . , fn(x0), . . .

)
= 0 .

Hence from (1), for h ∈ W and ‖h‖ < δ we have

f(h) = f(x0 + h)− f(x0) ≤ Φ(x0 + h)− Φ(x0) + ε‖h‖ = ε‖h‖ . (2)

Let f̃ be the restriction of f to W . By (2), for f̃ as an element of W ∗, we
have ‖f̃‖ ≤ ε. Let f̃0 be a norm preserving Hahn-Banach extension of f̃ to
X. Put fε = f − f̃0. Then fε ∈ W⊥ = span w∗{fi} and ‖f − fε‖ = ‖f̃0‖ ≤ ε.
As the total support of all {fi} on M is countable, so is the support of fε.
This finishes the proof.

Alster showed in [1] that a compact space K is homeomorphic to a weakly
compact set in c0(Γ) for some Γ considered in its weak topology (i.e. K is an
Eberlein compact) if K is a Corson compact and K is scattered, i.e. each sub-
set of K has a relative isolated point. If K is a compact space such that C(K)
admits a continuous bump function that locally depends on finitely many co-
ordinates, then C(K) is an Asplund space ([10]). Thus K is then scattered
(cf. e.g. [3, p. 258] or [12, p. 231]). Hence K is an Eberlein compact if it is
a Corson compact and C(K) admits a continuous bump function that locally
depends on finitely many coordinates. The following statement is related to
these results.

Theorem 12. Let K be a Corson compact such that C(K) has density
character ℵ1. Then

(i) C(K) is WLD if C(K) admits a continuous bump function that locally
depends on countably many elements of span‖·‖K.

(ii) C(K) is WLD if C(K) admits an equivalent LFS norm ‖ · ‖ that is
pointwise lower semicontinuous.

Proof. Since K is a Corson compact, C(K) in its supremum norm has a
projectional resolution of the identity Pα, α ≤ ω1, such that K ⊂
∪α<ω1P

∗
α(C(K)) (cf. e.g. [3, p. 254]).

(i) For α < ω1, let Mα, be a countable dense set in the unit ball of (Pα+1−
Pα)(C(K)). Then it is enough to put M = ∪α<ω1Mα and G = span‖·‖K in
Theorem 11.
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(ii) As the norm ‖ · ‖ is pointwise lower semicontinuous, the space
span ‖·‖K is 1-norming for the norm ‖ ·‖ (use the bipolar theorem, cf. e.g. [12,
p. 163]). Since K ⊂ ∪α<ω1P

∗
αC(K)∗, by Proposition 13 below, C(K) has a

PRI in the norm ‖ · ‖, and, by [7, Lemma 2], the corresponding dual ball is
Valdivia compact in the weak∗ topology. Thus the norm ‖ · ‖ satisfies the
assumptions of Corollary 8 and so C(K) is WLD.

Proposition 13. Let (X, ‖ · ‖) be a Banach space, having density ℵ1, and
admitting a projectional resolution of the identity Pα, α ≤ ω1 in the norm
‖·‖. Let |·| be an equivalent norm on X such that

⋃
α<ω1

P ∗
αX∗ is a 1-norming

subspace for | · |. Then there exists an increasing ”long sequence” βα, α ≤ ω1

of ordinals from [0, ω1] such that Pβα , α ≤ ω1 is a PRI on (X, | · |).

Proof. We shall first show the claim: For every α ∈ [0, ω1) there is β ∈
(α, ω1) such that |Pβ| = 1, i.e.,

|Pβx| ≤ |x| for every x ∈ X . (3)

Fix one such α. By induction, we shall construct α1 = α < α2 < α3 <
· · · < ω1 as follows. Let n ∈ N and assume that αn was already chosen. Let
{xn

m : m ∈ N} be a (norm) dense set in PαnX (note that αn < ω1). For every
m ∈ N we find a countable set Y n

m ⊂ ⋃
α<ω1

P ∗
αX∗ ∩B(X,|·|)∗ such that

|xn
m| = sup

〈
Y n

m, xn
m

〉
.

Since each Y n
m is at most countable, there is αn+1 ∈ (αn, ω1) such that

Y n
m ⊂ P ∗

αn+1
X∗ for every m ∈ N. This finishes the induction step. Put

β = limn→∞ αn; then still β < ω1.
Let us show (3). Fix any x ∈ X. Let ε > 0 be arbitrary. Since |Pαnx| →

|Pβx|, from the construction of β, there are n,m ∈ N and η ∈ Y n
m such that

|Pβx| − ε < 〈η, Pβx〉. But

〈η, Pβx〉 = 〈P ∗
βη, x〉 = 〈η, x〉 .

Therefore
|Pβx| − ε < 〈η, x〉 ≤ |η| |x| ≤ |x| ,

and finally, |Pβx| ≤ |x|. This proves our claim.
Next let β0 be the β found in our claim for α := 0. Let 0 < α < ω1 and

assume that we found already βγ for 0 ≤ γ < α. If α is a limit ordinal, put
βα = limγ↑α βγ . If α is not a limit ordinal, put βα = β where β was found by
our claim for α := βα−1. Now it is elementary to verify that the βα satisfy
the conclusion of our Proposition.
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We will now summarize some facts on C[0, ω1]. Some of them were dis-
cussed in Example 4.

Theorem 14. (i) The supremum norm of C0[0, ω1] is an LFS norm.
However, it does not locally depend on finitely many coordinates.

(ii) The standard supremum norm of C[0, ω1] does not locally depend on
countably many coordinates.

(iii) There is a norm on C[0, ω1] that locally depends on finitely many
coordinates in [0, ω1].

(iv) There is no continuous bump function on C[0, ω1] that would depend
locally on countably many elements of [0, ω1).

(v) There is no LFS norm on C[0, ω1] that would be lower semicontinuous
in the topology of pointwise convergence on [0, ω1).

(vi) The dual ball BC0[0,ω1]∗ in its weak∗ topology is not a Valdivia com-
pact.

Proof. (i) – (iii) were proven in Example 4.
(iv) Put M = {χ[α+1,ω1]}α≤ω1 and G = [0, ω1) in Theorem 11.
(v) Assume that C[0, ω1) admits an LFS norm | · | that is Y -lower semi-

continuous where Y is the norm closed linear hull of [0, ω1) in C[0, ω1]∗. From
the bipolar theorem it then follows that Y is a 1-norming subspace for | · |
(cf. e.g. [8, Ch. 13]). The closed linear hull Y of [0, ω1) in C[0, ω1]∗ is 1-norming
subspace for the LFS norm and each element of BY is countably supported
on the set M defined above. Since BY is weak∗ dense in BX∗ , by Theorem 7
(i), there is a countable set C ⊂ Y such that the Dirac measure δω1 belongs
to C

∗. Hence δω1 would have a countable support on M , which is impossible.
(vi) This was discussed in Example 4.

A result similar to that in Theorem 14 (v) for Gâteaux differentiable norms
was shown in [9].

We will finish this paper with presenting a few open problems.

Open Problems

1. Assume that the norm of a Banach space X is an LFS norm. Does X
admit an equivalent Gâteaux differentiable norm?

2. Assume that a Banach space X admits a norm that locally depends on
finitely many coordinates. Does X admit a C∞-smooth norm? This problem
has a solution in the positive in the case of separable spaces ([15]).
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3. Does C[0, ω1] admit an equivalent locally uniformly rotund norm that
is a limit, uniform on bounded sets, of norms depending locally on finitely
many coordinates (or LFS1 norms)?
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