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In the first part of this article we deal with the characterization of A(Pp; N)-
nuclearity of a sequence space when equipped with other ‘natural’ (and more
general) topologies. Indeed, efforts have been made to explore conditions for
the A(Py; N)-nuclearity of a sequence space when it is endowed with the op-
topology of Ruckle. In an analogous way, a Grothendieck-Pietsch like criterion
is obtained for the A(Py;N)-nuclearity of the class of the generalized Kéthe
spaces A\, (P). For p = ¢, this yields the well-known Grothendieck-Pietsch
criterion for the A(Pp;N)-nuclearity of a Kothe space A(P). It is observed
that for a Hilbert K-space p having a monotone normalized Schauder basis,
A(Po; N)-nuclearity of the extended Kéthe space A, (P) is synonymous with the
A(Po; N)-nuclearity of the Kothe space A(P). It is shown that for a A\(Pp; N)-
nuclear space (A, ou) (resp., \*), a sequentially complete space having a fully-
A-base (resp., fully-A*-base) is A\(Py; N)-nuclear. In addition, there are some
results which make it amply clear that the impact of the associated sequence
space p is equally significant so far as the structure of a sequentially complete
space possessing a fully-A-base (or fully-A\*-base) is concerned.

1. INTRODUCTION

For various terms, definitions and notations unexplained here regarding
the nuclearity and sequence space we request to refer [10] and [14] in order to
appreciate the subject matter of the discussions.

Throughout this article we assume Py = {(b¥): k& > 1} to be a stable,
countable nuclear power set of infinite type. For k > 1, we define the sequence
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space
APoik) ={z €w: Y |albf < oo}
i>1

We say an l.c. TVS E is A\(Py;N)-nuclear if it is A(FPp; k)-nuclear for each
k > 1. Equivalently, E is A(Py; N)-nuclear if and only if for each k¥ > 1 and
u € Bp, there exists v € Bg, v < u, with {b¥§;(v,u)} € £° (cf. [3], [6]
and [15]). Well-known example of a A(Py;N)-nuclear space is provided by
A(Py) itself (cf. [12], [15]). At this stage let us recall from [15] (cf. [12]) that
A(Po) is not A(Py)-nuclear. This tells that there does exists a A\(Py; N)-nuclear
space which fails to be A(Pp)-nuclear. The details concerning this aspect of
investigations can be had from [3], [6], [12] and [15].

2. CRITERIA FOR A(FPp; N)-NUCLEARITY

Given a Kothe set P and a sequence space u the generalized Kothe space
(or the extended Kothe space) A, (P) is defined by

M\u(P) ={z € w: za € pu, Ya € P}.

We equip A, (P) with its natural locally convex topology, generated by the
family {p,y: a € P,y € p*} of semi-norms where

Pay(@) = py(ea) =) lziyilai  (z € Xu(P)).
i>1

Clearly, for p = €', A\, (P) coincides with the K&the space A\(P) set theoreti-
cally as well as topologically.

The Grothendieck-Pietsch like criterion for the A(Fyp; N)-nuclearity of A, (P)
is provided by the following

PROPOSITION 2.1. A, (P) is A(Py;N)-nuclear iff to each j > 1, a € P
and y € p*, there correspond b € P and z € u® such that the sequence
{anyn/bnzn} can be re-arranged into a member of A(Fy; j).

Proof. Assume that A\,(P) is A(Pp; N)-nuclear and let j € N, a € P and
y € pu*. By [9, p. 32] there exists k € N such that \(Pp; k)-nuclearity implies
A(Po; j)-type. By definition, there exist b € P and z € p* such that the
canonical map
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is A(Py; j)-type, where S\(a,y) is the completion of the quotient space A\, , =
Au(P)/ker pay. The mapping ey @ Aoy — Loy Where q4(2) = {anTnyn},
T € Ay, can be uniquely extended to an isometric isomorphism qﬁ&y : X(aﬂ) —
lyy. Here

ly={a e ¢z, =0, Vn where a, = 0}.

But

b,z 2 o-(b,z *—_
Déavy)) - waﬂ © K((afy% © wb"zl

is a diagonal transformation determined by the sequence {a,yn/bnzn}. So
DEZ?) is of A(Pp; j)-type. Thus, by [11, p. 158], the decreasing rearrangement
of {anyn/bnzn} belongs to A(FPy; 7).

Conversely, if the given condition is satisfied, it follows that A, (P) is nu-
clear such that the canonical maps are of A(Py;j)-type on Hilbert spaces for
each given j € N. Then \(Py; N)-nuclearity of A,(P) now follows by applying
Lemma 3.5(i) of [12] to these canonical mappings. |

Remark 2.2. (i) For p = ¢!, this reduces to the famous Grothendieck-
Pietsch criterion for the A(Pp; N)-nuclearity of the Kéthe space A\(P) (cf. [15,
Proposition 2.2.1}).

(ii) For a A(Pp; N)-nuclear space (1, n(p, p*)), Au(P) is A(Po; N)-nuclear.

Following Ruckle [13], we have a generalization of the traditional normal
topology, namely, ou-topology on a sequence space A, corresponding to a
sequence space p; defined by the family {p, .: y € M,z € p*} of semi-norms
where

MW={ycw:zyecpu, Y e}

and
Pyz() = Z [wiyizil, (z € A).
i>1
Observe that this pu-dual M includes the well-known duals like a-dual (or
cross dual), -dual and 7-dual (cf. [13], [14]). We say that A is p-perfect if
A = M = (AP where

MW ={z€cw:zyepu Yyec I}

For ;1 = A!, obviously this gives the perfectness of A. Analogously, the o* -
topology on M is obtained by the collection {p,.:y € A,z € p*} of semi-
norms where

py(z) = Z |ziyizil,  (x € AH).
i>1
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The details concerning the above topologies and p-perfectness with its related
aspects can be seen from [1], [2] and [7].

The Grothendieck-Pietsch like criterion for the A(Py; N)-nuclearity of (A,
o) is contained in

THEOREM 2.3. Let A be a u-perfect sequence space for a perfect sequence
space . Then A is A(Pp; N)-nuclear iff to each j > 1, y € A\ and z € u”,
there correspond u € M and v € p* such that the sequence (Ynzn /Unvy) can
be rearranged into a sequence of A(Py; j).

Remark 2.4. (i) The above result yields the A(FPp; N)-nuclearity of Kothe
space A(P) when p = ¢ (cf. [12], [15]).

(ii) (A, op) is A(Po; N)-nuclear, for a A(FPp; N)-nuclear space u, no matter
what sequence space is choosen for .

Likewise, one obtains

PROPOSITION 2.5. The p-dual M\ is A(FPo; N)-nuclear iff for each j > 1,
y € X and z € u*, there exist u € XA and v € p® such that {y,z,/unv,} can be
re-arranged into a sequence of \(Py; j).

Remark 2.6. (i) For u = ¢!, the above gives us the criterion for the
A(Po; N)-nuclearity of (A%, n(A*, \)).

(ii) A" is A(Pp; N)-nuclear provided g is A(FPp; N)-nuclear (irrespective of
the choice of \).

In the final result of this section we assert that \(Pp; N)-nuclearity of the
generalized Kothe space A, (P) is synonymous with the A\(Py; N)-nuclearity of
the Kothe space A(P), for a Hilbert space p having a monotone normalized
Schauder basis. Precisely, we have the

THEOREM 2.7. Let p be a Hilbert K-space with a monotone normalized
Schauder basis. Then \,(P) is A(Py; N)-nuclear iff \(P) is A\(Py; N)-nuclear.

Proof. If \(P) is A\(Py; N)-nuclear then, in view of Proposition 2.1, by [15,
Proposition 2.2.1], A,(P) will be always A(P; N)-nuclear. So we prove the
other part.

Let A, (P) be A(Py;N)-nuclear. Suppose j € N and a € P are choosen
arbitrarily. By [9, p.32], there exist some k € N such that A\(Fy; k)-nuclearity
implies A\(Py; j)-type. So KU : M, (P;b) — Au(P;a) is A(Po;j)-type. As
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before one can identify \,(P;a) = Ay(P)/kerp, with p, = {z € p: x, =
0 for n where a,, = 0} via the unique extension ¥, () = {anz,}, € Au(P).
Then clearly D% = @@a oK 5o @@b_ 1'is a diagonal map on p, determined by
{a,/by}. But K?is A(Pp; j)-type and hence D will be of A(Py; j)-type. Then
by modifying [8, Lemma 3.3] we can conclude that {a,/b,} can be rearranged
into a sequence of A\(Py;j), which is equivalent to the A\(FPy; N)-nuclearity of
A(P) in view of [15, Proposition 2.2.1]. §

3. A(Py;N)-NUCLEARITY OF LOCALLY CONVEX SPACES
WITH GENERALIZED BASES

We begin this section with the following

DEFINITION 3.1. Let E be a locally convex TVS and A be a sequence
space carrying the ou-topology and A\* be equipped with o*u-topology. Then
a Schauder basis {z;, f;} for E is said to be a semi-A-basis (resp., semi-A*-
basis) if, for each p € Bg, {fi(x)p(x;)} € A (resp. {fi(z)p(x;) € \*}) and it is
called a fully-A-basis (resp. fully-A\*-basis) provided for each p € Br the map
Yy E — X (resp. ¢, : E — M) is continuous where ¢, (z) = {fi(x)p(z;)}.

The details regarding fully-A-basis (resp. fully-A*-basis) and its application
can be had from [1] and [2].

The result to follow, establishes that a sequentially complete space with a
fully-A-basis can be topologically identified with a A(Pp; N)-nuclear sequence
space (A, op). Indeed, we have

THEOREM 3.2. Let E be a sequentially complete space having a fully-A-
basis {x;, fi}. Let y € \* and z € p* be such that y; > € >0 and z; > 1 > 0,
Vi, for some epsilon and . Then E is A(Py; N)-nuclear if (A, op) is AM(FPo; N)-
nuclear.

Proof. By [1, Theorem 3.1], E' can be topologically identified with a K6the
space A(P;) where
Py ={p(xi)abi: p € Bg, a € N, b e pt}.

Thus, E is A(Pp;N)-nuclear iff A\(P;) is A(Pp; N)-nuclear. Since (A, ou) is
A(Py; N)-nuclear, in view of Theorem 2.3 to each j > 1, a € A} and b € pf
there correspond ¢ € X, d € p% and a permutation 7 such that

Ar(i)br() } .
————= ¢ € M Fo3 ).
{Cﬂ(i)dw(i)
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Consequently, E is A(Py; N)-nuclear by the famous Grothendieck-Pietsch cri-
teria (cf. [15]) because, for any j > 1, p € Bg, a € A} and b € p%, we

have ( ) .
P(Zr(i))Ar (i) W(i)} .
€ M Po; j)-
{p(xw(i))cw(i)dﬂ(i)

Note. For = ¢!, this yields that a sequentially complete space with a
fully-A-basis is A(Pp; N)-nuclear, provided (A, n(A, A*)) is a A(Pp; N)-nuclear
space with k-property. So what we find easily is that a sequentially complete
space with a fully-A(P)-basis is A(Pp; N)-nuclear provided A(P) is a A\(Py; N)-
nuclear Goo-space. Hence a sequentially complete space with a fully-A(FPp)-
basis is A(Pp; N)-nuclear (cf. [15]).

In view of Remark 2.4 (ii), we have the

COROLLARY 3.3. Let E be a sequentially complete space with a fully-A-
basis. Suppose that there exist y € A and z € p® with y; > € > 0 and
zi > 1> 0, for all i, for some € and l. If (u,n(u, u*)) is A(Po; N)-nuclear then
E is M\(Py; N)-nuclear.

A review of the analysis involved in the proof of Theorem 3.2, suggest that
the following holds

PRrROPOSITION 3.4. Let E be a sequentially complete space with a fully-A-
basis such that for some a € \* and b € u* we have a; > € > 0, b; > 1 > 0,
Vi > 1, for some € and l. Suppose that given j > 1,y € N there exists z € A
such that {y;/z;} can be rearranged into a sequence of A\(Py;j). Then E is
A(Po; N)-nuclear.

A cursory glance at the proof of Theorem 3.2 also reveals that the following
is true

THEOREM 3.5. Let E be a sequentially complete space having a fully-A\#-
basis {x;, f;} such that for some a € X\ and b € u*, a; > ¢ >0 and b; > 1> 0,
for all i, for some € and l. If v is \(Py; N)-nuclear then E is A(Py; N)-nuclear.

Proof. Invoking [1, Proposition 3.3], we can identify E topologically with
a Kothe space A(P) where

P = {p(z;)a;b;: p € Bg,a € \y,b € puf}.

The rest of the proof is analogous to the proof of Theorem 3.2; of course, in
this case we make use of Proposition 2.5. 1
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COROLLARY 3.6. Let E be a sequentially complete space having a fully-
A-basis such that for some a € A and b € u*, a; > e >0, b; > 1 > 0, for all i,
for some € and l. If p is A(Py; N)-nuclear then E is A(Py; N)-nuclear.

Proof. This follows from Theorem 3.5 in view of Remark 2.6 (ii). 1

Analogous to Proposition 3.4 we have

PROPOSITION 3.7. Let (E,T) be a sequentially complete space possessing
a fully-A*-basis where for some a € A\, b € p*, a; > ¢ > 0 and b; > 1 > 0,
for all i and for some € and . Suppose that for each j > 1 and y € Ay there
corresponds z € A4 such that {y;/z} can be rearranged into a sequence of
A Po; 7). Then E is A(Po; N)-nuclear.

Note. For i = (', this says that a sequentially complete space with a
fully-A"-basis is A\(Pp; N)-nuclear provided {A\*,n(A*,\)} is A\(Pp; N)-nuclear
and there is some y € A with y; > ¢ > 0, Vi, for some € > 0. So a sequen-
tially complete space with a fully-A; («)*-basis is A(Py; N)-nuclear, if Aq(«) is
A(Py; N)-nuclear.

The following results bear the testimony of the importance of the weak
sequential completeness of the dual E* in obtaining the A\(FPy; N)-nuclearity of
E from the presence of a semi-\-basis or a semi-\¥-basis.

THEOREM 3.8. Suppose E is a sequentially complete space whose dual
E* is weakly sequentially complete. Let {x;, f;} be an equicontinuous semi-\-
basis for E where X is u-perfect for a perfect sequence space y such that for
somey € M and z € u*, y; > € > 0 and z; > | > 0, for all i, for some ¢ and I.
If X is A(Po; N)-nuclear, then E is A(Py; N)-nuclear.

Proof. Since {z;, f;} is a semi-A-basis, for each p € Bg, a € ¥ and b € p*
we have

> Ifil@)|p(a:)|aibi| < oo, (*)

Now one can identify F with the sequence space A = {(f;(z)): = € E}. Then
modifying the proof of [5, Proposition 2.3], E* can be identified with

AP = {(a): Z a;u; converges for all uw € A}
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wherein the identification is given by
feE — {f(z:)} € A”.

Now (*) means that {p(x;)a;b;} € AP. Thus, what we have proved is, for all
p € Br, a € M and b € p” there exists f € E* with f(x;) = p(x;)a;b;. Due to
the continuity of f we get some q € Br and k£ > 0 such that

p(xi)]aibi| < kq(x;). (+)

Since (A, o) is A(Po; N)-nuclear, in particular it is nuclear, so for each a € \}
and b € p%, by [15, Proposition 1.1] there correspond ¢ € A and d € p% with
{a;b;/cid;} € 1. Consequently, by (+) we get some k > 0 and ¢ € Bg, with
p(xi)|cidi| < kq(;), Vi
Thus, we have the inequality
aibi
> 1 fil@)p(a)|aibs] < ksup{|fi(2)[p(a)} > d

From this inequality it follows that {x;, f;} is a fully-A-basis for E as the basis
is equicontinuous and A is p-perfect. Now the desired conclusion follows by
applying Theorem 3.2. |

Note. This above result tells us in particular that a sequentially complete
space with an equicontinuous semi-A-basis {z;, f;} is A\(Pp; N)-nuclear provided
E* is weakly sequentially complete and (A, n(\, A?)) is a A(Py; N)-nuclear space
with k-property. Hence, a sequentially complete space with an equicontinuous
semi-A(R)-basis is A(Pp; N)-nuclear, provided E* is weakly sequentially com-
plete and A(R) is a A\(Pp; N)-nuclear G-space. Thus a sequentially complete
space with an equicontinuous semi-\(FPp)-basis is A(FPy; N)-nuclear provided
E* is weakly sequentially complete.

Since, for a A(Py; N)-nuclear space (p, n(p, u*)), (A, op) is always A(Pp; N)-
nuclear, we obtain

COROLLARY 3.9. Let E be a sequentially complete space whose dual E*
is weakly sequentially complete. Suppose {z;, f;} is an equicontinuous semi-
A-basis for 2 where X\ is u-perfect for a perfect space y such that for some
yE€MNand z € u*, y; > e >0,z >1>0, for all i, for some € and [. If
(1 (s, %)) s A(Po; N)-nuclear [or if for each j > 1, y € A there exist z € A
and a permutation ™ with {yr()/ 25} € M(FPo; j)], then E is A(Po; N)-nuclear.
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An inspection of the proof of Theorem 3.8 suggest that the following is
true

THEOREM 3.10. Let E be a sequentially complete space with an equicon-
tinuous semi-\"-basis {x;, f;} such that p is perfect and for some a € \ and
bepu® a; >e>0andb; >1>0,Vi, for some e and l. If \* is \(Py; N)-nuclear
then E is A(Py; N)-nuclear provided E* is weakly sequentially complete.

Proof. The proof follows, mutatis mutandis on lines similar to that of
Theorem 3.8. |

Note. From the above result it is clear that a sequentially complete space
with an equicontinuous semi-A*-basis is A(FPp; N)-nuclear, provided (A", n(\*,
A)) is A(Po;N)-nuclear and for some y € A, y; > € > 0, Vi, and E* is
weakly sequentially complete. Consequently, a sequentially complete space
having an equicontinuous semi-A7 («)-basis is A(FPp; N)-nuclear provided A («)
is A(Py; N)-nuclear (cf. [4]).

We know that A\ is always A(Py; N)-nuclear for a A(Py; N)-nuclear space
. This in turn, implies that

COROLLARY 3.11. Let E be a sequentially complete space with an equi-
continuous semi-A\-basis {x;, f;} such that p is perfect and for some a € A and
be u® a; >€e>0andb; >1 >0, Vi, for some € and l. Suppose E* is weakly
sequentially complete and if pu is A(Pp; N)-nuclear [or for each j > 1, y € A
there correspond z € A and a permutation 7 such that {yﬂ(i)/zﬂi)} € XM Po; )],
then E is A\(Py; N)-nuclear.

The present article ends with

PRrROPOSITION 3.12. Let E be a sequentially complete space with a fully-
A-basis {x;, fi}. Suppose further that {x;, f;} is also a fully-u-basis or {e;, e;}
is a fully-u-basis for \*, where i is perfect. Then E is A(Py; N)-nuclear pro-
vided M is A\(Py; N)-nuclear and for some a € X\ and b € p*, a; > ¢ > 0 and
b; > 1> 0, Vi, for some € and .

Proof. 1t follows from Theorem 3.5, as the basis turns out to be a fully-
A-basis. 1
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