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1. INTRODUCTION

The concept of m-barrelled algebra was introduced in [5]. Using sequential
convergence, we introduce, in this paper, sequentially m-barrelled algebras in
the same fashion as s-barrelled spaces were introduced in [8].

An analogue of the Banach-Steinhaus theorem is proved. As an applica-
tion, we obtain an interesting result in orthogonal bases, which is the analogue
of the isomorphism theorem.

An algebra which is also a locally convex space is called a locally convex
algebra if the multiplication in it is jointly continuous. A subset S of an
algebra is called m-convex if it is convex and idempotent (i.e. SS C 9).
A locally convex algebra E is called a locally m-convex algebra if it has a
neighbourhood basis of 0 consisting of closed, circled and m-convex sets [7].
A locally convex algebra E is called an m-barrelled algebra if every m-barrel
(closed, circled, m-convex and absorbing set) is a neighbourhood of 0 in E' [5].
A locally convex space is called a barrelled space (sequentially barrelled space)
if every barrel, i.e. closed, circled, convex, absorbing set, is a neighbourhood
of 0 (an S-barrel, i.e. sequentially closed, circled, convex, absorbing set, is
a sequential neighbourhood of 0 [8]). A mapping T': £ — F (F and F
are algebras) is called multiplicative if T'(xy) = T'(z)T(y). A set V in a
topological vector space X is called a sequential neighbourhood of 0 if every
sequence in X converging to 0 belongs to V' eventually.

A sequence {z;} in a locally convex space E is called a topological basis
(or, basis) for E if for each z in E, there is a unique sequence {«;} in K such
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that
n
T = li}ln Z ;T
i=1

in the topology of E [6]. Each «;, called expansion coefficient, defined by
Ai(x) = «y, defines a linear functional A\; on E. If each \; is continuous
(sequentially continuous) then {z;} is called a Schauder basis (S-Schauder
basis [4])

Let E and F' be locally convex spaces. A sequence {z;} in E is similar to
a sequence {y;} in F' if for all sequences {a;} C K, > 2 a;z; converges (in
E) iff 7%, a;y; converges (in F) [2].

A mapping T : E — F is called sequential topological isomorphism if
it is linear, one-one, onto, sequentially continuous and T~! is sequentially
continuous.

A basis {x;} in a locally convex algebra E is called orthogonal if z;z; = 0
for i # j and 27 = z; [1]. In a Hausdorff locally convex algebra (or even
in Hausdorff Topological algebra) an orthogonal basis is a Schauder basis [1].
We always consider vector spaces over the field of complex numbers.

2. SEQUENTIALLY M-BARRELLED ALGEBRAS

In this section we introduce the concept of sequentially m-barrelled algebra
with two examples and obtain some results.

DEFINITIONS 2.1. (a) Let E be a locally convex algebra. If a subset A
is an S-barrel and idempotent, then it is called a sequentially m-barrel.

(b) If every sequentially m-barrel in E is a sequential neighbourhood of
0, then E' is called a sequentially m-barrelled algebra.

Remarks 2.2. (a) Every m-barrel is a sequentially m-barrel.
(b) In a metrizable locally convex algebra, the concepts of m-barrelled
algebra and sequentially m-barrelled algebra coincide.

EXAMPLE 2.3. Let C(I) be the Banach algebra of all continuous functions
on I = [0,1] with the norm

171l :Stlely{!f(t)l}, fec).
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Let E be the vector subspace of C(I), consisting of all elements f € C(I)
which vanish in a neighbourhood (depending on f) of t = 0. Let

B={feE :|f(1/n)| <1/n forallnEN}.

Then B is a sequentially m-barrel in £. But B is not a sequential neighbour-
hood of 0in E [3]. Hence E' is not a sequentially m-barrelled algebra. However
C(I), being a Banach algebra, is sequentially m-barrelled algebra. Since F is
an ideal in C([), it follows that an ideal of a sequentially m-barrelled algebra
need not be of the same sort.

ExaMPLE 2.4. If E is an algebra, the family of all circled, convex, ab-
sorbing and idempotent sets is a basis of neighbourhoods of 0 for a locally
m-convex topology on F which is the strongest locally m-convex topology on
E. Now let E' be the subalgebra of K[z] of all polynomials without constant
term. If v is a positive real number, let V(«) be the circled convex envelope of
{a™z™ : m € N}. The family {V(«)}, with « rational and less than one, is
a basis of neighbourhoods of 0 for the strongest locally m-convex topology on
E. This topology is metrizable. Now, E, with this topology, is a sequentially
m-barrelled algebra which is not S-barrelled, since it is metrizable but not
barrelled [9].

OPEN PROBLEM 2.5. Is there a sequentially m-barrelled algebra which is
not m-barrelled?

PropPOSITION 2.6. Let E be a sequentially m-barrelled algebra and F' a
locally m-convex algebra. If f is a multiplicative linear mapping of E into F',
then f is almost sequentially continuous.

Proof. Let V' be a circled m-convex neighbourhood of 0 in F. Then

— S

f~1(V)", the smallest sequentially closed set containing f~1(V), is a sequen-
tial m-barrel in £ and hence a sequential neighbourhood of 0 in E. This
proves that f is almost sequentially continous. |

PROPOSITION 2.7. Let E be a sequentially m-barrelled algebra and F a
locally convex algebra. If f is a sequentially continous and almost sequentially

open, multiplicative, linear mapping of E into F, then F' is sequentially m-
barrelled.
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Proof. Let B be sequential m-barrel in F. Then f~!(B) is a sequential m-
barrel in £/ and hence a sequential neighbourhood of 0 in E. Since f is almost

=S
sequentially open, it follows that f{f~1(B)} is a sequential neighbourhood
of 0 in F. But

By cB’ =8

so that B is a sequential neighbourhood of 0 in F. Hence F' is a sequentially
m-barrelled algebra. 1

3. MAIN RESULTS

In this section, we obtain an analogue of Banach-Steinhaus theorem for
sets of multiplicative linear mappings on sequentially m-barrelled algebras
and we use it to prove an analogue of the isomorphism theorem by using the
orthogonal basis.

Let £ and F be locally convex spaces. Then a set H of linear mappings
from E to F' is called equi-sequentially continuous if for each neighbourhood
V of 0in F, Ngep f~1(V) is a sequential neighbourhood of 0 in E.

THEOREM 3.1. Let E be a sequentially m-barrelled algebra and F any
locally m-convex algebra. If H is a simply bounded set of sequentially contin-
uous multiplicative linear mappings, then H is equi-sequentially continuous.

Proof. Let V' be a closed, circled and m-convex neighbourhood of 0 in
F. Then Ngepr f~1(V) is a sequentially m-barrel in £ and hence a sequential
neighbourhood of 0 in E. Thus H is equi-sequentially continuous. |

COROLLARY 3.2. Let E and F be as in 3.1. Suppose {f,} is a pointwise
bounded sequence of sequentially continuous multiplicative linear mappings
from E to F. Then {f,} is equi-sequentially continuous.

COROLLARY 3.3. Let E and F be as in 3.1. If {f,} is a sequence of
sequentially continuous multiplicative linear mappings from E to F such that
it converges pointwise to a mapping f : E — F, then f is linear, multiplicative
and sequentially continuous.

As an application of 3.3, we have the following analogue of the isomorphism
theorem.
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THEOREM 3.4. Let E and F be sequentially m-barrelled algebras. Sup-
pose {z;, \i} and {y;, i} be orthogonal S-Schauder bases in E and F re-
spectively. Then {x;, \;} is similar to {y;, u;} if and only if there exists a
multiplicative sequentially topological isomorphism T : E — F such that
T(x;) =y; for all i € N.

Proof. If such a T exists, then for all sequences {a;} C C, Y 2, a;z;
converges (in E) iff

o o [o.¢]
T (Z aixl) = Z aiT(xi) = Z a;Y;
=1 =1 =1

converges (in F'). Hence we get similarity. Conversely, we assume that the
bases are similar. For each z € E, x = Y77, \i(z)z;.
We define T;, by

To(x) = Z)\i(x)xi, neN,
i=1

and T' by
T(z) =Y Ni(z)zi;
i=1

T is well-defined, one-one, onto, each T;, is sequentially continuous, linear,
multiplicative, and {7} converges pointwise to T'. Hence, by 3.3, T' is se-
quentially continuous, linear and multiplicative. Similarly 7~ is sequentially
continuous. Hence T' is multiplicative sequentially topological isomorphism.

COROLLARY 3.5. Suppose E and F in 3.4 are Hausdorff, and {x;, \;} and
{vi, i} are orthogonal bases in E and F respectively. Then the result of 3.4
follows.

Proof. Since E and F are Hausdorff, {z;, \;} and {y;, u;} are Schauder
bases [1] and hence S-Schauder bases. |}
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