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Let H be a complex Hilbert space and let L(H) be the algebra of all
bounded linear operators on H. Following [3], a (symmetric) norm ideal
(J, ‖.‖J) in L(H) consists of a proper two-sided ideal J together with a norm
‖.‖J satisfying the conditions:

(i) (J, ‖.‖J) is a Banach space;

(ii) ‖AXB‖J ≤ ‖A‖‖X‖J‖B‖ for all X ∈ J and all operators A and B
in L(H);

(iii) ‖X‖J = ‖X‖ for X a rank one operator.

For a complete account of the theory of norm ideals, we refer to [3], [7]
and [8]. In the sequel we will be particularly interested in operators belonging
to the Hilbert-Schmidt class C2(H) which represents a Hilbert space when
equipped with the inner product < X,Y >= tr(XY ∗), (X, Y ∈ C2(H)) where
tr stands for the usual trace functional and Y ∗ denotes the adjoint of Y . For
A ∈ L(H), the inner derivation induced by A is the operator δA defined on
L(H) by δA(X) = AX −XA, X ∈ L(H).

The norm of an inner derivation δA on H has been computed by J. Stamp-
fli [10]:

‖δA‖ = 2d(A),(∗)

where d(A) = inf{‖A− λ‖ : λ ∈ C}.
Let (J, ‖.‖J) be a norm ideal and let A ∈ L(H). If X ∈ J , then δA(X) ∈ J

and ‖AX−XA‖J = ‖(A−λ)X−X(A−λ)‖J ≤ 2‖A−λ‖‖X‖J for all λ ∈ C.
Hence ‖AX −XA‖J ≤ 2d(A)‖X‖J . Thus the restriction δJ,A of δA to J is a
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bounded linear operator on (J, ‖.‖J), and ‖δJ,A‖ ≤ 2d(A). If J = C2(H), we
simply write δJ,A = δ2,A.

In order to examine the extent to which the identity (∗) applies, L. Fialkow
[1] introduced the notion of S-universal operators :

An operator A ∈ L(H) is S-universal if ‖δJ,A‖ = 2d(A) for each norm ideal
J in L(H).

In [1], the author showed that a subnormal operator is S-universal if and
only if the diameter of the spectrum is equal twice the radius of the smallest
disk containing it. In what follows, we shall prove that the same conclu-
sion holds true for an arbitrary hyponormal operator. This answers an open
question in [1] and [2].

Let K be a nonempty bounded subset of the plane. The diameter of K is
defined by diam(K) = sup{|α − β| : α, β ∈ K}. If A ∈ L(H), we mean by
σ(A), W (A) and RA respectively the spectrum, numerical range and radius
of the smallest disk containing the spectrum.

Our main result is the following

Theorem 1. An hyponormal operator A ∈ L(H) is S-universal if and
only if diam(σ(A)) = 2RA.

Remark 1. Let A ∈ L(H) be hyponormal. From [5] (see also [9]), it follows
that W (A) = co(σ(A)), where the bar denotes the closure and co stands for
the convex hull. On the other hand, it turns out [10, Corollary 1], that
RA = inf{‖A − λ‖ : λ ∈ C}. Thus Theorem 1 above can be reformulated
as: “Let A ∈ L(H) be hyponormal. Then A is S-universal if and only if
diam(W (A)) = 2d(A).”

To prove Theorem 1, we need the next Theorem due to B.S. Nagy and C.
Foias [4].

Theorem 2. For every hyponormal operator A on a Hilbert space H there
exists a normal operator N and a unitary operator U on some Hilbert space
K, and a contraction R of H into K, such that:

(a) A = R∗NR.

(b) ‖N‖ = ‖A‖.
(c) NU = UN = N∗.

(d) ‖R∗Ug‖ ≤ ‖R∗g‖ for all g ∈ K.
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(e) The manifolds Ln = UnRH(n = 0, 1, · · · ) form a non-decreasing se-
quence and span K.

(f) For any complex scalars α, β,

σ(αN + βN∗) ⊆ σl(αA + βA∗) (σl : “left spectrum”).

Corollary 3. Let A be a hyponormal operator and let N be a normal
operator given by Theorem 2. Then d(A) = ‖A‖ if and only if d(N) = ‖N‖.

Proof. Suppose that d(A) = ‖A‖. By [10, Theorem 2] there exists a se-
quence {xn}n in H with ‖xn‖ = 1 for each n and such that < Axn, xn >→ 0
and ‖Axn‖ → ‖A‖, as n →∞. So < NRxn, Rxn >→ 0 as n →∞. Moreover,
since

‖Axn‖ = ‖R∗NRxn‖ ≤ ‖R∗‖‖NRxn‖ ≤ ‖R∗‖‖N‖‖Rxn‖ ≤ ‖N‖,

we conclude that ‖Rxn‖ → 1 and ‖NRxn‖ → ‖N‖ as n → ∞. Using again
[10, Theorem 2], we conclude that d(N) = ‖N‖.

Conversely, suppose that d(N) = ‖N‖. We have RN = ‖N‖ (see Remark
1). Since σ(N) ⊆ σ(A) (Theorem 2, (f)), then RN ≤ RA. Using (b) of
Theorem 2, we obtain ‖A‖ ≤ RA. Hence d(A) = ‖A‖, which completes the
proof.

Proof of Theorem 1. We adopt the notation of Theorem 2. Since S-
universality and hyponormality are preserved under translations, we may as-
sume that d(A) = ‖A‖ and hence d(N) = ‖N‖ (Corollary 3).

Suppose that A is S-universal. By (b) of Theorem 2, we have

‖δ2,A‖ = ‖δA‖ = 2‖A‖ = 2‖N‖ = ‖δN‖.

So we can find a sequence {Xn}n in C2(H) with ‖Xn‖2 = 1, for which ‖AXn−
XnA‖2 → 2‖A‖ as n →∞. Since

‖AXn −XnA‖2 ≤ ‖AXn‖2 + ‖XnA‖2 ≤ ‖A‖+ ‖XnA‖2 ≤ 2‖A‖,

we deduce that
‖AXn‖2 → ‖A‖.

Similarly, we get
‖XnA‖2 → ‖A‖.
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Now, from the identity

‖AXn −XnA‖2
2 = ‖AXn‖2

2 + ‖XnA‖2
2 − 2<(< AXn, XnA >),

we conclude that −<(< AXn, XnA >) → ‖A‖2 as n → ∞, here < denotes
the real part.

Consider the operator RXnR∗ ∈ L(K). Since Xn ∈ C2(H) and ‖Xn‖2 = 1,
then RXnR∗ ∈ C2(K) and ‖RXnR∗‖2 ≤ 1. Furthermore

< NRXnR∗, RXnR∗N > = tr(NRXnR∗(RXnR∗N)∗)
= < AXn, XnA > .

Hence
<(< NRXnR∗, RXnR∗N >) → −‖N‖2 as n →∞.

Since |<(< NRXnR∗, RXnR∗N >)| ≤ ‖NRXnR∗‖2‖RXnR∗N‖2 ≤ ‖N‖2, it
follows that

‖NRXnR∗‖2 → ‖N‖, ‖RXnR∗N‖2 → ‖N‖ as n →∞.

Whence we infer

‖δ2,N (RXnR∗)‖2 → 2‖N‖ as n →∞.

That is
‖δ2,N‖ = 2‖N‖.

Since N is normal, Lemma 4.11 of [1] guarantees that

diam(σ(N)) = ‖δ2(N)‖.

On the other hand, by (f) of Theorem 2, we see that

diam(σ(N)) ≤ diam(σ(A)) ≤ ‖δ2,A‖ ≤ 2‖N‖.

Therefore
diam(σ(A)) = 2‖N‖ = 2‖A‖ = 2RA.

The sufficient condition follows from the general fact: For each operator A ∈
L(H), we have

(i) σ(δ2,A) = σ(A)− σ(A) (see[6]);

(ii) r(δ2,A) ≤ ‖δ2,A‖ ≤ 2d(A).
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Remarks 4. (i) The sufficient condition of the above Theorem follows also
from [1, Corollary 4.8].

(ii) Theorem 1 answers the question 2.17 of [2] in the affirmative.

We close with a remark. Let A and N as in Theorem 2. From the
assertion (f), we see that σ(N) ⊆ σ(A). So diam(σ(N)) ≤ diam(σ(A)).
Since diam(σ(N)) = ‖δ2,N‖ and diam(σ(A)) ≤ ‖δ2,A‖, then one can see that
‖δ2,N‖ ≤ ‖δ2,A‖. Thus the following question seems natural. Does the equality
‖δ2,N‖ = ‖δ2,A‖ holds true? Note that an affirmative answer to this question
would provide an affirmative answer to the question 2.16 of [2].
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