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In Section 1 we are showing that the set exp K of exposed points of a
convex subset K of a Banach space, where K is separable and compact with
respect to the weak topology, is Borel in the weak topology and F,s in the
norm topology. If K is norm compact and convex, then we get that exp K
is even a norm K, s-set. This solves Problem 1.14 of [2] asking whether the
set of exposed points exp K of a norm compact convex subset K of a Banach
space is analytic or even Borel (see also Remark 1 below). Let us remark
that a partial solution saying that exp K is analytic in such a case, and in
fact even in the case of a norm K, and convex set K, was given in [4, p.255].
Moreover, our result obviously implies that exp K is (weakly) Borel for every
closed bounded convex K in a separable reflexive Banach space. The latter
fact was conjectured in [4, p.254]. We get the results of Section 1 using the
methods of [2] with minor modifications.

Section 2 concerns some “counterexamples” in nonseparable Banach spaces.
We are showing that in many nonseparable Banach spaces, e.g. in those that
admit a Markushevich basis or in £ (N), there is a bounded closed convex
set K (even a ball with respect to some equivalent norm) such that the sets
exp K and ext K of all exposed or extreme points of K, respectively, are not
Borel (see Theorem 3 below for the exact, and in fact stronger, formulation).
Theorem 2 and its Corollary are devoted to the case of weakly compactly
generated spaces, where weakly compact convex sets K and the corresponding
sets ext K and exp K are discussed.

fOur investigation was supported by GAUK 160/1999, GACR 201/97/0216, GACR
201/97/1161, and MSM 113200007.
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548 P. HOLICKY, V. KOMINEK

Let us first recall some necessary notions. Let K be a convex subset of a
Banach space X. The element z € K is an exposed point of K if there is a
continuous linear form f € X* such that {z} = {z € K: f(2) =supg f}. We
use exp K to denote the set of all exposed points of K. The element = of K
is an extreme point of K if  does not belong to any open segment contained
in K. The set of all extreme points of K is denoted by ext K here.

1. EXPOSED POINTS OF WEAKLY COMPACT CONVEX SETS

First, we formulate the main result of this section in the part (b) of the
following theorem. We state the claim (a) for completeness. We shall see that
it is an immediate corollary of well-known facts from [4].

THEOREM 1. Let K be a convex subset of a Banach space X such that K
is compact and separable with respect to the weak topology.

(a) Then ext K is a K5 subset of X endowed with the weak topology.

(b) Then exp K is an F,5 subset of X endowed with the norm topology. It
is also Borel in the weak topology of X. Moreover, it is Ggss in the
compact metrizable weak topology of K.

Before proving the theorem we shall do few auxiliary observations.

We introduce first a notation that plays a crucial role in what follows. Let
K™ be the set of restrictions of elements of the closed unit ball Bx« of the dual
space X™* to K. We use wj, to denote the topology of pointwise convergence
in K* with respect to points from K, i.e. the trace of the product topology
from RX to K*. Notice that the space (K*,w%) is compact as the continuous
image of (Bx~,w*).

Now we point out the metrizability of (K*, w},) and of K, two easy and
well-known facts, with their short and straightforward proofs for the conve-
nience of the reader.

LEMMA 1. If K is as in Theorem 1, the space (K*, w}.) is compact and
metrizable and the weak topology of K is metrizable.

Proof. Indeed, let S be a countable dense subset of K in the weak topology.
Now, the compact topology w}, coincides on K* with the (obviously weaker)
metrizable topology of pointwise convergence on S.

Similarly, since the elements (that are restrictions of elements of X*) of any
countable dense subset S* of (K*, w},) separate points of the weakly compact
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set K and they are weakly continuous, the weak topology on K coincides with
the metrizable topology o(K, S*) of pointwise convergence on S*. |

So K endowed with the weak topology is analytic (a continuous image of a
separable complete metric space) and K, (in fact it is even a compact metric
space), and we may use the straightforward argument of [4, pp. 251-252] to see
that ext K is a weakly K4 subset of X. Thus the statement (a) is established
and it remains to prove our main statement (b).

Let p denote a metric on K that induces its weak topology. So (K, p) is a
compact metric space. Let us denote by B, a finite cover of K by open balls
having p-diameter at most % The next lemma expresses one of the main
ideas of the method used in [2] to prove their Theorem 1.9 and its corollaries
adapted to our special case. We formulate it explicitly with the proof for the

convenience of the reader.

LEMMA 2. Let K, K*, p, and B,, be as above. Then exp K is the set of
all z € K such that, for every n € N, there are f,, € K* and B, € B,, such
that

fa(z) = m}gxfn and  fn(z) > Ir(n\ai%)i In-

Proof. If © € exp K, then there is an f € X* with f(z) > f(y) for every
y € K\ {z}. Since this holds for each positive multiple of f, we may achieve
that f belongs to the unit ball Bx«. For every n € N we find an element
B, of B,, containing z. By the weak compactness of K \ B;,, we have that
(fIK)(x) > maxf\ g, f. So we may put f, = f|K and one inclusion is proved.

Let £ € K be such that there are B, € B, and f, € K* with f,(z) =
maxg f, and fn(z) > maxg\ g, fn for every n € N. Let f; € Bx- be some
extension of f, € K*. Put f* = >, Q%f;; Obviously, f* € Bx-. Also, if
y € K\ {z}, then f*(z) > f*(y) because fp(x) > fn(y) for every n € N and
fn(z) > fu(y) for n’s for which y ¢ B,,. |

Proof of Theorem 1(b). Let us define

F={(z,f)e K x K*: f(x):mlz(le}

and
Fp={(z,f) € K x K*: f(z) > rlr(lggf},

for every B € ,,cn Ba-
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It is almost obvious that the set F' is closed in (K, || - ||) x (K*,w}). If
(z,f) ¢ F then there is an g € K such that f(z) + € < maxy f = f(zq) for
some positive €. Now every pair (y,g9) € K x K* such that ||y — z|| < €/3,
lg(z) — f(z)] < €/3, and |g(zo) — f(z0)| < €/3 also does not belong to F as g
is Lipschitz with constant one. Hence F' is closed.

For every B € |J,,cy Bn we have Fp = | J{FB(a,b): a,b € Q, a < b}, where

Fp(a,b) = {(z, f) € (K, || - ) x (K", wk): f(z) = b and rlr(lggf < a}.

The set {(z,f) € K x K*: maxg\p f < a} is clearly closed in (K, || - ||) x
(K*, wy).

To prove that {(z, f) € (K, | -||) x (K*,w}): f(z) > b} is closed we may
proceed similarly as for F'.

Due to Lemma 2 we have that

exp K = ﬂ U U w(F N Fg(a,b)),

neEN BeB, a,beQ
a<b

where 7 is the projection of (K, || - ||) x (K*, w}) to (K.| -|)-

It is easy to check that the projections w(FNFg(a,b)) are closed in (K, ||-|)
as (K*,wj) is compact and F' N Fp(a,b) are closed subsets of (K, | - ||) x
(K*,w¥ ). So exp K is an F,; subset of (K, | -||) and thus also of X endowed
with the norm topology.

So exp K is of the form [, .y Upen Fur N K, where Fy, are norm closed.
Since K is convex and weakly separable, it is also norm separable. One may
notice that the norm closure of rational convex combinations of elements of
a countable weakly dense subset is a closed convex set that has to coincide
with K. Hence each norm open subset G of K is covered by countably many
closed balls intersected with K and so G is F, in the weak topology. Thus
each norm closed subset of K is weakly Gy in K. Now each set F,; N K is
norm closed in K and so it is also weakly G in K by the preceding argument.
Finally, exp K is Gg,s in the weak topology of K.

This finishes the proof of the fact that exp K is weakly Borel (in fact weakly
Gy in K and thus also weakly K45, in X) due to its above description.

If moreover K is compact in the norm topology, then the sets F' and
Fp(a,b) above are compact in (K, | - ||) x (K*,w};). Thus their projections
to (K, | - ||) are also compact and so exp K is K, in the norm topology due
to the above description of exp K. 1
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Remark 1. If (K, | - ||) is compact, then w}- on K* coincides with the
topology of uniform convergence on K and Theorem 1.6 of [2] also applies.
Indeed, K* C C(K) is a closed subset in C(K) endowed with the topology of
pointwise convergence as it is compact. So it is also closed in the topology of
uniform convergence. Also K* is totally bounded in the uniform convergence
topology since all its elements are Lipschitz with constant one as restrictions
of elements of Bx=.

Added in proof. It seems to be of some interest that it is not difficult to modify
the proof of Theorem 1(b) to get that exp K is F,45 in the norm topology if
K = Uen K(m), K convex and K(m) compact and separable with respect
to the weak topology of a Banach space X.

Roughly speaking, it suffices to use B,(m) related to K(m) as B, were
related to K in the above proof. Further, if K* is again the set of all restric-
tions of elements of By« to K, then exp K is the set of all z € K such that,
for every m,n € N, there are f]" € K* and B,(m) € B, (m) such that

"(z) =sup f* and [f(z)> max m
@) = sup f; fir@) > max
and thus it can be shown that exp K is F,4 in the norm topology similarly as
in the proof of Theorem 1(b).

2. EXTREME AND EXPOSED POINTS IN NONSEPARABLE SPACES

We shall give examples of nonseparable Banach spaces X in which we are
able to find a bounded closed convex set K with the sets exp K and ext K
being “nonmeasurable” in various senses, e.g. non-Borel, nonanalytic, or even
without the Baire property in some closed set.

Remark 2. The idea of our following examples goes back to Example 2 of
[4]. In fact, we obtain a different, perhaps simpler, example in the space of
signed Radon measures than that of Example 2 from [4]. See the discussion
preceding Theorem 3 below.

Our construction is also inspired by the examples of convex continuous
functions with “nonmeasurable” set of points of Gateaux differentiablity from
[3]. In fact, L. Zajicek noticed first that e.g. in the case of nonseparable Hilbert
spaces we may use Fenchel duality to get examples of balls (with respect to
equivalent norms) with “bad” sets of exposed points from the examples of
continuous convex functions in [3]. He also noticed that, since we are able
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to modify the examples from [3] so that the functions constructed there are
equivalent norms, we may use the correspondence between the norm in X
with the set of its Gateaux smooth points, and the dual ball in X* with its
exposed points. This idea works only in reflexive spaces having a strictly
convex norm. We do not see how we could get our more general results in this
way. Therefore we use the more straightforward construction below.

We need for our construction few elementary and almost evident facts
concerning the unit disc Dy = {z € R%: (z,z) < 1}. Since we did not find
appropriate reference, we prove here the following lemma. We need it just in
the case when the measures represent finite convex combinations, i.e. they
are probabilities with finite supports. However it seems that the more general
formulation is more transparent. One may notice that we use in the proof that
elements of the boundary Ty = {z € R?: (z,2) = 1} are strongly exposed.
By the weak convergence of measures we mean the convergence on (bounded)
continuous functions on Dy.

LEMMA 3. If u,, are Borel probabilities on Dy such that the sequence of

their barycenters by, = [ zdu,(z) converges to zy € Ty, then p, converge
Dq
weakly to the Dirac measure &, at zg, i.e. for every open U C R? containing
xg, we have that lim p,(Do\ U) = 0.
n—oQ

Proof. For an arbitrary open U containing xo we find € > 0 such that
K. ={x € Dy: (z,z9) >1—¢} CUN Dy.

We put L. = Dg \ K..
Now

(0 — bjin, 10) = / (20 — , 2o)djun + / (20 — 2, 00) dpin >

e KE

> epin(Le) 2 epin(Do \ U).

Hence lim pun(Do\U)=0. 1
n—oo

The main construction concerning our examples of sets K with “nonmea-
surable” exp K and ext K follows.
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MAIN LEMMA 4. Let X be a Banach space with dim X > 3. Let Sy C Tq,
E(s) = [—es,e5] = conv{—ez,es} withes € X, 0 < |les|| < 1 for s € Sy, and
E(t) = {0} fort € Ty \ So be such that

() {eonv E(UNTy): t € U, U open} = {0} (1)

for every t € Ty \ Sy. Let P be an arbitrary two-dimensional subspace of X
and S,T C P be the corresponding images of Sy, Ty C R? under a linear
isometry of R? onto P endowed with a scalar product (-,-). Then,

(i) there is a closed convex bounded set K C X such that

PnexpK =PnNextK =T\ 6S. (2)

(ii) If moreover E(T) is relatively weakly compact, then there is a weakly
compact convex set K such that (2) holds.

(iii) If S C T is symmetric, i.e. if S = —S, then there is an equivalent norm
|- | on X such that

PnexpB=PNextB=T)\S§,
where B is the closed unit ball of | - |.

Proof. Let P with (-,-) from the statement be chosen arbitrarily. We may
and shall identify Sy with S and Ty with 7. Let Y be a closed linear subspace
of X that is a complement to P. As dim X > 3, Y is nontrivial. Let py: X —
Y be the continuous linear projection of X onto Y with p{,l(O) = P and p be
the continuous linear projection of X onto P defined by p(z) = z — py (z).

We are going to show that we may suppose that E(s) C Y N By for every
seT.

We prove first that we may suppose without loss of generality that e; ¢ P
for all s € S in the definition of E. Notice that if s, € S tend tot € T'\ S are
such that es, € P, then by the compactness of the closed unit ball in P and
by the condition (1), the norms |les, || tend to zero. Therefore it suffices to
replace each e5 € P in the definition of E by any ef € Y for which |le}|| = ||es]|.

To verify it let us write e} for e, if e ¢ P. Let U, be a sequence of
open neighbourhoods of t € T'\ S with (,.yUn = {t}. Considering now
any sequence of absolutely convex combinations z, = ng) ai(n)e:i(n) with
si(n) € SNU,, the corresponding absolutely convex combinations z? that arise
by omitting those summands for which e;‘i(n) = €5,(n) ¢ P converge to zero.
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So if z,, converge to some z € [{conv E(UNT):t € U,U open}, then also
xn — z,, converge to x. However z, — z; are absolutely convex combinations
of the elements of the original family {es: s € S} and so by (1) we have that
xz = 0. So we may and shall suppose that e; ¢ P for s € S.

Put By = mpy o E£. We shall show that Ey fulfils the corresponding

analogue of the property (1) by a contradiction. Let
0#ee€ ﬂ{conv (Ey(UNT)): t €U, U open}

for at € T\ S. Notice that the mapping py restricted to the preimage
p 1(||lp||Bp) of the compact ball ||p||Bp in P is closed being a projection along
a compact space. Hence conv Ey(UNT) = mpy (conv E(UNT)) and the

sets Ky = py'(|lpylle) NGnv E(U NT), t € U, U open, form a centered
family of nonempty compact sets in the two-dimensional space py' (|lpy|le).
Thus thereisan f in {Ky: t € U, U open} with py (f) = ||py|le # 0 and this
contradicts (1). So the mapping Ey = mpy o E fulfils the corresponding
analogue of (1) and Ey(t) CY NBx for t € T.

Hence we may and shall consider such an E = FEy in the following con-
structions of K and B.

We define K = conv {t+y:t € T, y € E(t)}. The set K is obviously

closed convex and bounded. We shall show that
PnexpK=PnNextK=T)\§S.

Notice that K C p~ (D) and PNK = D, where D = {z € P: (z,z) < 1},
and thus PNexp K C PNext K C T. Therefore it is sufficient to consider all
s € T and show that s € S implies s ¢ ext K and s € T'\ S implies s € exp K.

If s € S, then s = (s +e5) + 1(s — e;) and therefore s is not an extreme
point of K.

Let s € T\ S. We are going to show that s is the only element of K for
which f,(s) = maxg fs = 1, where fs(z) = (s,p(z)). Thence we shall see that
s is an exposed point of K.

Notice that the set K is a subset of the closed convex set {z € X: fq(z) <
1} and thus fs(s) = maxg fs = 1. Let £ € K be such that fs(z) = maxg fs =
1. Thus p(z) = s. Then there is a sequence (u,) of probabilities with finite
support (representing finite convex combinations) contained in {t + y: ¢t €
T, y € E(t)} such that their barycenters bu,, converge to z = s + py(z). Let
t, be their images under p and let U = P N B(s, %) Due to Lemma 3, we
have limy, o0 piy (P \ U) = 0 for every k € N. Let us denote Uy, = p~'(U}).
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It follows easily that we may choose an increasing sequence (ny) of natural
numbers such that for v, = m pin, |U, we have that bu,, —bvy, — 0asn —

oo, and thus (bvg) tends to z. (We may choose ny such that p, (P\Uy) < )
Since the support of vy, is contained in {¢t +y: t € T N B(s, %), y € E(t)}, the
point py (byy) is in conv E(B(s, 1) NT) and so py (z) = lim,_e0 py (bptn) =
limy,_, o0 py (brg) = 0, using the property (1). Hence x = s and therefore s is
an exposed point of K.

If E(T) is relatively weakly compact, then {t + y: t € T,y € E(t)} is
contained in the relatively weakly compact set T+ E(T') and thus K, being
the convex closure of {t +y: t € T, y € E(t)}, is weakly compact.

IfS=8"US, with STNS™ =0and ST = —S~, we fix a closed ball
By centered at zero in X such that its projection p(Bg) to P is contained
in the disc {z € P: (z,z) < i}. We put E*(t) = E(t) for t € ST, and
E*(t) = E(—t) for t € S™, and finally we put B = conv (K U By), where
K={t+y:teT,yec E*(t)} as above. Now E* fulfils the analogue of (1)
and E*(t) = E*(—t).

It is almost obvious that BN P = KNP = D. So we have that

PnexpBCPNextBC PNextK=PnNexpK =T\§S.

It remains to check that 7\ S C expB. Let t € T\ S. We know that
fi(t) =1 > fi (k) for every k € K \ {t}.

If x € B\ {t}, then there are o, € [0,1], b, € By, and k, € K such that
Ty = apbp + (1 — ap)ky, — . We may suppose without loss of generality that
a, = a €[0,1].

If @« =0, then ay,b, — 0 as the sequence (b,) is bounded. So k, — z and
z € K\ {t}. Thus f;(z) < 1.

Otherwise, a; — a > 0. Then

. . 1 o
fi(z) = nlggoft(fvn) < nlgr()loan i) +(I—ap) =1~ 9 <L
In any case fi(z) < 1, and so t is an exposed point of B as well.
Since B is convex closed bounded and symmetric, and since it contains the
ball By, it is the closed unit ball of the norm | - |, defined as the Minkowski
functional of B, that is equivalent to the norm || - || of X. 1

As corollaries of Main Lemma 4 we obtain examples in concrete spaces. We
need to investigate the possibility to find F fulfilling (1) from Main Lemma 4
in particular nonseparable Banach spaces.
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Remark 3. Let us point out that having E with property (1) with respect
to some closed linear subspace X of Z, we have E with the same property
for Z.

First we discuss the property (1) in the following two propositions.
The first one gives a characterization that is almost obvious and therefore
we omit its proof.

ProprosITION 1. Let X be a Banach space and Sy,Ty be as in Main
Lemma 4. The existence of E with the property (1) from Main Lemma 4
is equivalent to the following condition:

There is a family e; € Bx \ {0}, s € Sy, such that if (F},) is any sequence
of pairwise disjoint finite subsets of Sy tending to {t}, t € Ty \ So, in the
Hausdorff metric, z,, € conv | J{[—ey, e]: t € F,}, and z,, — z, then z = 0.

The following observation gives a sufficient condition for the possibility to
apply our Main Lemma 4 in Theorems 2 and 3 below.

PROPOSITION 2. Let X be a Banach space. Let F' be a subset of Bx \ {0}
such that every injective sequence of elements of F' converges to zero in a
Hausdorff locally convex topology T which is comparable with (weaker or
stronger than) the norm topology. If Sy and T, are as in Main Lemma 4 and
So has the cardinality less or equal to the cardinality of F', then there exists
E with the property (1).

Proof. We use the equivalent formulation from Proposition 1. Let e;,t €
So, be any injective “ordering” of elements of F. Let z, € conv (|J{{es} U
{—es}: s € Fn}), where F}, is a sequence of pairwise disjoint finite subsets of Sy
tending to {t}, t € Ty \ So. The elements of | J,,y Fi» can be arranged into an
injective sequence (fp,),m € N. If U is an absolutely convex neighbourhood of
zero in 7, then f,, € U for sufficiently large m, thus z,, € U for n sufficiently
large. Hence z, converge to zero in 7. If z,’s converged also in the norm
topology, the limits necessarily coincide. N

Now we formulate statements showing in particular that in many “nice”
nonseparable Banach spaces the convex subsets with “bad” sets of exposed
and extreme points exist. Notice that the class of weakly compactly generated
spaces includes all reflexive spaces etc. We include also some separable cases
although the claims do not say much for them.
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THEOREM 2. Let X be a weakly compactly generated (WCG) subspace
of a Banach space Z with dim X > 3. Let P be a two-dimensional subspace
of X, and T C P be the unit sphere with respect to some scalar product
on P. Then, for every, respectively every symmetric, subset S of T' that has
the cardinality less or equal to the density of X, there are a weakly compact
convex subset K of Z, and an equivalent norm with the closed unit ball B on
Z, respectively, such that

PnextK=PnNexpK =PNextB=PNexpB=T\S.

In particular, if X is nonseparable, there is a weakly compact convex set
K, and an equivalent norm on Z with the closed unit ball B, such that the
sets ext K, exp K, ext B, and exp B are not Borel.

If the density of X is greater or equal to the cardinality of the continuum,
then K C Z and B C Z can be chosen such that PNext K = PNexp K =
PNext B=PNexpB and P Next K does not have the Baire property in T'.

Proof. Every WCG space X contains a weakly compact subset A such
that it has the only accumulation point zero and the linear span of A is dense
in X [1, Theorem 1.2.5.]. It follows that the cardinality of A is equal to the
density of X and that every injective sequence in A converges weakly to zero.

Let Sy and Tj be the images of S and T under some linear isometry of P
(with the considered scalar product) onto R?. So the cardinality of Sy is
smaller or equal to the cardinality of A. By Proposition 2, there is a set-
valued mapping E from Ty to X with the property (1) of Main Lemma 4.
We mentioned already in Remark 3 that E has the property (1) also as a
mapping to subsets of Z. Hence it follows from Main Lemma 4 that both the
weakly compact set K C Z and the ball B C Z constructed there fulfil the
first statement of the theorem.

If X is nonseparable, then the set S may be chosen symmetric non-Borel
and thus the second claim follows.

If the density of X is greater or equal to the cardinality of the continuum,
then moreover S may be chosen so that it does not have the Baire property
m7T. |

COROLLARY 1. The following statements on a Banach space Z are equiv-
alent.

(a) Z contains a nonseparable weakly compact subset (i.e. Z contains a
nonseparable weakly compactly generated subspace).
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(b) Z contains a weakly compact convex subset K with ext K non-Borel.

(¢) Z contains a weakly compact convex subset K with exp K non-Borel.

Proof. The implications (a) implies (b) and (a) implies (c¢) follow from
Theorem 2.

If the statement (a) does not hold, then by Theorem 1 also the statements
(b) and (c) do not hold. 1

The next theorem points out several other examples of Banach spaces
to which Main Lemma 4 can be applied to get closed unit balls B of some
equivalent norms with strange sets of exposed and extreme points.

The first example (a) of spaces that admit a Markushevich basis includes
many standard spaces. E.g. the weakly Lindelof determined spaces, or even
all “Plichko spaces”, have a Markushevich basis. This is a result of M.Valdivia
[7, Corollary 2.2.]. One may find this result using the above terminology in
the survey paper [5, Theorems 4.2.5 and 4.2.6]. We may notice that the
space M(H) of all Radon signed measures with the finite variation endowed
with the variational norm on a Hausdorff space H contains ¢;(H) as a closed
subspace and since there is a Markushevich basis on ¢1(H) we may apply
the following Theorem 3(a) to the space M(H) and obtain in particular an
analogical example to the mentioned one from [4, Example 2]. In fact, it is
easy to apply Proposition 1 directly in this case. Also all spaces L'(i) with
i a (not necessarily finite) nonnegative measure have a Markushevich basis.
This can be obtained using [6, Corollary on page 136] and [5, Theorem 4.4.1.].

The next example (b) concerns dual spaces X = Y* of many (nonsepara-
ble) Banach spaces. It uses the existence of bounded and sufficiently large sets
F C X having the property (Zg). Let us recall that F C Y* has the property
(Zo) if each injective sequence of elements of F' converges to zero in the w*
topology. This property (Zg) was introduced and discussed in detail in [3].
Let us mention that we cover by this theorem e.g. the dual spaces £ (') with
uncountable T', although it is easy to notice that the characteristic functions
of singletons give the asked set F' of Proposition 2 with respect to the w*
topology immediately in this case.

We do not see if it is possible to apply Proposition 2 to the case of the
Banach space £ (N). Therefore we apply Main Lemma 4, or rather Proposi-
tion 1, directly in this case (c) below.

THEOREM 3. Let Z be a Banach space that contains a closed linear sub-
space X with dim X > 3 that fulfils one of the following assumptions (a) - (c).
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Let P be a two-dimensional subspace of Z, and T  C P be the unit sphere
with respect to some scalar product on P. Let S be any symmetric subset
of T' that has the cardinality k.

(a) There is a Markushevich basis {(z4, fo) € X x X*: a € A} in X such
that card A > k.

(b) Let X = Y™ be a dual Banach space, ' C X have the property (Z)
mentioned above, and card F' > k.

(c) Let X =l (N).

Then there is an equivalent norm | - | on Z such that

PnextB=PnexpB=T)\S,

where B is the closed unit ball with respect to the norm | - |.

In the particular cases, when S can be taken as an arbitrary subset of T
with the cardinality ¥, or even an arbitrary subset of T, we may obtain B
with the sets ext BN P and exp B N P non-Borel or even without the Baire
property in T'.

Proof. In all what follows we suppose that Sy C Ty be the image of S
under some linear isometry of P (with the mentioned scalar product) onto R?
and we identify S with Sy and T with Ty. According to the mentioned fact
that the property (1) of E from Main Lemma 4 being fulfilled with respect
of X is automatically fulfilled for Z, it remains to verify the existence of such
an F for X.

(a) Let F* = span{f,: a € A} and 7 = o(X, F*) be the topology on X
generated by F*. Then 7 and F = {z,: a € A} fulfil the assumptions of
Proposition 2.

(b) There is an E into X with the property (1) due to Proposition 2.

(¢) By Main Lemma 4, it is sufficient to find the set-valued mapping E
with the property (1). Let Q = {gn,: n € N} be a countable dense subset
of T. For simplicity we construct our example in £, (Q). We consider the
inner metric p on T and we use B,(t,7) to denote the set {s € T': p(s,t) < r}
for r > 0. For t € T, let S; = QN B,(t,1). We denote by e; : Q — {0,1} the
characteristic function of Sj.

We shall show that the family e;,t € S, fulfils the conditions of Propo-
sition 1 by contradiction. Let ¢y € T\ S, let F, be a sequence of pairwise
disjoint finite subsets of S tending to {to} in the Hausdorff metric, let z, be
of the form ) ;. A(t)e;, where Y, |A(#)] < 1, and let x, converge to a
non-zero z € £oo(Q).
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We find a sequence of real numbers (k) € (0,1) and an increasing sequence
ny of positive integers such that F,,, C B,(tg,1) \ B,(to,7(k)) and such that
(Ztank A(t))ken converges to some ¢ € R.

Now we notice that z,, (q) — ¢ for ¢ € QN B,(tp,1) and z,,(q) — 0 for

g € Q\ B,(to,1) since Fy,, — {to}.

Suppose first that ¢ = 0. Thus z(¢) = 0 for ¢ € (Q N B,(to,1)) U (Q\
By(to,1)). Let go € Q be such that |z(go)| > 0 (necessarily p(qo,t) = 1). Then
obviously ||z,, — z|| > M(Qﬂ as xp, attains each of its values on an infinite
subset of Q whereas z attains a nonzero value in at most two points. This
contradicts the convergence of z,, to x and therefore ¢ # 0.

Let b}, b, be two distinct elements of Q with {p(b;",t0), p(b), .t0)} C (1 —
r(k),1) and p(b},b;) > 1 for every k € N. Thus {b/,b,} C 2 !(c) and
{b,j, b, } Nsuppe; is a singleton for ¢ € F),,. It follows that

Tny (OF) + 20, (b)) = Y _ANB): t€ Fp b and  z(b)) + z(b)) = 2c.

Hence
lim [(2(0]) + 2(6)) — (2n, () + 20, ()] = ¢ # 0

n—oQ
and this is a contradiction with the convergence z, — z in £+ (Q).
So we may use Main Lemma 4 by Proposition 1.
In the particular cases, when arbitrary S C T with cardinality N; or ¢ can
be chosen, we may find a symmetric S that is non-Borel, or even without the
Baire property in 7" in the other case, like in Main Lemma 4. |

Remark 4. We should point out an evident shortcoming of the above re-
sults. We did not show any example of a nonseparable Banach space X in
which we cannot use Main Lemma 4 or in which even no bounded closed con-
vex set K with non-Borel set of extreme or/and exposed points exists. This
is of course because we do not know the answer to these questions.
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