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Introduction

Barnes proved, in [2] and [3], that a complex semiprimitive associative
Banach algebra A is modular annihilator if and only if 0 is the only possible
accumulation point of the spectrum of x for each x ∈ A. A complex Jordan
Banach algebra J which satisfies the above spectral property is called inessen-
tial. Fernández proved in [9] that inessential complex semiprimitive Jordan
Banach algebras are modular annihilator. Benslimane and Rodriguez proved
in [5] that the converse also holds.

The purpose of this paper is to give a characterization of modular anni-
hilator Jordan pairs generalizing, by the way, the characterization of Jordan
algebras given by Fernández in [10]. The main ingredients of the proof are the
theory of primitive Jordan pairs and the use of local algebras. In the same
spirit we prove that a complex semiprimitive Banach Jordan pair is modu-
lar annihilator if and only if it is inessential. The use of local algebras is in
fact an alternative to the proof given by Hessenberger in [14], who obtained
the same characterization of semiprimitive Banach Jordan pairs by means of
more analytical methods. The strategy of reducing questions on Jordan pairs
to questions on Jordan algebras, via local algebras, was used by Zelmanov as
a minor part of his brilliant classification of strongly prime Jordan systems
[20], and more recently by D’Amour and McCrimmon [8], and by Anquela
and Cortes [1].

As an immediate consequence of our results we establish the reciprocal
local-to-global inheritance of modular annihilator property asserting that a
complex semiprimitive Banach Jordan pair is modular annihilator if and only
if all its local algebras are so. We finish by studying the complex compact Ba-
nach Jordan pairs as an example of modular annihilator Banach Jordan pairs.
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1. Preliminaries

In this paper we shall deal with Jordan pairs and Jordan algebras over a
ring of scalars Φ. Nevertheless, we shall be mainly interested in the linear case
(1
2 ∈ Φ), and very specially in the case that Φ is the complex field. The reader

is referred to [15] for notations, conventions and basic results. In particular,
the numbering of identities JPn refers to [15], however, we shall record in this
section some of those notations and results.

Given a Jordan pair V = (V +, V −), we write Qσ : V σ → HomΦ(V −σ, V σ),
σ ∈ {+,−}, to denote the quadratic maps of V . The multiplication Qxy is
quadratic in x and linear in y and has linearizations

{x, y, z} = Q(x, z)y = D(x, y)z = Qx+zy −Qxy −Qzy.

Note that {x, y, x} = 2Qxy, so we only need to consider the triple product
in the linear case. For every (x, y) ∈ V we define the Bergmann operator as
follows

B(x,y) = IdV σ −D(x,y) + QxQy.

A typical example of Jordan pair is given by taking

V + = Hom∆(X, Y ), V − = Hom∆(Y,X),

linear maps between right vector spaces X and Y over a division associative
Φ-algebra ∆, with Qab = aba. Any associative, alternative or Jordan algebra
A gives rise to a Jordan pair (A, A) with quadratic multiplication xyx or Uxy,
with U denoting the usual U -operator of the Jordan algebra.

In the opposite direction, given a Jordan pair V = (V +, V −) and an ele-
ment y ∈ V −σ we can define a Jordan algebra on V σ by

U (y)
a = QaQy, and a(2,y) = Qay.

This Jordan algebra, denoted by V σ(y), is called the y-homotope of V . If V
is a linear Jordan pair, we just need to define the linear product in V σ(y) as
follows

x · z =
1
2
{x, y, z}.

Local algebras of a Jordan pair. Let V be a Jordan pair and
y ∈ V −σ. By [8, 1.2.2] the set

Ker(y) = {x ∈ V σ : Qyx = QyQxy = 0}
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turns out to be an ideal of V σ(y) and the quotient V σ(y)/Ker(y) is a Jordan
algebra called the local algebra of V at y which we denote by Vy. As pointed
out in [8, 1.2.4 (ii)] the condition QyQxy = 0 is superfluous if V is linear. A
Jordan pair is non-degenerate if it has no nonzero absolute zero divisors, i.e.,
Qx = 0 implies x = 0.

(1.1) If V is non-degenerate then so are all its local algebras by JP3.

Annihilators. Following [15, p. 104] the annihilator of a subset X of
V σ is the inner ideal annV X ⊂ V −σ (annV X when V need not be specified)
of all a ∈ V −σ satisfying

QaX = QXa = 0, QaQX = D(a,X) = 0, and QXQa = D(X,a) = 0.

In the linear case, (see [11, Lemma 1]), only two conditions are required:

D(a,X) = 0 and D(X,a) = 0.

Note that if X ⊆ Y ⊆ V σ then annV Y ⊆ annV X.
Let I = (I+, I−) be an ideal of a Jordan pair V . We write annV I to denote

the annihilator ideal (annV I−, annV I+). By [18], the annihilator ideal annV I
of any ideal I of a non-degenerate Jordan pair V , has an easy expression

annV Iσ =
{
z ∈ V −σ : QzI

σ = o
}

,

and it is orthogonal to I

Iσ ∩ annV I−σ = 0.

In particular, the annihilator of an ideal I of a non-degenerate Jordan algebra
J is given by

annJI = {x ∈ J : UxI = 0}

Radical and socle. Write Rad(V ) = (Rad(V +), Rad(V −)) to de-
note the Jacobson radical of a Jordan pair, where Rad(V σ) is the set of
properly quasi-invertible elements of V σ. We say that V is semiprimitive
if Rad(V ) = 0. For a non-degenerate Jordan pair V , the socle of V is
Soc (V ) = (Soc V +, Soc V −), that is Soc V σ is the sum of all minimal in-
ner ideals of V σ. Equivalently, the elements of the socle are those of the
form

s1 + s2 + · · ·+ sn



66 m. benslimane, h. marhnine, c. zarhouti

where the si are simple elements in the sense that the inner ideals (si) gener-
ated by si are minimal. The reader is referred to [16] for basic results on socle
theory for Jordan pairs. In particular, we note that Soc V is an ideal of V .
The following local characterization of the socle can be found in [19, 0.6 (b)].

(1.2) Let V be a non-degenerate Jordan pair and x ∈ V σ. Then x ∈ Soc V σ

if and only if Vx has finite capacity. Furthermore,

(1.3) for each x ∈ V σ, Vx is unital if and only if x is Von Neumann regular.

It follows from Innerness Correspond Proposition [8, 2.4] that if π : V −σ(x) →
Vx denote the canonical map then

(1.4) π(Soc V −σ) = Soc (Vx).

Full subpairs. A subpair P = (P+, P−) of a Jordan pair V is called
full if

QxV −σ = QxP−σ, for all x ∈ P σ.

For example the Peirce spaceV2(e) = Qe(V ) = (Qe+V −, Qe−V +), in the Peirce
decomposition of V with respect to the idempotent e = (e+, e−) (Qeσe−σ = eσ,
σ ∈ {+,−}), is a full subpair of V .

Primitive Jordan pairs. A Jordan pair V = (V +, V −) is called prim-
itive at b ∈ V −σ if there exists a proper inner ideal K of V σ such that

(i) K is c-modular at b for some c ∈ V σ, i.e.,

(a) B(c,b)V
σ ⊆ K,

(b) c−Qcb ∈ K,
(c) D(c,b)K ⊆ K,
(d) (D(x,b) −D(c,Qbx)) ·K ⊆ K for any x ∈ V σ.

Equivalently, if K is a c-modular inner ideal of the homotope V σ(b).

(ii) Iσ + K = V σ for any ideal I = (I+, I−) of V such that Iσ 6= 0.

(iii) QV σz = QV σQzV
σ = 0, z ∈ V −σ, implies z = 0.

An ideal P of a Jordan system (algebra or pair) V is called primitive if
the factor system (algebra or pair) V/P is primitive.

Anquela and Cortes proved in [1] the following result
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(1.5) V is primitive at b ∈ V −σ if and only if Vb is a primitive Jordan algebra
and V is strongly prime.

Further results on primitive Jordan pairs can be founded in [1], and [8].
The following result, proved in [7, Theorem 1] for the case of a Jordan

triple system, is included here for completeness.

Lemma 1.6. Let V be a non-degenerate Jordan pair.

(i) If M is a simple ideal of V containing a nonzero idempotent, then
annV M is a primitive ideal. In particular,

(ii) if V has nonzero socle, for any simple component M of the socle of V
the annihilator ideal annV M is primitive, and

(iii) strongly prime Jordan pairs containing minimal inner ideals are primi-
tive.

Proof. (i) Let e = (e+, e−) be a nonzero idempotent of M . By replacing
V by the quotient pair V/annV M , we may suppose that V is a strongly
prime Jordan pair with a simple ideal M which contains a nonzero idempotent
e = (e+, e−). Then we must prove that V is primitive. Let us see that
B(e+,e−)V

+ is a primitizor of V . By Peirce relations [15, p. 44], the inner
ideal B(e+,e−)V

+ = V0(e+) is clearly e+-modular at e− [1, (3.1)]. Moreover, if
I is a nonzero ideal of V , M is contained in I by simplicity of M and primeness
of V , and again by Peirce relations,

V + = V2(e)+ + V1(e)+ + V0(e)+ = M+ + B(e+,e−)V
+ = I+ + B(e+,e−)V

+.

The third condition required in the definition of primitivity automatically
holds by non-degeneracy of V .

(ii) By socle theory [16], every simple component of the socle contains a
division idempotent, so (i) applies.

(iii) It is a direct consequence of (ii) and the fact that every minimal inner
ideal generates a simple component of the socle.

Remarks. The fact that the annihilator of a simple component of the socle
is a primitive ideal was proved by Fernández López and Rodŕıguez Palacios
in [12, Proposition 11] for non-degenerate noncommutative Jordan algebras.

An alternative proof of (iii) can be given by using the local characteriza-
tion of primitivity (1.5). Let V be a strongly prime Jordan pair containing a
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minimal inner ideal. Then V contains a rank one element, say b ∈ V −, equiv-
alently, the local algebra Vb of V at b is a division Jordan algebra, therefore
primitive. Hence the whole pair is primitive by (1.5).

2. Modular annihilator Jordan pairs

Throughout this section Φ will be a fixed unital commutative ring of scalars
containing 1

2 .

Definition 2.1. A Jordan system V (algebra or pair) is called modular
annihilator if V is non-degenerate and V/Soc V is radical.

Zelmanov showed in [20] that the Jacobson radical of a Jordan pair is the
intersection of its primitive ideals. Consequently, for a Jordan pair V and an
ideal K of V such that V/K is radical, if there exists a primitive ideal I of V
so that K ⊆ I, then I/K is a primitive ideal of V/K, which is a contradiction.
Conversely if V/K is not radical then there exists a primitive ideal L/K of
V/K such that L is a primitive ideal of V . This result imply:

Lemma 2.1. Let K be an ideal of a Jordan pair V . Then V/K is radical
if and only if for every primitive ideal I, K * I.

The following result extends to Jordan pairs some of the characterizations
of modular annihilator Jordan algebras in [10].

Theorem 2.1. For a non-degenerate Jordan pair V the following condi-
tions are equivalent.

(i) V is modular annihilator.

(ii) No primitive ideal contains Soc V.

(iii) The primitive ideals of V are precisely the annihilators of the simple
components of the socle.

(iv) Rad(V ) = annV (Soc V ), and annV P 6= 0 for any primitive ideal P of
V .

Proof. (i)⇒(ii) It follows from Lemma 2.1.
(ii)⇒(iii) By Lemma 1.6(ii), we just need to see that any primitive ideal

P of V is of the form annV M for a simple component of the socle of V . By
socle theory [16, Theorem 2], given P ideal primitive of V there exists a simple
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component M of Soc V which is not contained in P . Then P ∩ M = 0 by
simplicity of M , equivalently, P ⊂ annV M . Conversely, since primitive ideals
are prime ideals (1.5),

QannV MM ⊂ M ∩ annV M = 0 ⊂ P ⇒ annV M ⊂ P,

which proves the equality (M ⊂ P ⊂ annV M would lead to contradiction).
(iii)⇒(iv) Since the Jacobson radical of a Jordan pair is the intersection

of the primitive ideals,

Rad(V ) = ∩P = ∩annV M,

where M ranges over all simple components of Soc V . Hence

Rad(V ) = annV Soc V.

Now if P is a primitive ideal of V , P = annV M for a simple ideal M implies

0 6= M ⊂ annV (annV M) = annV P.

(iv)⇒(i) By Lemma 2.1 again, if V/Soc V is not radical, there exists a
primitive ideal P of V such that Soc V ⊂ P . Then

annV P ⊂ annV (Soc V ) = Rad(V ) ⊂ P

implies annV P = 0, which is a contradiction.

We finish this section by listing some properties of modular annihilator
Jordan pairs.

Proposition 2.1. Let V be a modular annihilator Jordan pair.

(i) Every local algebra of V is modular annihilator.

(ii) Every ideal I of V is a modular annihilator Jordan pair.

(iii) If I is an ideal of V such that V/I is non-degenerate (annihilator ideals
enjoy this property), then V/I is modular annihilator.

(iv) Every Von Neumann regular element of V lies in the socle. Hence the
socle of V coincides with the set of all Von Neumann regular elements
of V .

(v) For every idempotent e of V , V2(e) has finite capacity.
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Proof. (i) Let y ∈ V −σ. Denote by x 7−→ x the canonical map of V
onto V/Soc V . Since V is modular annihilator, for every x ∈ V σ, (x, y) is
quasi-invertible in V/Soc V . Then x is quasi-invertible in (V σ/Soc V σ)y =
V σ(y)/Soc V σ. But

x + Soc V σ 7−→ x + (Soc V σ + Ker(y))

is a homomorphism of Jordan algebras of V σ(y)/Soc V σ onto V σ(y)/(Soc V σ +
Ker(y)). Moreover, by (1.4), V σ(y)/(Soc V σ + Ker(y)) is isomorphic to
Vy/Soc Vy. Therefore (x + Ker(y)) + Soc Vy is quasi-invertible in Vy/Soc Vy.
Taking into account the non-degeneracy of Vy inherited from that of V (1.1),
the local algebra Vy is shown to be modular annihilator.

(ii) and (iii) can be proved using similar techniques to those of the case of
Jordan algebras [10].

(iv) Let x ∈ V σ be a Von Neumann element. Denote by π : V −→ V/Soc V
the canonical homomorphism. Since V/Soc V is radical, π(x) = 0 because
Rad(V/Soc V ) contains no nonzero Von Neumann regular elements [15, 5.1].
Then x ∈ Soc V σ. To conclude, it is known that Soc V σ consists of Von
Neumann regular elements [16, Theorem 1].

(v) follows from (iv) and [16, Theorem 1(ii)].

3. Modular annihilator Banach Jordan pairs

A normed Jordan algebra is a (complex) Jordan algebra J endowed with
a norm ‖ · ‖ making continuous the product of J . If the norm is complete,
J is said to be a Banach Jordan algebra. Of course we can always renorm J
with an equivalent norm ‖ · ‖′ so that ‖x · y‖′ ≤ ‖x‖′‖y‖′ for all x, y in J .

By a normed Jordan pair we shall mean a Jordan pair V = (V +, V −),
where the vector spaces V + and V − are endowed with norms making continu-
ous the products of V . If these norms are complete, then we shall say that V
is a Banach Jordan pair. It’s clear that if V is a normed (Banach) Jordan pair
then for each y ∈ V −σ, the homotope V σ(y) with the same norm as V σ, is a
normed (Banach) Jordan algebra. Moreover by the continuity of the operator
Qy, Ker(y) = KerQy is a closed ideal of V σ(y). Hence for the quotient norm

(3.1) the local algebra Vy is a normed (Banach) Jordan algebra.

Let J be a unital Banach Jordan algebra over the complex field. Recall
that the spectrum of an element x in J is defined by the set

SpJ(x) = {λ ∈ C : λ− x is not invertible in J} .
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If J is not unital then its unital hull J ′ = C ⊕ J is a Banach Jordan algebra
with the norm ‖α + x‖ = |α| + ‖x‖ and the spectrum of x ∈ J is defined to
be SpJ ′(x). Further results on spectral theory can be found in [6].

Let V be a Jordan pair over the complex field and (x, y) ∈ V = (V +, V −).
The spectrum of (x, y) is defined by the set

SpV (x, y) =
{

λ ∈ C : λ− x is not invertible in C⊕ V σ(y)
}

.

Lemma 3.1. Let V be a complex Jordan pair and (x, y) ∈ V then

SpV (x, y) = SpVy(x̄) ∪ {0},
where x 7→ x̄ denote the canonical mapping of V σ(y) onto Vy.

Proof. First one proves that for a quasi-invertible ideal I of a unital Jordan
algebra J

SpJ(x) = SpJ/I(x̄),

where x̄ is the image of x in J/I. Indeed if x is invertible in J then so is x̄
in J/I. Conversely, if x̄ is invertible in J/I, then there exists y ∈ J such that
Ux̄ȳ = 1̄ that is 1−Uxy = i for some i ∈ I. Therefore Uxy = 1− i is invertible
in J and then so is x. Moreover if J is not unital then

SpC⊕J(x) = SpC⊕(J/I)(x̄).

Now Ker(y) is a quasi-invertible ideal in V σ(y), [15, Proposition 4.18.(2)].

The following result by Benslimane and Rodriguez [5] will be needed in the
proof of the main result of this section (Theorem 3.2) together with Lemma
3.2 below.

Theorem 3.1. Let x be an element of a complex Jordan Banach algebra
J and 0 6= λ an isolated point of SpJ(x). Then there exists an idempotent e
of J such that λ /∈ SpJ(x− Uex).

Let V be a complex Jordan pair. An element x ∈ V −, is said to have
properly finite spectrum if SpV (y, x) is finite for all y ∈ V +, equivalently, by
Lemma 3.1, the local algebra Vx of V at x is spectrally finite.

Under some conditions, Hessenberger, basing his argument on the spectral
boundness of properly finite spectrum elements, had established an elemental
characterization of the socle [13], giving a positive answer to the question in
[17, 3.9]. Now, by making use of local algebras, we give a simple proof of the
same result. This suggests that local theory plays a crucial role in this work.
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Lemma 3.2. Let V be a complex semiprimitive Banach Jordan pair. For
x ∈ V −σ, the following conditions are equivalent.

(i) x ∈ Soc V −σ.

(ii) x has properly finite spectrum.

Proof. (i)⇒(ii) This is immediate from [17, Theorem 3.6].
(ii)⇒(i) If x has properly finite spectrum then, by Lemma 3.1, the local

algebra Vx is finite spectrum. Moreover since V is semiprimitive then so is Vx

[7, Theorem 3.1 (ii)]. Now, in virtue of [4], Vx has a finite capacity. Finally,
by (1.2), x ∈ Soc V −σ.

Definition 3.1. A complex Banach Jordan pair V is said to be inessential
if, for every (x, y) ∈ V , SpV (x, y) has 0 as the only possible accumulation
point. Equivalently, by Lemma 3.1, every local algebra of V is inessential or
Riesz [9].

We next state the main result of this section.

Theorem 3.2. For a complex semiprimitive Banach Jordan pair V the
following conditions are equivalent.

(i) V is modular annihilator.

(ii) V is inessential.

Proof. (i)⇒(ii) By Proposition 2.1(i), for every y ∈ V −σ, the local algebra
Vy of V at y is modular annihilator. Moreover, it is semiprimitive by [8,
Theorem 3.1 (ii)] and Banach by (3.1). Hence, by the main result of [5], Vy is
inessential, equivalently as pointed above, SpV (x, y) has 0 as the only possible
accumulation point for every x in V σ.

(ii)⇒(i) First we see that every Von Neumann regular element u ∈ V −σ

is in the socle. Consider the local algebra Vu of V at u. As before, Vu is
a semiprimitive Banach Jordan algebra which is inessential by Lemma 3.1.
Since it is also unital (1.3), it follows that it is spectrum finite (SpJ(1 + x) =
1+SpJ(x) for every x in a unital Banach Jordan algebra J). Therefore u has
properly finite spectrum, which implies by Lemma 3.2 that u is in the socle.
Let us now see that V/Soc V is radical. Given (x, y) ∈ V , we distinguish the
cases 1 /∈ SpV (x, y) and 1 ∈ SpV (x, y).

If 1 /∈ SpV (x, y) then x is quasi-invertible in V σ(y). Denote by x 7→ x̄ the
canonical map of V onto V/Soc V. Thus x̄ is quasi-invertible in (V σ/Soc V σ)(ȳ)
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that is (x̄, ȳ) is quasi-invertible in V/Soc V . If 1 ∈ SpV (x, y), then 1 is an iso-
lated point of SpV σ(y)(x) since V is inessential. In virtue of Theorem 3.1 there
exists an idempotent e in V σ(y) such that

1 /∈ SpV σ(y)(x− Uex) = SpV (x− Uex, y),

where Ue = QeQy is the U -operator in V σ(y). Thus

1 /∈ SpV (x− Uex, ȳ).

But e = e(2,y) = Qey is Von Neumann regular in V , so e ∈ Soc V σ by we have
just proved. Therefore

1 /∈ SpV (x̄, ȳ),

that is, (x̄, ȳ) is quasi-invertible in V/Soc V .

The following result is a partial converse of Proposition 2.1(i).

Corollary 3.1. A complex semiprimitive Banach Jordan pair is modular
annihilator if and only if so are all its local algebras.

Remark 3.1. In the implication (i)⇒(ii) of Theorem 3.2 the condition “V
is semiprimitive” is superfluous. However, it turns out to be necessary in the
converse. To justify this assertion it suffices to consider the following coun-
terexample. The Banach Jordan pair V = (A′, A′)J , associated to the associa-
tive pair (A′, A′) obtained by doubling the unital hull of a radical semiprime
Banach associative algebra A with the product Qxy = xyx for all x, y in A′,
is inessential (SpV (x, y) = SpA′(xy) = {0}). However V is not modular an-
nihilator. Indeed, since SocA = Soc A′ = 0 and Soc V = (SocA′, SocA′), we
see that V = V/Soc V is nonradical because so is A′.

4. Compact Banach Jordan pairs

Definition 4.1. A complex Banach Jordan pair V (algebra J) is said to
be compact if Qx (Ux) is a compact operator for all x ∈ V σ (x ∈ J).

Lemma 4.1. Let V be a compact Jordan pair. Then every homotope of
V is a compact Jordan algebra.

Proof. It follows immediately by means of the continuity of the operators
Qx and the following classical characterization of linear compact operators.



74 m. benslimane, h. marhnine, c. zarhouti

Given X, Y , two Banach spaces and T ∈ L(X, Y ) a continuous linear
operator. T is compact if and only if, for every bounded sequence {xn} of X,
there exists a subsequence of {T (xn)} which converges.

Lemma 4.2. Let V be a complex compact non-degenerate Banach Jordan
pair. Then

(i) Every idempotent e of V lies in the socle.

(ii) If I = (I+, I−) is an ideal of V not contained in Rad(V ) then I contains
a nonzero division idempotent.

Proof. (i) Let e = (e+, e−) be an idempotent in V . Then the Peirce-2-
projection Eσ

2 = QeσQe−σ is a compact operator which is the identity when
restricted to QeσV −σ. Hence the unit ball of QeσV −σ is compact, so QeσV −σ

has finite dimension. Therefore V2(e) has dcc on principal inner ideals. On the
other hand V2(e) is non-degenerate because so is V [15, 5.10]. Now, in virtue
of [16, Corollary 1], V2(e) = Soc V2(e). But Soc V2(e) = Soc V ∩ V2(e) since
V2(e) is a full subpair of V [16, Proposition 3]. This implies that e ∈ Soc V .

(ii) Let I = (I+, I−) be an ideal of V such that I * Rad(V ). By [15,
Proposition 4.18], there exists some y ∈ V σ such that Iσ * Rad(V σ(y)).
Using again [10, Lemma 6.2], together with Lemma 4.1, Iσ contains a nonzero
idempotent a = a(2,y) of V σ(y) that is e = (a,Qya) is an idempotent in V [15,
5.2]. As in the proof of (i) we obtain:

V2(e) = Soc (V2(e)).

Thus V2(e) contains a nonzero division idempotent and lies in I.

Corollary 4.1. For a complex compact nonradical Banach Jordan pair
V , Soc V 6= 0. Moreover if Rad(V ) = 0 then Soc V is essential in the sense
that Soc V σ hits Iσ for all ideals I = (I+, I−) of V such that Iσ 6= 0 and
annV Soc V = 0.

Proof. Since V is nonradical, there exists 0 6= a ∈ V σ such that the ideal
〈a〉 generated by a is not contained in Rad(V ). Thus by Lemma 4.2 〈a〉
contains a nonzero idempotent e ∈ Soc V . On the other hand, if Rad(V σ) = 0,
then, by Lemma 4.2, any nonzero ideal I of V contains a nonzero division
idempotent e lying in the socle. The last assertion follows from the fact that
Soc V is essential and annV Soc V ∩ Soc V = 0.
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Theorem 4.1. Every complex non-degenerate compact Banach Jordan
pair V is modular annihilator.

Proof. We will show that Rad(V ) = annV Soc V and annV P 6= 0 for every
primitive ideal P of V, which is equivalent to the modularity of V by Theorem
2.1. In general, Rad(V ) ⊆ annV Soc V . Indeed

QRad(V σ)Soc V −σ ⊆ Rad(V σ) ∩ Soc V σ = 0,

since Rad(V σ) contains no nonzero Von Neumann regular elements [15, 5.1].
Before going on with the proof let us note that if V is compact and non-
degenerate then, by the continuity of the canonical projection π : V σ(y) → Vy,
the local algebra Vy of V at y is also compact and by (1.1) it is modular
annihilator [10, Theorem 6.4]. This result is a key fact in the proof of what
follows. On the other hand, for x ∈ annV Soc V −σ, QxSoc V −σ = 0. Thus for
every y ∈ V −σ, QxQySoc V σ = 0. It follows that

π(QxQySoc V σ) = 0,

equivalently, Uπ(x)π(Soc V σ) = 0, where Uπ(x) is the U-operator in the Jordan
algebra Vy. By (1.4), Uπ(x)(Soc Vy) = 0 that is π(x) ∈ annVySoc Vy. Since Vy

is modular annihilator, we have by [10, Theorem 4.2] that π(x) ∈ Rad(Vy).
But Rad(Vy) = Rad(V σ(y))/Ker(y), since Ker(y) ⊆ Rad(V σ(y)) [15, Propo-
sition 4.18.(2)]. This implies that x ∈ Rad(V σ(y)). Now x ∈ Rad(V σ), since

Rad(V σ) =
⋂

y∈V −σ

Rad(V σ(y)) [15, Proposition 4.18].

For a primitive ideal P = (P+, P−) of V the Jordan pair V/P is primitive.
Thus, by (1.5), there exists a y /∈ P−σ such that the local algebra (V σ/P σ)ȳ

is primitive where ȳ is the image of y in V/P . It’s easily seen that Ker(ȳ) =
Q−1

y (P−σ)/P σ since P σ ⊆ Q−1
y (P−σ). Therefore

(V/P )ȳ = (V σ/P σ)(ȳ)/Ker(ȳ) = (V σ(y)/P σ)/(Q−1
y (P−σ)/P σ).

But (V σ(y)/P σ)/(Q−1
y (P−σ)/P σ) is isomorphic to Vy/π(Q−1

y (P−σ)). It follows
that π(Q−1

y (P−σ)) is a primitive ideal of Vy. By [10, Theorem 4.2] again we
conclude that annVyπ(Q−1

y (P−σ)) 6= 0. Thus there exists x /∈ Ker(y) such
that

Uπ(x)π(Q−1
y (P−σ)) = 0,
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that is, QxQyQ
−1
y (P−σ) ⊆ Ker(y). Therefore, using JP3, this leads to

QQyxQ−1
y (P−σ) = 0. This implies that QQyxP σ = 0 say 0 6= Qyx ∈ annV P σ.
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[10] Fernández López, A., Modular annihilator Jordan algebras, Comm. Al-
gebra, 13(12) (1985), 2597 – 2613.
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