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1. INTRODUCTION

The main goal of the presented work is a generalization of the ideas, con-
structions an results from the first and second-order situation, studied in [63],
[64], to that of an arbitrary finite-order one. Moreover, the investigation ex-
tends the ideas of [65] from the one-dimensional base X corresponding to
O.D.E.

First, all the basic underlying structures and notions used are recalled in
Sections 2-6 in accordance with [56], [44], [45]. Moreover, a comprehensive
description of higher-order connections is presented in Sections 7-8, with the
same references.

In Section 9, the equations represented by higher-order connections are
described in details. Here, the formalism and ideas follow and combine those
of [1], [7], [26], [48], [49], [53], [56], [58], and also [67]. In particular, the inte-
grability is discussed in terms of the corresponding horizontal distributions.

The r-th jet prolongation of the equations in question is the object of the
study of Section 10. In general, the prolongation of an equation carries the
information on the equation together with a given number of ‘consequences’,
obtained by differentiating the original equation. In case of connections, the
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construction of the prolongation in terms of the prolongations of corresponding
morphisms results in a very transparent characterization, which follows the
definition of a field of paths as a local lower-order connection representing the
order-reduction of the initial equations (we refer to [39] for motivations). For
related ideas, [26], [56] and [67] are good examples.

Section 11 is devoted to the classification of the symmetries in sense of [64]
according to [1], [2],[48], [67] and mainly [25], [43], [56], now for the higher-
order connections. Infinitesimal symmetries as the generators of invariant
transformations are studied in terms of the corresponding decompositions on
tangent bundles, and both sets of characteristic and shuffling symmetries are
described in accordance with [25]. The use of the vertical prolongation VI'(k+1)

finds its application within the 2-fibered manifold Vﬂkaﬂ T ghp T8 X ,
where a linear connection on 7;x, whose integral sections are the symmetries is
found. Finally, the relations between symmetries for a connection and its field
of paths are derived, again in terms of vertical prolongations. In Section 13 we
recall all the necessary concepts of the theory of 2-fibered manifolds, adopted
to our purposes. The formalism in fact comes from [28]; nevertheless, it has
been implemented into that of [56] in [23].

The most interesting part of the presented theory is that having to do
with the interrelations between equations represented by connections on var-
ious fibrations, which starts in Section 14. First, we give a summary of the
notions characterizing connections on the affine bundle 7y 4: J ktlp 5 Jhr.
The point is that such connections represent first-order equations for (local)
(k + 1)-connections on 7. In Section 15, the concept of the characterizabil-
ity is introduced. A connection Z on 741 is characterizable if it uniquely
determines the (k + 2)-connection on 7 by the intersection with the Cartan
distribution. In fact, the construction generalizes that of the associated semis-
pray to a given dynamical connection (cf. [16], [19], [9], [17], [46], [3], [11] etc.)
and it results in the method of characteristics for =, discussed in Section 16.
As regards both the name and the meaning, the approach is quite near to the
ideas dealing with Pfaffian systems in [53] and particularly [57]. Reaping the
benefit of the fact that each integral section of Z is the field of paths of T(*+2),
the integral ‘surfaces’ of Z are foliated by (k + 1)-jets of integral ‘curves’ of
I'(k+2) (=characteristics). This was first studied in [42]. The relation between
the equations studied can be roughly (and non-geometrically) expressed as
follows (suppose k& = 0): if the equations for E are given by

dyf = Bf dz’ + B}, dy,
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then those for its characteristic I'?) are

o j A
o _ A _ g dr) . dy”
U dgd T T g T TN g

By + 57 /\y])-‘.

In the rest of the Section, the formal mixed curvature is studied in accordance
with Section 13 and [29], having to do with relations between the characteri-
zability and integrability.

A dual method of fields of paths is introduced in Section 17, where the
integral of an integrable T(**2) is an integrable = on Tk+1,k Whose character-
istic connection is just T(**2), The existence of such an integral allows the
order-reduction of T'*+2) to (local) integral sections of . In this respect, the
existence of both local and global integrals is discussed. It is necessary to
admit that just this part contains the largest gap of the theory; namely, the
construction of a global connection = on 71, associated to '*+2) g not yet
clear in general. The case of £ = 0 and arbitrary dim X is recalled according
to [22], while that of dim X = 1 and arbitrary k, is due to [62].

It turns out that the complement to the Cartan distribution CT ™ i the
decomposition of TT' 1 (Jk7) ¢ TJ*+1x, expressed in terms of the vertical
prolongation VIE+1) in Section 11, has a global counterpart in the so-called
reduced connection (partially motivated by [67]) associated to any character-
izable connection on 741 in terms of the corresponding f(3, —1)-structure
(for this notion, see e.g. [19]). These concepts are studied in Section 18, the
observations of which can be summarized by saying that each characterizable
connection on Tyy1 j splits into the direct sum of its characteristic connection
and the corresponding reduced connection.

Section 20 is completely motivated by [39]. The background is the 2-fibered
manifold

Jhotr g TR gk TRy

the formalism of which leads to a geometric description of a generalization
of the method of fields of path, presented in Section 17. If D'k+7+1) jg g
(k + r + 1)-connection on 7, then the method gives a (k + 1)-connection
I+ on representing the order-reduction of the equations represented by
[(k+r+1) all for # > 2. In fact, this is obtained by means of looking for the
prolongation of I'**1) which is a section of Ttrk (a jet field). In this respect,
the connections on 7y, j are studied, as well, which results in the definition of
the 7y 1, s-integral of T:+7+1) Tt should be mentioned that for r > 2, gy,
is not an affine bundle, hence the ideas on formal ‘curvature-like’ concepts are
not repeated. In [65], the above formalism was exampled for a description
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of regular variational equations in sense of [39]. Section 21 recalls the well-
known identifications and canonical morphisms for k-jet manifolds and related
structures, all in accordance with [9], [11], [12], [14], [16], [17], [19], [32], [55],
[56], [61], [63]. The natural vector-valued one-forms are presented due to [16],
[17], [20] and [62].

Following the particular type of fibration, the (first-order) connections on
m: Rx M — R are mentioned in Section 22, mainly in accordance with [56].

The most significant change during the passing to the general 7: ¥ — X
was that of

semispray ~»  higher-order connection = semispray distribution.

Just the higher-order (semispray) connections and their vertical prolongations
are studied in Section 23, which can be confronted e.g. with [16], [17], [19],
[59] and [6], [13], [15], [41], [51], [52], [54] (for symmetries).

Sections 24 and 25 are devoted to the connections associated to semisprays.
Here, the adopted approach meets the results on dynamical connections and
related structures on R x TM [18], [19], [9], R x T*M [17], J'(Y — R) [46],
TkM [16], [12], etc. Moreover, some additional ideas are presented; namely,
all natural ¢, j-admissible deformations on 71 j, are discussed in accordance
with [20], generalizing the results of [61] and [63].

The examples of Section 26, illustrating both methods of characteristics
and fields of paths for O.D.E. of the first and second-order, can be compared
with [57], [27].

In view of general situation, Section 27 is much more briefly drafted. De-
spite of this, it gives the possibility for a transparent description both of au-
tonomous and non-autonomous concepts related with semisprays of various
types — cf. [59] for J¥n, [16] for T*M and [24] for the most general situation.

Throughout the work, all manifolds are smooth (= C'*), finite-dimensional,
Hausdorff, second-countable and connected, which by definition means also
paracompactness and thus the presence of partitions of unity. All mappings
are smooth, as well, and the summation convention is used as far as possible.
The notation follows completely that of the monography [56].

2. JET PROLONGATIONS OF SECTIONS AND MORPHISMS

Let w: Y — X be an arbitrary fibered manifold, and let £ be a natural
number. Two local section of 7 on U C X, 71,72 € Sy(w), are said to be k-
equivalent at x € U C X if y;(z) = y2(z) and if there are fibered coordinates
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(xia y?) around 7y (z) = 7y2(z) such that

"7
Oz ... Ozt

O
Oz ... Qxde

|$ |m
for each o = 1,...,m, £ = 1,...k and any sequence 1 < j; < --- < jy <
n. The particular choice of a coordinate system does not matter and the
equivalence class containing a section <y is called the k-jet of v at x and it is
denoted by jk~.

The k-jet manifold of 7 is the set

Jk’/T = {jif'y;:v € X,’Y € S]oc(ﬂ—)ax € Dom(’)/)}

of all k-jets at z € X. It carries a natural structure of a differentiable manifold,
which can be viewed as the total space of (k + 1) different projections

2.1) e JEm — X, Wk(j:]gfy) =z,
. Tk,0: Jkﬂ- — Jlﬂ-a Wk,f(ji‘g’)/) = ]5:77

for £ =0,...,k — 1, where 5%y := 7(z) and accordingly J°7r := Y (it should
be mentioned that in what follows miscellaneous projections appear — in this
respect, Ty = id;k, and mp := 7). Any fibered chart (V,1), 1 = (z%,y7),
on Y induces a fibered chart (Vi, ), ¢ = (mi,y",y;’, s Y9 ), on JEw by
Vi = 71'];(1)(‘/) and

aﬁ,ya

?/}fl...j[ (Jz7) = mh

Let v € Sy(n). Then j%y € Sy(ny), defined by j¥y(z) = jky for z € U,
is called the k-jet prolongation of the section y. Clearly my ;o jky = jty for
k>4

We shall have frequent occasion to study main features of the above pro-
jections (2.1). Namely, all the triples (J*m, w4, J7) and (J¥m, mp, X) are
fibered manifolds. More precisely, if 7 is a bundle so is 7, whereas the others
are bundles even for 7 being a fibered manifold. Moreover, 7y ,_; is an affine
bundle for an arbitrary k£ > 1, whose associated vector bundle is

(2.2) (W,’;_LO (VoY) @7, (SkT*X) ,

mi10 (v Ivey) @ ST (s /).
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Let (®,¢) be a fibered morphism between (Y, 7, X) and (Y, 7', X') such
that ¢ is a diffecomorphism. The k-th jet prolongation of (®,¢) is a map
JE®, p): Jhn — JFr,
defined by
(23) TH(@,0)(157) = G ae
for any jFy € J*r, where gy, :=®Poyop e S,y(m'). In particular,
(2:4) JH(@,idx) (77 y) =z (@ 0 ).

It is clear that (J*(®,¢),¢) or (J*¥(®,¢), J¢(®,¢p)) are fibered morphisms
between 7 and ), or g ¢ and 7 ,, respectively.

3. TOTAL DERIVATIVES
A distinguished role is played by a short exact sequence
(3.1) 0 — Vp, Jom — TJ*nr — 7f(TX) — 0
of vector bundles over J*7, resulting to the exact sequence
0 — X% (J*n) — X(JEr) — X(mp) — 0

of modules of sections. The sequence (3.1) does not canonically split in gen-
eral; nevertheless, there is a splitting when pulled-back to T.J**1x. In fact,

(3.2)  (wfy s p(TTF7), oy g g (Tgg), S ) =2
= (7T1§+1,k(vﬂ'k Jkﬂ—) S H?Tk-+1,k-’ 71—]);+1,k(7—Jk7r)7 J]H—lﬂ—)a

with

Hepyryo= T3 (T X)
xr

being the subbundle of the k-th holonomic tangent vectors; the k-th holonomic
lift of ¢ € T, X by v € Sy(r), = € U, is defined as the pair (51, Tj%~(¢)) €
H Following (3.2), there is a decomposition

Tk+1,k"

(3.3) X(mpsip) = X (Thp1e) D X" (1)
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of the module of vector fields along 71 to the vertical and horizontal sub-
modules

X (mesrk) = STy 1 (Tria)lvy, sin);

Xh(WkJrl,k) = S(WZJrl,k(TJkﬂ') |Hﬂk+1,k )-

The k-th holonomic lift of

l- is the (local) vector field

k+1 k
D * + Z y]l ﬂz € Xh(ﬂ-k'i'l,k)a
]1 Je

called the i-th total (formal) derivative, i = 1,...,n. Each total derivative
can be characterized as a derivation working on functions, i.e. a mapping
F(Jkr) — F(J**1n); in particular

_ D]-H—l’k(

a a

As expected, the total derivatives (and consequently the corresponding
holonomic lifts) are related by the following commutative diagram

g1 DT k
Jitty ———— TJ%rx

7Tk+1,l+1J{ J{Tﬂk’f

01 DM ‘
JH e —— TJty

for k> ¢>0.
Various compositions lead to a possibility of defining various higher-order
derivations of functions; for example

kk 1 k 1,k—2 1,0

for f € F(Y) is an element of F(J*7) (i.e. D; here denotes just Dil’o).
In this respect, (2.4) locally reads

(xi’ya’y;f’ s ay;fl...jk) = (xia(I)UaDi((I)U)a tee aDj1---jk((I)U))

for 47 0 & = (27, ).
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4. PROLONGATIONS OF VECTOR FIELDS

First, a deep relation between the functors J* and V should be recalled.
Namely, there is a canonical izomorphism

4.1 v J* ToTylvy) — V, Jkr
( ) k Vx Tk

over X: considering the maps v: U x R — Y such that 7 o y(z,t) = z, for
z € X, t € R, and denoting 0,,(t) = jk v(z,t) the curve lying entirely within
the fiber (J*7),,, we can define a mj-vertical vector 7, (). The izomorphism
identifies this vector with the k-jet j¥ (§(z,t)). In coordinates, (4.1) is repre-
sented by a rearrangement

i ,0 0 .0 0 o -0 Vg
(‘/E Yy ayjayja---ayjl...jkﬂyﬁ...jk) }
Vi 1,0 ,0 o co O e
7 (.’L‘ 'Y 7y]aay31]k7y ayjaayjljk)

For any 7-vertical vector field ¢ € XY (Y) can be then its k-th jet prolon-
gation J*¢ € X% (J*r) defined by

(4.2) T =y 0 J¥ (¢ idy): TP — Vi, JEm,
i.e. locally by

k
0 0
(4.3) T =T+ Dy () g
dy =1 ayj 1]
In terms of commutative diagrams:

X Z iy fmemdke JE(mory) —2 Vy, JEn

ide Tc wﬂc(g,idx) TJ’%

X (L Y (M—’O Jkﬂ' jr—— Jkﬂ'.

The flow {a{ kg} is the prolongation
(4.4) o7 "¢ = J5(af,idx),

which gives a way of defining the prolongation for w-projectable vector fields.
Let ¢ € Xx(Y) has the projection {y € X(X). The k-th jet prolongation
of ¢ is a vector field J*¢ € Xy (J*n) whose flow is the prolongation

(4.5) o7"¢ = JH(af, af),
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which means

THC () = {iJ’%a% ,a?)(j!zw)}

t=0

For a construction of the k-th prolongation of an arbitrary ¢ € X(Y)
one needs a relationship between J*(7 o 7y) and TJ*7. There is a surjective
bundle morphism

pr: JE (o ry) = TJr,
defined by
(7€) = vr (i (€ = Tyo T 0 €)) + Tj*y(Tw 0 &(x))
for v = 7y o £. The k-th jet prolongation of { € X(Y') is then
(4.6) T*C(57) = iz (C o).

The local expression is

9 0 k o
k, _ o Y o
(47) j C - C a,’EZ + C ayo_ + ezzl C]l...jf ay;yl][ ’

where the components (7, are defined by

l
(4.8) ggql...jl = Dj,..j, (¢7) - Dj, .., (Cz)yg = Dj,..j, (€7 - y?Ci) + Ciygl...jgi'
5. THE CONTACT STRUCTURE AND CARTAN DISTRIBUTION
Dually to (3.2), there is a decomposition

* x 7k * * k ~

(5.1) (Wk+1,k(T J W)aﬂ-kJrl,k(Tka)aJ +17T) =
= (WZ—I—I,k(ﬂ—Z (T*X)) @ C;kJrl’ka”r]}::-i—l,k (T;kﬂ)a JkJrlﬂ—)a

where

Crorni = U M1 a(ker(5%9)")
x

is the subbundle of the elements (551, n) € 7r,’2+17k(T*Jk7r) C T*J*+17 satis-
fying (5%v)*(n) = 0. According to (5.1), there is a decomposition

(5.2) O (ms1) = QL (mpsr) & Qe e)
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of the module of 71 x-horizontal 1-forms on JE*+1r (in other words, 1-forms
along 741 k) to the submodule

Q! (mp41) = S(mipy (1%))

of my41-horizontal forms together with the submodule
)

the sections of which are the contact 1-forms on J*t1x. A contact 1-form on
JE+t1lr is written in coordinates as
k
(5.3) n=Y_nltI(dyS, i, — Y8 dat)
=0

Qe (mrr1k) = S(rhyrw(Thgles,

with the canonical generators

o _ o _ 0 g
wjljl - dyjl...][ yjl...]ll dx .

The role of contact forms in the higher-order situation is analogous to the
first-order one: if ¢ € Sp(mgy1), then ¢ = j¥+1y for some v € Sy (7) if, and
only if,
(5.4) (W], ) =0
foroc=1,....m, 1< <---<jp<nand £=0,...,k. On the other hand,
7 is contact if, and only if, (j¥7'y)*n = 0 for all vy € S}, .(T).

The decompositions (3.2) and (5.1) are canonically related by the contact
structure on 41, which consists of two complementary vector-valued 1-forms

hyv € X (Tps1k) ® QN (mpp1 )
In coordinates,

h=DI"" @ dat € X" (w1 p) © QM (mpn),s

k
0
U= Z 9 ®wy j, € X (Try1k) ® Qé('/rk+1’k).
=0 Yjr-ge

The Cartan distribution on J**17 is then defined by
(5.5) C

Thilk ker[v o (Tyrt1,, TTp1k)] C TJk'Hw,

it is annihilated by C;‘;Hl , and consequently the image of a section of 7y is
an integral submanifold of Cr, , , if, and only if, it is the (k + 1)-th prolon-
k+1

gation of a section of 7. For each j;

C7Tk+1,k |]'a'§+1’y = Tijrl'Y(TmX) & Vr

7 one has

Jk+171'| k41 .
Jx

k+1,k y
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6. REPEATED JETS

Since 7: J¥ — X is a fibered manifold, one can consider the so-called
repeated jets. By J" 7w we denote the r-jet manifold of 7y, i.e.

J'my = {];Q/),,’E €X,pe S]oc(ﬂ-k)ax € Dom(z/))}

The induced coordinates on J" 7 will be denoted by

i ,0 ,0 o

.,y 7yja"'ayj1...jka
o o

y;ia te ay;il...i,a
o o

(61) yj;i’ tee ayj;il...im

o o

Yitodesio s Ygre gy inein:

A distinguished subset in J" 7y is formed by the prolongations of those
sections which are themselves the prolongations; it means of ¢ € S(m) such
that ¢ = j*+, where v € S(r). It can be shown that the map

Lyt JET 5 I,

defined canonically for each r, k > 0 by

b (G5 ) = 40 (%)

is an embedding, hence J**"7 will be frequently identified with its image
Lr,k(Jk'H"w) C J'my.

Let us restrict attention here to the particular case r = 1 and £ > 1, which
will prove to be of importance in the study of the so-called semiholonomic
Jjets.

Consider thus the space J!7;, together with a pair of projections to J'mj,_;.
First, the projection (7 )1,0: Jim, — JEm may be composed with L1 k-1 to get
the projection

(6.2) t1k—1 0 (Tk)1,0: J17Tk — lek_l,
which in coordinates reads

i ,0 ,0 o o 0 o
(‘/E 'Y 7?/]’1"- ayjl...jkay;iayj;ia"' ayjl...jk;i) =

(63) i ,0 ,0 o o .0 o
(2, y sYjse s Yji e Yi s Yjis - - ayjl...jk_li)'
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Secondly, the projection
Thk—1" JEr = JE g

may be prolonged as a fibered morphism between m; and 7;_1 over X:

(6.4) Jl(ﬂ'k’kfl,id)(): Jlﬂ'k — J17Tk,1.

Locally,

(6 5) (‘/Ezayaayga s ay;fl...jkay?iay]q;ia s 7y]q1...jk;i) =
= (;EZ’ yga yga ce ay;‘fl...jk_lay;aia y]q;ia ce aygl...jk_l;i)‘

The point is that for a given jl¢p € J'm, both projections lie within the
same fiber with respect to (m)1,0, which enables to define the space JEHlr of
semiholonomic (k + 1)-jets as the subset in .J'm; on which both projections
(6.2) and (6.4) coincide, i.e.

T = i € T T (w1, 3dx) (ia) = w11 © (m)10(ia®) } -
Due to (6.3) and (6.5), the local equations for semiholonomic (k + 1)-jets are
(6.6) ?/;Ui = yga?/}f;z‘ = ?/}'Iia . ay?l...jk_l;i = y}’l...jk_li-

It can be shown that J**1x is a submanifold of .J L7, which can be defined as
the kernel of the k-jet Spencer operator

Spy: I = Ve, JF 7w @ i, (T7X),

defined by the requirement on Spy(jlv) to be just the element (of the total
space of the vector bundle associated to (m;_1)1,0) such that

I (T =1, 1dx) (o) + S (G®) = t1k—1 © (T)1,0(ja®)

with respect to the affine structure.
Assembling the various facts we can see that there are the inclusions

Jktle ¢ Jlp ¢ Jig,

where
Thtth = (Tk)1,0° Jire D JF i — Jkx
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is an affine subbundle of (7)1, with the associated vector bundle (over J*r)
whose total space is
6.7)  wo(VaY) @ (SkT*X ® T*X) ~

Vo ' @ mp(T*X) C Vi J¥m @ mp (T7X)
This express the fact that while on J**!x all derivative coordinates are totally
symmetric, those on JEH1r are totally symmetric except for the highest-order
ones. In this respect, the elements of ¢y ;(J¥+17) C Jlm; are called (k + 1)-
holonomic jets.

In what follows, the subspace T"M ® S*T*M C @**'T*M will become
of importance. Let us denote by s,a and A the symmetrization, antisym-
metrization and asymmetrization linear projectors s: QFT*M — SFT*M,
a: QKT*M — A*T*M, A = id — s: @*T*M — A*T*M. In particular, for
k =2 one gets A = a, i.e. @2T*M = S*T*M & A>T*M, and in general

FT*M = SFT"M @ AFT*M
with A*T*M C A*T*M = kers(T*M). Denoting 07 ,T*M = A(T*M ®
SET*M), one has
(6.8) T*M @ S*T*M = S*'T*M @ O\ T*M.

Moreover, 0%,1T*M can be identified with its image in A2T*M @ Sk=1T*M
by the vector bundle morphism

5: T*M ® S*T*M — A*T*M @ S* 'T*"M
defined by §(w ® u) = (—1)*w A §pu, where 6, : SFT*M — T*M @ S¥—'T*M is
the composition

SET* M — @*T*M = T*M @ @ 'T*M ids oy @ Sk,

Due to (6.7) and (2.2), one gets a canonical splitting of the affine bundle
Tk+1,k, €xpressed in terms of the total spaces by

(6.9) T =2 o ko (VaY @ 7 (07 T7X)),
which gives rise to natural projections

Sk JEtle Jk+17r,

(6.10)
ri: T o o (VaY @ 7 (071, T7X)),
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expressing the totally symmetric or asymmetric part of every highest-order

derivative coordinate y?l---jk; ;» respectively. In particular, for £ = 1 (6.9)
reads
(6.11) T2 22 I % i 7o (VaY @ 7% (APTX)).

Notice finally the relationship between higher-order and repeated prolonga-
tions of a fibered morphism ®: Y — Y’ over X, which become interesting for
prolongations of connections:

(6.12) Jr (Jk(cb, idX),idX) | = JEHT (@, id ).

7. CONNECTIONS ON 7 : Jfr — X
k

Let us briefly put a list of concepts representing a (global) connection ¥
on my:

e a section
Y Jhr - J17rk
of (mx)1,0, which in coordinates reads as

e the system

y;o:i = E?’ia s ayg—ljk,z = Z;fljk,'t
with
e the family of ¥7;,..., %7 .., € F(J*7), being transformed like the
coordinates y7;, ..., y7 i i

e the horizontal form
hs: JEn = TJ*r @ 73(T*X), hy = Dx; ® dz',

of 33, where

are the generators of

e the n-dimensional 7g-horizontal distribution Hy, = Imhy, representing
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e a splitting of the exact sequence
0 — Vp, Jin — TJ*n — 7j(TX) — 0

and thus

e the direct sum decomposition T.J*r = Hyx, @ Vi Jk.

Recall also the curvature of 3, which is
1 . 1k k * 2k
Ry = §[h2,h2]. J'm — VﬂkJ 7T®7Tk(A TX).

locally expressed by

k
o 9 ]
(7.1) Ry = g Dsi (25, ivip) o ® da' A da.

Due to J¥+1x C Jl7), a semiholonomic connection on 7, (for k > 1) is:

e a section
T+, ghp 5 Jhtlg
of 741k, which in coordinates reads as

e the system

a

(72) y,UZ = yzo-7 ct ’yjo';...jkfl;’i = y‘?l...jkfli’ y;-l]k,’t = Fjl...jk;’i
with
e the family of (generally nonsymmetric in the highest derivatives) f;’l asi

€ F(J*r), being transformed like Y7, i

e the horizontal form

P : JEr = TJEr @ 7} (T*X), hagerny = Dagany; ® dz'.

where
[ ]
k—1
0 0 ~ o
(73) D+ L= — 4+ qu, 7+I’U I
T(k+1)4 ot ; J1---J08 8y§‘71...jf J1 Jk’zay;...jk

are the generators of
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e the n-dimensional my-horizontal distribution Hpgyiy = Imhggg,
creating again

e the direct sum decomposition TJ¥r = Hsoyry @ Vo, JET.

The most important difference between a semiholonomic connection T(k+1)
and a general connection ¥ on 7y is that evidently

Hf(k+1) C Cﬂk,k—l

which become interesting when dealing with such connections as representants
of equations. In this respect, by (7.1-3) we have (set 7 ;o = 7 for k =1)

Regopny: Jom = Vi, TP @ mp (A?TX)
with local expression
=0 o . )
Ry = Fjl...jk_lp;iagi ® dz’ A dx
(7.4) Yjr.odn—1
. ~ 5 |
+ Dpit); (F}Tl...jk;p> EY A ® dz' A daP.
J1-k

8. A (k+ 1)-CONNECTION ON A FIBERED MANIFOLD

Of all types of connections on 7y, the so-called (k + 1)-holonomic connec-
tions on 7y or more briefly (k + 1)-connections on 7 are intrinsically related
to the theory of higher-order equations. Due to J¥*lz — JHg Jimy, a
(k4 1)-connection on 7 (for k > 1) is a section (both global and local versions
can appear)

r+D, gk — JEtig

of Tj41,%, with local expression

a 17 .
Yjvdeyr = FJl---Jk+1’

(8.1)

where the (totally symmetric) functions I', ;€ F (J¥r) are the compo-
k+1)

nents of T . being transformed like y7, i The horizontal form of T(*+1)

is the mg-projectable (onto identity) vector-valued 1-form

hpgesny s JPm — TJRm @ nf (T*X)
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defined in virtue of the contact structure on 71 by

(82 hraeen (€)= pry [B (TE+ (), ¢

for each ¢ € TthkW. Locally,

(8.3) hpo+n = Dpgsny; @ d:vi,
where
Dygesn; = DEFHF o DD
(8.4) 5 k-l 5 5
= Zy}fl...mia s T Fé‘fl...jkz‘agi
=0 Y150 (N

is the i-th absolute derivative with respect to D+ The vertical form
-7 —h L k * 1k
Vpk+1) = Lpgig rein s ST = Vo, JSr QT I,

is defined by
vpan(€) = pry [ (T (589).¢) |
and it is locally expressed by

k-1

0 0 (k+1)
_ v o v e ro
vF(k+l) - Z yg’ ] 2 wjljg + ayg— ] ® wjl...jk )
=0 Jdg.di J1-0Jk
where h1)
rkthe 5 o _ T0 i __ 0 (k+1)
WG dyj1---jk Fjl---jki dr’ = Wiy ..y, © r :

The direct sum decomposition generated by hpu+1) and vpg+1) is

TJkr = Hyv1y) @ Vi, JEr
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with Hpg+1) = Imhpgs) = ker vpes1y) spanned equivalently by the vector

o k41 4

fields Dp+1); or by the forms w7, ., w; o

, which means that again
Hygtry C Cﬁk’k_l.
The corresponding horizontal lift X (my,) — X (J*r) defined by

*

DR+ 5w iq
7 ( ) p

1 (TX) 2w (T TP ) 22 Ty
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locally reads
9 4

& agilmitn) = &' Dratnil iy
The affine translation V11, generated by T'®*1) is defined by (see also (6.7))

idX 41,k idx T(k+1)
Jk+17r Jk+1 1

T X gy JE T g JA T —

77 o(VaY) @ T (SHTX) C o (VaY) @ (wZ(SkT*X ® T*X))
=V, _ Jreri(TX),

Tk, k—1
and locally

o ‘
Viwsy = (Ugei = D) a7 © dax’.
J1--Jk

The curvature of T**1) can be defined by

1
= §[hr<k+1) s hpsn]

RF(IH»I)

(or equivalently by means of the formal curvature map R as we will present
in Sec. 13). In view of (7.1) or (7.4) one gets

9 .
(8.5) Rre+1y = Dy (F}Tl...jkp) A ® dz' A dzP.
Yir-.ge

Finally, two facts should be noticed: first, (cf. Sec. 6) that there is a

canonical splitting of each semiholonomic connection [*+1) on 7 namely,
Bk+1) _ Ti(k+1 B(k+1
[+D) = T+ o o Tk+D)

with
k1) = Sk O T+, kg — ghtin,

¢
(86) Ask 1 T(k+1 k 2
LD = pp o THFD . ghp mho (VY @ 7(0F_,T°X)) ,

Clearly, fgkﬂ) is holonomic, and T*+1) is holonomic if, and only if, ﬁ(nkﬂ)
vanishes. This can be confronted with the very end of Sec. 7. Actually, one

has

~k+1) . 1k *
F'E" )' JEm — ’/Tk,k:fl(VWk—l,k—2

JEIn) @ mf (APT*X).

and it is just the canonical projection of Rx41). In other words (see also (7.4)
and (8.5)), L+D) g flat if, and only if, it is both holonomic and integrable.
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Secondly, the differences of connections on 7 are the soldering forms on
7, and according to Sec. 7, the deformations of semiholonomic connections
on 7 are the sections of

Jkr >V,

Th,k—1

JEr @ mi (T*X),
while those of (k + 1)-connections on 7 are the sections of

= w0 (VaY) @ mip(SEHT*X) C

Tk,k—1

JEr @ i (T*X).

9. HIGHER-ORDER EQUATIONS REPRESENTED BY CONNECTIONS

By a k-th order differential equation on a fibered manifold 7 is meant a
fibered submanifold £*) of mr,: J*r — X such that

Tkt © Thib1 (5“”) £ £k),

A solution of £*) is a section v € Sy() such that j5y c £F).

Also the higher-order equations are frequently defined by fibered mor-
phisms. Thus if ®: J¥7 — Y is a fibered morphism of constant rank between
mr and 7 over X, the corresponding differential operator is the mapping
Do: Sjge(m) = Sjp(n’) defined by Da(y)(z) = (P o j54)(x), and for any
1 € Sy(n') satistying 1 (U) C Im®, the k-th order differential equation deter-
mined by ® and ¢ is

k . .
(9.1) Eary = kory ® = {jE7; 2(jf7) = $(a)} C TFr.
Accordingly, a solution of ngt)b is v € Sy () such that

(9.2) Do(y) = lv.

which in coordinates means a system of P.D.E.

. ) a,.y)\ . 81:,.)/)\ . )
: 07 (', M zh), o (2), ey e (2h) ) = 7 (2

where 0 = 1,...,dim7’.
The Cartan distribution of the k-th order equation £*) c Jkr is the
intersection

(9.4) ct =c,  nTe®),

Tk,k—1
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carrying the most important information on the equation.
The equation of order (k + 1) represented by a (k + 1)-connection I'k+1)
on 7 is the submanifold

(k+1)

(9.5) gr LD ( gk ) ¢ JFHn,

realizing (generally nonlinear) system of P.D.E. in normal form, i.e. explicitly
solved with respect to the highest derivatives:

(9 6) ak+1,ya _rr xi N ak,),)\
' Dz 0mieer gk \ T i g )

A section v € Sjoc(7) is called the integral section (path) of T**+1) if it is the
solution of EF(HI); ie. if

(97) jk+1’Y _ F(k+1) o jk')’
Evidently, using (9.1)

P+ a(k+1)
(9.8) £ = ‘SVFUCH),O’

which corresponds to the characterization of integral sections as those vy €
Sloc(m) whose covariant derivative

(9.9) Vr(kﬂ)(’)’) = Vrpa+1) © jk+17

vanishes. On the other hand, a (k4 1)-connection I'*+1) represents a Pfaffian
system

w” =0 dy® = y? dz’
(9.10) i ’ = _
? . —= g — 2,0 )
w]l---.?k—l dy]1jk,1 - yjl...jkfli dz
T+ g o _ 10 i

hence v € Sy () is an integral section of T**1) if, and only if, j*y(U) is an
integral manifold of Hp+1), i.e. for each z € U it holds

(9.11) Tyj*y(ToU) C Hpaesn ()
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In terms of Apk+1y, (9.11) reads
(9.12) hpoen|jey = T5%y 0 Ty Ty Jom = Ty, TP,

The integrability conditions list is not much surprising. A (k+1)-connection
r*+Y on s integrable if, and only if, one of the following equivalent condi-
tions holds:

e For an arbitrary y € Y, there is a unique integral section of I'(k+1)

passing through it.

The horizontal distribution Hpx+1) is completely integrable.

[Drs+1)4; Dpoesn,,] = 0 for all 4, p.
The connection T'*+1) is flat, i.e. Rrgetny = 0.

JHTEHD) lidx) 0 4y 4 o TRHD € Jh+27,

e The components of T*+1) gatisfy
(9-13) DF(k‘H)i (F}Tl...jkp) = Dr(k+1>p (F}'Tl...jki)
for arbitrary 7, p=1,...,n
Denote by
(9.14) = Oy, NTTRHD (o)

the Cartan distribution of the equation represented by T'**1) . Clearly, it is a
regular n-dimensional distribution on the submanifold T*+1 (Jk7) ¢ Jk+1x,
annihilated by the forms w? (£ =0,...,k — 1) together with dyf . —

J1--Je
L7 i dz’ and dyj, . Jegt —dr'y Jegr OF equivalently spanned by the vector
fields
TF(k+1) (DF(k+1) + Z yjl et ay
(915) ]1 ]l
0 0
+I% i im——+ D, I, ).
J1eJkt r J1--Jk?
Oy ]Ul Jk P ay]ql---jkp

LEMMA 9.1. A (k+ 1)-connection I +1) on « is integrable if, and only if,
the distribution CT“*" s completely integrable, and a section <y is an integral
section of T*+1) if. and only if, j*+1 is the integral mapping of C***".
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Proof. The first part of the assertion is an immediate consequence of the
I'(5+1)_compatibility of the distributions Hp k11 and oTHY,

[T (Dpgesny,), TR (Dpgesny,,)] = TTEHD [DF(kJrl)i’DF(kJrl)P ;

the rest follows (9.7), (9.11) and (9.14). 1

10. PROLONGATIONS AND FIELDS OF PATHS

Let £%) < J*7 be a k-th order equation on 7. The r-th prolongation of
EW) is the subset
g(k)(’r) — J’rg(k) N Jk-l-’r,ﬂ_
with J"£®) € J"m;.. For the equation gé’?ﬁ defined by (9.1),
(10.) &0 = {5y (@, idx) 0 (i) = ) € S

is again a differential equation, now of the (k + r)-th order. It carries all the
information on the initial £), together with ‘higher-order consequences’ of it.
In fact, ngq)p(r) represents the family of P.D.E. obtained by differentiating the
original equations 0, 1,...,r times with respect to the independent variables.

As usually, we will scan the situation for connections. For a given k-
connection, the r-th prolongation of gr may be obtained following the idea
of (10.1); nevertheless, the compatibility of such equations with the underlying
structures allows us to present more suitable description.

DEFINITION 10.1. Let k£ > 0 and I6*1): jkz — Jh+lz be an integrable
(k+1)-connection on w. The r-th prolongation of the equation ELETY c ghig
represented by I'**+1) is defined to be the submanifold

(10.2) ETETVE) — [+ ¢ phtri g

where ¢+ ig the last term of the sequence of sections

(F(k+1)(0) r(k+1)(1)

3 g ey

F(k+1)(7«))
recurrently defined for each £ =1,...,r by
(10.3)  TEDO = JOE+DED d 1) 04y 0 DRHD . gk Jhttily

with Dk+1)(0) .— p(k+1)
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The definition should be explained in more details. Note first that
Tk+12) defined by (10.3) can be rewritten to (¢’s are omitted for the brevity
sake)

P(k+1)(2) — JI(JI (F(k+1),idX) o F(k+1), ldX) o I\(kJrl)
(10.4) = JHJ'@®E idy),idx) o JH(I®HD idx) o T+
— JQ(F(k—i—l),]dX) o Jl(F(k+1),ldx) o F(k—i—l),
where we have used the integrability of T**1) the inclusion J¥t2x — J2mx,

and (6.12). Now it is clear that the target space of D*+1)(2) must be J¥+37,
and repeating the procedure one gets another sequence defining T*+1)(r)

r(k+1) JUT R+ g Jr(0k+D) g
Jhp =" JEtig ( — x) JE2n o gkt ( — x) Jktrtin,

Evidently, the equation £ LD consists of (k+7+1)-jets of integral sections
of T:+1): in fact
Py =T ) = 5D 0 jhy) = JT Y d,) 0 Ty
(10.5) — J'r(r(k—l—l)’idx) o J'r—l(r(k-l-l)’idx) ojk-l-'r—l,_y
= ... = DkED) o gy

which in coordinates means the system

a =17 .
Yjr.drs _FJ1---Jk+1
a =D.(T% .
Yjr.egrgri _DZ(FJI~~~]k+1)
(10.6)
a =D. a
yjl...jk+1’i1...iT _DZI---Z'r (Fjl...]k+1)’

where according to (3.4) D; := Df“’k and

. k+rk+r—1 k+1,k
Di, i, == DI ...DEFVE

and the functions on the right side of (10.6) are canonically lifted to J**+7+1x.

DEFINITION 10.2. Let k,r > 0. By the r-th order Cartan distribution
Cr* I of an integrable (k + 1)-connection T*+1) on 7 is meant the Cartan
distribution of the r-th prolongation SF(HU(T), ie
(10.7) cr e = ¢

Tk4r+1,k+7r

NTT*EED) (Jh).
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By definition, cro) = ortty (see (9.14)), and cr**) s a regular
n-dimensional distribution on I'*+D()(jkx) ¢ JE+7+11 annihilated by the

forms w7, ... ’w%.--jk“ restricted to F(k+1)(7")(Jk7r) together with
(10.8) A evive, — 0 (Diiy (T, 1)) o THHIED),

or equivalently spanned by the vector fields

TrE+D0) (D ) = i_+kzlyq 0 e D
7 oxt = J1---060 ay]ql...j[ J1--Jk? ay;fljk
0
a k+1
(10.9) + (DP(Fjl...jki) o Il )) o +...

J1-JkP

o r 0

a
ayj1~~~jk111---11r+1

Let » > 1. Then by (10.6) and (10.9) we get an expected relation
(10.10) TTEEDED) 6 Dy, = DEFTHLRET o k1)),

The following assertion can be proved in the same way as its ‘zeroth-order’
version Lemma 9.1.

LEMMA 10.1. Let k > 0,7 > 1. A (k + 1)-connection T*+D on 7 is
integrable if, and only if, its r-th order Cartan distribution cT™M™ js com-
pletely integrable, and a section -y is an inte%ral section of T*+1) if. and only

(r),

if, j*+7+1y is the integral mapping of CT**"

DEFINITION 10.3. Let & > 0,7 > 1. A (k + 1)-connection T'¢+1) ¢
Sv (T4 1) will be called a field of paths of a (k+r + 1)-connection D'*+7+1);
JFrn — JE+r+lrif on V holds

(10.11) pk+r+1) o plk+1)(r—1) _ pk+1)(r)

By definition, each field of paths is integrable, and (10.11) means just

(k1) (p—
(10.12) HF(k+r+1)|F(k+1)(r—1)(v) =c" (r=1)

3

since by (10.10)

(10.13) Diprrs1); © kD=1 — ppk+1)(r=1) 4 Dresn;.
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Equivalently, if y is an integral section of T(**1)_ then by (10.5)

F(k-i—’/‘-l—l) o 'k-I—T‘,_y — F(k-l—’l‘-l—l) o F(k—l—l)('l‘—l)

j (k+1)(r)

o jly = Ty,

ojfy=T
which means that if v is an integral section of a field of paths I'(h+1) of D(k+r+1),
then it is the integral section (a path) of D**7+1)  In other words, Hp(t1)

defines a foliation of V' such that each leaf of this foliation is an integral section
of D(*k+7+1) " The local expression of (10.11-13) reads

(1014 T} o DD = Dy i (17, ) o THHIED),

J1eeJkt 1010 JieeJk+1

Globally speaking, each field of paths represents a (local) order-reduction
of the given equation. In this respect, the problem of finding the integral
sections of a given integrable higher-order connection can be transferred to the
problem of looking for and then solving of its fields of paths; the transitivity
of the relation ‘to be a field of paths of a higher-order connection’ is evident.
In this respect, the method of fields of paths will be discussed in Sec. 17.

Let T be an integrable connection on a fibered manifold 7: ¥ — X. A
p-form n € QP(Y) is called invariant with respect to I" if it is invariant with
respect to the corresponding horizontal distribution Hr. Here we can present
the following result.

PROPOSITION 10.1. Let T* Y. vV « Jkx — Jk+1x be a field of paths of a
given (k+r+1)-connection T*+7+1) | Let ) be a p-form defined on w,;ink(V) C
JEtT . If  is invariant with respect to T*+7+1) | then (DR+DI-1)y js in-
variant with respect to T**1) Conversely, if a p-form ponV is invariant with
respect to T+ then Ty P IS OD DE+D=1(V) invariant with respect to
[(k+r+1)

Proof. The assertion is an immediate consequence of the relationships be-
tween both horizontal distributions, together with the well-known properties
of the Lie derivative. Thus from T'*+D(—1_compatibility (see (10.13)) we
have

Le ((F(k—I—l)(r—l))*n) _ (F(k+1)(r—1))*(£m) —0,

and analogously from 7y, j-compatibility (which is trivial)
EC (’/TZJrr,kp) = 7T2+1",k(£§:0) =0,

where ¢ € Hpgin) and ¢ = TTHR+D0-D¢ ¢ P 00-1 g
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11. SYMMETRIES AND VERTICAL PROLONGATIONS

This section represents a direct higher-order generalizations of the ideas
studied in [64]. The canonical ¢-inclusions are involved implicitly.

LEMMA 11.1. Let T*+1) be an integrable (k + 1)-connection on 7. Then
for any T¢+1)_horizontal vector field ¢**) on J*m holds

(11.1) J"¢®) o D=1 — ppktDr=1) o (k)

Proof. Notice first that for an arbitrary «, the mapping J": X(Y) —
X (J"7) assigning the r-th jet prolongation J"( to each ( is linear over F(Y)
when restricted to the subbundle of vectors horizontal with respect to a con-
nection T on 7 — see (4.7), (4.8). Substituting 7y for 7 and using the corre-
sponding inclusions, the same holds for higher-order connections on 7, hence
it is sufficient to verify the assertion for the generators Dy +1); of Hpgt1). To
do this, we use (4.6) properly modified to the situation studied:

TGt y) = pP (W 0 )
= vy (jr (W o j*y = Tty 0 Ty 0 (W) o )
+ T (T 0 ¢F) 0 Py (),
with ,u1(nk) and Vﬁk) defined for 7 analogously as for 7 in Sec. 4. Suppose now
¢k = Dy (k+1); and Rty = TEHD01) o jky - We can evidently suppose 7
to be the integral section of T*+1) and by (9.12) the first term of the above
expression vanishes, while the second one is

TTEDED o Tjky o Ty (W) (jk)) = TTRFDE=D®) (k).

As a consequence, (10.10) becomes

(11'2) jTDF(kJrl)i ° F(k+1)(r71) _ Dl;c—l—'r-l—l,k-l—r o F(k+1)(T).

(3
Summing up the above ideas, we get the assertion on decompositions of
tangent spaces to the equations studied.

PROPOSITION 11.1. Let T**1) be an integrable (k + 1)-connection on ,
and let (®¥) € X(J*x). Then there is a direct sum decomposition

j?"( o Tk+1)(r—1) — jr(hr(kJrl) o C(k)) o T(k+1)(r—1)
+VTEDED 6 4 0 ¢CB) 4 (F7¢W o TRFDE D) ik ri
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where
J" (hpasn © C(k)) o TE+D(r=1) ¢ CF(’“H)(T—I)
yTE+D(r-1) 4 Upks) © C(k) c VF(’““)(T’”(VM Jkﬁ)
(T7¢®) o PO DyTies € v T

In particular,

(11.3)  J"(vpwsn o (K)o DHHDE=1 =
yE+D=1) Up(ett) O C(k) + (j?"((k) ° F(k+1)(r_1))7rk+r,k‘
The proposition represents a contribution to the internal geometry of equa-
tions under consideration, and as such it can be viewed as an internal version
of results presented in terms of the so-called characterizable connections which
will be studied in Sec. 15. The bridge between these points of view is created

by fields of paths. For instance, for I'**1) being a field of paths of D'(k+7+1)
it holds by (10.13) and (11.2)
(11.4) I Dy o TEFDOD = Dy o TRHDOD),

In what follows, 1) is supposed to be an integrable (k + 1)-connection
on 7. Since it is a (particular case of) a connection on 7y, the ideas of [64]
can be more or less similarly repeated.

DEFINITION 11.1. A vector field (%) € X (J*7) will be called a k-th order
symmetry (briefly k-symmetry) of T*+1) if ¢(%) and J71¢*) are T*+1)_related,
i.e.

(11.5) TH®) o plktD) — pplktd) o ¢ (B)
The set of all k-symmetries of P*+1) will be denoted by Sym(®)(D(k+1)),

PROPOSITION 11.2. Any I'*+t1)_horizontal vector field is a k-symmetry of
rk+1)

Proof. See Lemma 11.1 for r =0. |1

COROLLARY 11.1. A vector field (¥ € X (J*r) is a k-symmetry of T'(#+1)
if, and only if, one of the following equivalent conditions holds:

(11.6) T (vpeesn © ¢®) o — yT D o Up(k+1) © ¢®),
(11.7) £Ur(k+1)(§(k))hr(k+1) =0.
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Proof. The relation (11.6) is a direct consequence of Propositions 11.1 and
11.2. The equivalence of (11.7) with (11.6) can be obtained analogously to
[64], where now

(11.8) ﬁ(c(k)’jlg(k))r(k—i—l) = (F(k+1), —ﬁg(k)hr(lﬁ»l))
one gets by substituting 711 — (7x)1,0 for m10. 1

Since
(¢ hresn = opeen (W), Dpgn,] ® da,

E'Ur(kJrl)

and

[pe+n (C*), Dpgesny] = KW = hpgean (), Doy
= [C(k)a Drery;] — K]DI‘(’CJrl)j’DF(kJrl)i]
= [¢™, Dpesn;] + Droern;(¢7) Dpoesn

¢ is a k-symmetry of T*+1) if, and only if,
(11.9) (D)5 C(k)] = DF(k+1)i(<j)DF(k-+1)j
for + =1,...,n. In this arrangement, the k-symmetries of D+ are just the

symmetries of the horizontal distribution Hpu+1) (in sense of [64]).
Again, the projectability of symmetries is essential.

PROPOSITION 11.3. A mj-projectable vector field (¥) on J*r is a k-sym-
metry of T*t1) if, and only if, one of the following equivalent conditions holds:

e (11.10) Eg(k)hr(k+l) =0.

o the flow of (®) permutes the k-jets of integral sections of T'(K+1),

Proof. The first condition is a consequence of (11.7) and of the fact that
th(k+1) (g(k))hr(k+1)

vanishes if, and only if, ((*) € Xx(J¥x). The second one is completely due to
the results of [64], if again 7, is substituted for 7. 1
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Denote finally by Symgk)(F(k“)) C Sym®) (P41 the submodule of ;-
vertical k-symmetries of D*+1) by Char(Hpg+1)) the ideal of characteristic
symmetries of Hpx41y (e.d. those lying within Hp41)) and by Shuf(Hpks1))
the quotient algebra Shuf(Hp+1)) = Sym(Hpu+1))/Char(Hpx+1)) of the so-
called shuffling symmetries. Recall that while the flow of a characteristic
symmetry moves integral manifolds along themselves, any shuffling symmetry
represents the whole class of symmetries whose flow rearranges the integral
manifolds in the same way.

PROPOSITION 11.4. It holds Hp+1) = Char(Hpx+1)) and
SymF) (D1 o Shuf(Dk+1),

Proof. The verification is analogous to that presented in [64]; here the
considered operator is given by the bellow mentioned relation (11.12). 1

Let now k > 1. Locally, ¢*¥) € X(J*7) is a symmetry of T*+1) if

0
8y§‘fl...j[

bl

0 o
(11.11) Ul"(k+1)(<(k)) ©7 8 p +ZDT(k+1)Jl Jz( )

where
Dra+vj, g, (f) = Do g Dy, - Dranj, (),

and the equations for the m-tuple of generating functions ¢° = (7 — vy; 7t are

6 0’
(11.12) DI‘(kJrl)jl...ij((pg) = E Dr(k+1)z‘1...z‘f 14 )7(9;1. ﬂf“-
— 11...7¢

The structure of higher-order jet prolongations and corresponding projec-
tions allows us to define some other types of symmetries; again the (-inclusions
are supposed to work implicitly.

DEFINITION 11.2. A vector field ¢ € X(J"x), 0
called the r-symmetry of T*+1) if k= ’"C e Sym®)(r
r-symmetries of T# 1) will be denoted by Sym(’") (T(k+1

<r <k-1, wil be
(k+1)). The set of all
).

PROPOSITION 11.5. A m,-projectable vector field (") on J'n is the r-
symmetry of Tt if, and only if, its flow permutes the r-jets of integral
sections of T(F+1).



450 ALEXANDR VONDRA

Proof. The assertion is based on the relation between the flows of ¢(")
and J* "¢ occurring from (4.4). Let the flow {a;} of ¢(") permutes the
r-jets of integral sections of T**1) je. if v is such an integral section, then
azo j™yo ()7l is again the r-jet of integral section ({af} is the flow of the
projection (o of ¢ (’")). If j¥~ is the k-jet prolongation of an integral section,
then J¥~"(ay,a?) o j¥y 0 (af)~! is by definition just

TF (g, af) 0 M7 () 0 (af) T = 4 (w0 Ty o (o)),

and thus again the k-jet of an integral section and the first part of the assertion
is proved by means of Prop. 11.3.

Conversely, if 7577¢(") is a k-symmetry and if we are given an integral
section  of T**1)  then

J a0 iy o (af) ) = (G T (o Ty o (@f) )

= (" (e, ) o jFy o (af) )
=T o 57 (g, af) 0 jhy o (af) !
=T 0 ¥ (ay 0 7y 0 (a]) ")

and consequently oy o 57y o (a?)~! is again the r-jet of an integral section. N

Of course, our main concern is with vector fields on Y as generators of
invariant transformations on sections; in this respect, zero-symmetries will be
referred to briefly as symmetries. In this case, ( € X(Y) is a symmetry of
an integrable *+1) if. and only if, one of the following equivalent conditions
hold:

11.13

11.14
11.15

jk+1< o F(kJrl) — TF(k+1) o jkC
T (vpany 0 TC) 0 P+ =yttt o vpn) © J*C.
Evr(k+1)(jk<)hr(k+1) =0.

[Dps1is T¥C] = Dpaes;(¢7) Dpeesn ;-

(
(
(
(11.16

)
)
)
)

where Dp+1);(¢7) denotes briefly just DF(k+1)Z'(7T;;’0(Cj)) = w,’;’l(Dl’O(Cj)). If
in addition ¢ € Xx(Y), then it is a symmetry of T*+1) if, and only if, its flow
permutes the integral sections of T+,

Remark 11.1. The symmetries of the Cartan distribution Cz, ,_, on Jkn
are called contact vector fields. By the well-known Backlund’s theorem, in
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the case of m = dim7 = 1 and if ¢(%) is contact, then it is the (k — 1)-th
prolongation of a contact vector field on Jim. If m > 1, then ¢(¥) is the k-th
prolongation of a vector field on Y. In this respect, the external symmetry of
an equation £¥) c Jkr is a contact vector field on J¥7 tangent to £*). In
other words, its flow preserve both the Cartan distribution and the equation.
The restriction of an external symmetry to £*) defines a symmetry of cE™
and just the symmetries of the distribution C¢ “ are called the internal sym-
metries of the equation £). By (9.14) and Prop. 11.4, ¢(") € X(J"x) is the
r-symmetry of an integrable T(;+1) if gk—r+1¢(r) [P0y (i) € XD (k)
is an internal symmetry of T**+1 (k7). In particular, if ¢ € Xx(Y) is such
that
jk+1< o Tk+1) ¢ Cr<k+1)’

then its flow acts on the integral sections of I'*+1) trivially — moves them

along themselves. On the other hand, a 7w-vertical symmetry can be viewed as
representing the whole class of symmetries rearranging the integral sections
in the same way.

As in first-order situation, the izomorphism (4.1) allows to define the ver-
tical prolongations of higher-order connections. In fact, the mapping

VI Vo Jhr = Ve P
realizes a lift of vertical vectors by
ZCh Jey el Pl ZC]l Jt 5ye ———lrany)
(1117) = Vi Tt
0
J -
+ Z 1o Jk+1 Cil...’if a o |F(k+1)(z)-
11 %) Y1 e

Then the vertical prolongation VI'®+1) of T(*:+1) will be a (k + 1)-connection
on (mo1y|y,y) defined by

(11.18) VI oy = ppyq o VIEHD,
which is projectable over I'**1) within the 2-fibered manifold (see Sec. 13)

JE(Ty VY yida)
) —

(11.19) JE(mory|yy JEn T X
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To eliminate the (in fact, useless and confusing) formalism including the v’s,
in what follows we work with a slight inaccuracy directly with the izomorphic

(11.20) V, Jhn 5 gkp I X

instead of (11.19), unless otherwise stated.
Then the following assertion can be easily verified by means of the results
obtained in [23] (see also Sec. 13 for definition of kpx+1)).

PROPOSITION 11.6. Let T*+1) be an integrable (k + 1)-connection on
and ¥ a connection on Tyk,: Vr, Jkw — JFr, satisfying kpg+ny oW = yrk+1),
If ¢ € Xy (J*n) is an integral section of ¥, then ¢¥) € Sym( )(I’(k“))

Let finally T+ € Sy (my114) be a field of paths of T*+7+1) . ghtry
JE+T+1r. Then one might ask on the relationship between the vertical (zeroth-
order) symmetries of the above connections. First, since each integral section
of T*+1) is the integral section of T*+7+D) if ¢ € X% (Y) is a symmetry of
(k4741 then Clryo(v) is a symmetry of &+ To obtain the well-known
result affirming that each vertical symmetry of an equation is the symmetry
of its prolongation, here is the relation between the corresponding vertical
prolongations.

PROPOSITION 11.7. A (k + 1)-connection T*+Y) is a field of paths of a
(k + r + 1)-connection T*+7+1) if. and only if, VI'*+1) is a field of paths of
Yrk+r+1),

Proof. The assertion confirms the compatibility of introduced concepts
with all the underlying functors and structures. Namely, if (10.11) holds,
then

Y441 o (P =1) & Pt +1) oyt )e=1)
— (kD) o P 1)y ()
( (p(k+1 idy) o JTYT (k+1),idX)o---0F(k+1)>
— V0% idy) o VI HTED dx) o - 0 VT
> (VI idy) o J7 L WTEHD idy) o - - 0 YD+ — (Y1),

The converse can be obtained analogously. |
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COROLLARY 11.2. If( is a symmetry of T**1) then it is a symmetry of
T(ke+1)(r)

Proof. We have to prove the relation (cf. (11.13)):

jk-I—T‘-I—lC o F(k-i-l)(’/‘) — VF(k-I—’I‘-I—l) o jk-l—’l‘C o F(k-l—l)(’l‘—l).

Let z € Dom 1), z = jk+ with - being the integral section of Ik*1). Then
(again the v’s-izomorphisms are omitted)

Vr(k+r+1) o ijrrC o Iw(k+1)(r71)(z)
_ Vr(k-l-'r—l—l) o jk—l—'rc o F(k+1)(r—1) Ojk’y(m)
= VLD o ghHT (o KTy (z)
_ vr(k+r+1) o jk+r(C o 'y)(zv) — jk+r+1(< ° ’Y) (m)
— jk+r+1< Ojk+T+1’Y($) _ jk+7"+1< o T(k+1)(r) Ojk’y(ﬂi)
= Jhtrle o pEHDI) (),

12. AN EXAMPLE

The following example can be equivalently considered both globally on the
trivial bundle pr; : R2 x R? — R? and locally on a fibered manifold 7: ¥ — X
with dimY = 4 and dim X = 2. The (fibered) coordinates we are dealing
with are denoted by

on the 8-dimensional J'm. Let us consider an integrable connection I' on ,
generating the first-order equations:

Uy = Y.
Uy = TV,
(12.1) Y
Vyp = YU.

’Uy = Iru.
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Then the generators of Hr are:

Dry, = a_y + x'ua—u + xu%

W' = du — yvdz — zvdy.

W' = dv — yudz — zudy.

and the generators of CT:

0 0 0
TT(Dry) =7 +yvo— + yu-—

ox ou ov
+y%u 0 +(w+z u)i—i- 2'ui+(u+ﬂv 'u)i
Y Ouy Y duy Y Oy Y Ay’

(12.2)

0 0 0
TT(Dry) =9y + L + TUZ

+ (v + zyu) 9 +x2ui+(u+x 'u)i+x2fui
Y Ouy, Ouy Y Ov,, vy’

The first prolongation of the equation £ C J'7 is the submanifold
E'M = JUT,idx) o T(Y) C J?m,

whose local expression is

Ugy = YUy
Uy = YV Ugy = U + YUy
(12.3) Uy = TV Uyy = TVy
Uy = Yu Vzz = YUy
Vy = TU VUgy = U+ YUy
Uyy = Ty,

which corresponds to the generators of C' (see (12.2)).
On the other hand, we have the equations of a 2-connection I'? when
extracting the second part of (12.3):

Ugy = YUg Vg = YUg
(12.4) Ugy =V + YUy Vgy = U+ YUy

Uyy = $’Uy ’Uyy = $Uy.
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Clearly, I (12.1) is a field of paths of I'®) (12.4). For example, the generators
of Hp) are

0 0 0

DF(2)£C :a—m +Um% + Ug;%—F
—l—yvx% + (v —i—yvy)a—uy +yum% + (u+yuy)a—vy.
0 0 0

Dy, :a—y + uy% + Uy%-i-

0
+ (v + yvy) s—

+ zv i—|—(u+ Usy)
Oouy yauy Yty

i + TUy—
Ovy Yov,’

and the vertical prolongation VI'®) means (under the above identifications)
the lift

0 0
(4“— T p R WP <”y—) -

0 0 0 0 0 0
<Cu_ + CU _|_ Cuz _|_ Cu;; + Cvz 5 + va _> |F(2)(z)
Uy Vg Uy
0
Vg 2 v 4 Vy + Vy
# (0 g + () g+ =
0
y¢ Mg (" +y¢ )(%my ¢ Vs |F(2)( )
13. 2-FIBERED MANIFOLD JFtlg 213 TRk JLI LN e

A 2-fibered manifold is a quintuple Z 5— Y 55— X, where m: Y — X
and p: Z — Y and thus also m o p: Z — X are fibered manifolds. For any
v € Sx(m) and 9 € Sy (p) (we suppose sections to be global for the simplicity
only, the same applies for local sections with having their domains in mind)
(7,idx) or (1, idx) is a morphism between idx and 7 or between 7 and 7o p,
respectively. Then the composition 1 o 7y is a section of wo p, i.e. (1) o~,idy)
is a morphism between idx and 7 o p, and

(13.1) JH(p oy,idx) = J'(¢,idx) o J' (v,idx).
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The situation can be represented diagrammatically:

o
X i gig JeY

idxl “’Ol l@rop)l,o

X+ vy 2 z &g,
ldxl WJ{ lﬂ'op

x oy ddx X.

(13.2) . .

X ('7’1 X) Jlﬂ' (1/)71 X) Jl(ﬂ' o ,0)

l Wl,ol l 7rop

x 2, vy v, Z <—"1’° Jlp
ol ol [

X ldX X ldX X

It is easy to see that J'(v,idx) = j'y and J'(¢) 0 7,idx) = j'(¢ o ¥), while
JY(y,idx) # j'9 = J'(3,idy), the target space of which is J!p. The relation
between prolongations mentioned is realized by the map
(13.3) k:J'n xy J'p = J' (7o p)
defined by
K (jz7s Jo(ay®) = 32 0 7)-

In fibered coordinates (z%,5°) on Y and (z%,3°,2%) on Z and the induced

coordinates y or z{*, 2§ or v, w; on Jim or Jp or J(m o p), respectively,

i 0
T =z -
k: y”zy” 1_yz
w® = 28 + 28y
20— @ 7 AL

Both sections and projections can be prolonged. Thus the prolongation of
pisamap J'(p,idx): J'(wop) — Jim, defined by J*(p,idx) (j (7)) = iy,
and clearly J!(m,idy) = m.

Our main idea is the introduction and the study of the role of an arbitrary
fibered morphism

(13.4) O: 7 — Jn
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between p and 7 o over Y, which in fibered coordinates reads
(«',y7,2%) B (5,47, @7 (2,17, 2)).

The point is that one of the most interesting particular cases of such a mor-
phism is represented by ® = I' o p with I': Y — J'7 being a connection on
.

Let ® (13.4) be an arbitrary morphism. Then by the composition

Jp P g xy Jlp Rk I xy Jip LN J(mop)
one gets an affine morphism
ke :J'p — Ji(mop)

between p; o and (7o p); 9 over Z, locally expressed by

07 = &7
(13.5) ke : y’ =y° Za ; o
L0 0 wi = 2 + 2597

Due to the affine bundles structure, there is a canonically determined vector
bundle morphism

ko: V,Z @ p*(T*Y) = Vigop)Z @ (w0 p)* (T*X)

between the associated vector bundles, associated to k4, which can be locally
characterized by

i

==z 77— 0
— V;, =
(13.6) ko : y’ =y’ !

where the dashed coordinates are those on the associated vector bundles.

In particular, we will write kr and kp for ® = I' o p. It is easy to see
that there is an affine subbundle Ag in J!(7 o p), canonically determined by
®, such that Imke C Ag C J'(m o p). This can be defined locally by the
equations
(13.7) vf =& (7,4, 2%),

)
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or more geometrically as Ap = ker Spg, where
Spg: JH(mo p) = ViY @ n*(T*X)

can be on the lines of the Spencer operator defined in such a way that Spg (j1¢)
is a vector satisfying

I (p,idx) (jo€) + Spa (ja€) = @ o (w0 p)1,0(j5)-

In other words, jl¢ € Ag if, and only if, ® o (7 0 p)10(jL¢) = J' (p,idx)(41€).
The associated vector bundle Ag to Ag is (whatever ® is)

Ay =V, 26 (w0 p)* (T"X) C Vipep) Z ® (0 p)* (T"X)

and it generally does not split except for p being an affine or vector bundle.

For a connection U: Z — J'p on p with the components e, U and a
connection Z: Z — J'(m o p) on 7o p with the components 27,2 (together
with T' on 7 mentioned above), one gets the diagram:

Lo
Jln ‘”¢—’“i")> Jl(ﬂop)

idx FT ET

JH(v.idx)=5ty
SR e N

x 5 y z 257
b q
x  Jddx, x  dx, X.

Let ®: Z — J'7 be a fibered morphism over Y and ¥: Z — J'p a con-
nection on p. Then there is a connection Z: Z — J! (7o p) on 7o p canonically
determined by the pair @, ¥, defined by E = kg o ¥ or equivalently by the

composition
bxy W
7 g xYleLJl(WOp),

and denoted by = = k(®, V).
In coordinates, the components of E = k(®, ¥) are by (13.5)

(13.8) B = @7, Ef = T2+ Ui,

As a corollary, one gets: let I': Y — J'm be a connection on 7 and U: Z —
J'p a connection on p. Then there is a connection Z: Z — J' (10 p) on wop
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canonically determined by the pair I', ¥, defined by =Z = kpo W or equivalently
by the composition

Z (FOp)_X)Y\If

and denoted by E = k(T', ¥).
It is easy to see that k(I', ¥) is projectable over I', which means that

Top=J(p,idx) o k(I', ).

Jir xy Jip x, J (7o p).

In coordinates, the components of £ = k(I', ¥) are by (13.8)
(13.9) 27 =T9, E®=T2 4+ U§Th
On the other hand, there is a family of distinguished sections
p: Z =V, Z @ p*(T"Y)

(i.e. of soldering forms on p or deformations of connections on p), determined
by any morphism &.

A soldering form ¢: Z = V,Z ® p*(T*Y) on p is called a ®-admissible
deformation on p if ¢(z) € kerkg for all z € Z.

By (13.6), the condition of the ®-admissibility for the components ¢$* and
oS of ¢ means

(13.10) X + 5D} = 0.

The meaning of this concept is transparent: with a fixed ® it holds
k(®,U,) = k(®,Vy) if, and only if, ¢ = hy, — hy, is ®-admissible. Equiv-
alently, with a fixed ® and E and a given ¥ such that 2 = k(®, V), the
knowledge of the ®-admissible deformations family means the knowledge of
all such connections ¥ on p. The following lemmas were proved in [23].

LEMMA 13.1. Let 9 € S),.(p) be an integral section of a connection ¥ on
p. Theny € Sj,.(m) is an integral section of a connection I' on = if, and only
if, § = 1oy € S)y.(mop) is an integral section of the connection & = k(T', ¥).

LEMMA 13.2. Let T' be an integrable connection on m and 1 € Sy,.(p)-
Then the following diagram commutes if, and only if, £ =1 o~y is an integral
section of 2 = k(T', ¥) for each integral section v of T':

Jln s Jlr s Jl(mop) X Jlp

jlﬁ FT TE Tid

x 25y 2 z 2L gy,
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In this section we observe the situation described by the diagram

X M lek J17Tk+1

idxl (Wk)l,Ol (7rk+1)1,ol

T Th+1,k
X % Jkg Jktln

idxl Wkl 7Tk+1l

x Jb oy Jdx X.

T (Tgeg1,1d x)
<—

(13.11)

(Trt1,k)10
————— J Mk

The canonical map k (13.3) is now
(13.12) k:J'me X iy J gk = I g

It does not effect the coordinates up to y7 ., ., and its equations are

k
. S E:Uﬁmw A
(1313) y‘]l...]k+1;z - Z]l---]k+11 + Zjl...jk+1)\y7"1---7"l§1’
=0
o o Ti1...0) . . .
where by I PRI TOE PG CIRERURT s WP denote the induced derivative

coordinates on J 17rk+1’k. The first order of business is to mention the role of
the canonical embedding

BWE JHr o Jlﬂ'k

which is in coordinates expressed by

(13.14) ?/;Ui =Yl 7y]q1...jk;i = y}’l...jki-
Comparing the above with Sec. 6, we see that Sp, , = Spy, and consequently
Ay, = JE2n JAY AR

Notice that if ®: J**1x — Jl'm is an arbitrary fibered morphism over
Jkm, then since the vertical bundle associated to ()10 is Vi, J57 ® 7} (T*X),
the difference ® — ¢y is a fibered morphism JEkr = Vp JEr ® 7 (T*X) and
thus

(13.15) Q=11 +a(®—riy)

is a fibered morphism J**'n — J'z;, over J¥x for any a € R.
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DEFINITION 13.1. The formal curvature map is the map
(13.16) Re J' M ik = Tyt (VﬁkJ’%r ® 7} (AQT*X)>
defined for each j}hX € J17rk+17k by
(13.17) R(jji,X) = Trs1 0 T (X, idx) © 11, 0 X(557)-
The map R is well-defined, since for each x € S(mj41 ) it holds
b © (Th1)1,0 © JH(Xsidx) 0 41,5 0 X = 41,60 X 0 (Tk)1,0 0 L1,k © X = L1,k © X5
and
Jl('ﬂ—k+1’k,idX) o J (x,idy) o L goX = J1(7rk+1’k ox,idx) ot pox =t1 40X
hence
(13.18) J (x,idx) ot g ox € T2,
Then by Sec. 6,
R: J'mpy1p — Thi1o (VoY @ 7" (0FT*X)) —
Try10 (VaY) @ migy (AQT*X ® SkT*X) =
7r};+1’k (Vﬁk’k_leﬂ ® 7}, (AQT*X))
C Ttk (Vﬂk Jhr @ m} (AQT*X)) .
Moreover, due to the well-known splitting we have
Ty (Vo' @ 7 (1K) ) =

de (m)ig (Ve Jom @ m (T°X)) =

Lik (V(Wk)LoJITrk) C Vﬂk+1 Jk+17'r,
which means that
(13.19) R: Jlﬂk—l—l,k — V7Tk+1Jk+17T ® WZ—l—l(T*X)-

Consequently, we can define (for a,b € R) the affine morphism

ab, 71 1
kq) 2 J 7Tk+17k—>J Tk41
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between (mg11x)1,0 and (m41)1,0 over J¥+1r by
(13.20) k%" = kg, + bR.
It is easy to see that regarding a curvature of the connections in question,

one gets that
k+1)

Rr41) = —prgo Ro jlr(

—pry o 11 0 JHTEY idx) 0 gy o I TR 5 V7

JEr @ i (A2T*X).

As to be expected, the same characterization can be presented for a (first-
order) connection T" on T, i.e.

Rr = —pryo ryo JY(I,idx) oT: Y = V,Y @ 7*(A’T*X),

hence k& = 0 will be allowed when speaking on the curvature of a (k + 1)-
connection on .

14. CONNECTIONS ON 7Tjq1 ¢ JETlr — Jkn

Another type of connections playing a crucial role in our discussion is
represented by those on the affine bundle 7y x: J k+lp — Jkr. Let us again
give a summary of the notions characterizing a (global) connection = on 7y .
First of all, it is a (global) section

=2 JHr o J17rk+17k

of (mg+1,1)1,0 and thus its local equations are

27 . =57 .
J1eJk41% T TJ1Jk410

20 - =0
JleJrk+1A T T e A
(14.1)
zO’lle _ -:azlzk
JreeJk1 A T TILJk1 A
with the components from F(J*+1x). The horizontal form of Z is

hz: JMr =TI w @ mp ) (T 5 ),

having the local expression

k
(14.2) he = Dz ®@da' + Y D™ @dy), i,
=0
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with the absolute derivatives

0 0
Dz; = ozt + Hjl k1l g
JieJk+1
0 0
D=y = += _—
= J1 Jk+1A
(14.3) o RO
o 9 o 9
itk + 5ok )
=2 A A
N R 7

Therefore, the complementary vertical form

= S = Vo T @ T
reads locally as
0
(14.4) v = ® W’
y]q1~~~jk+1 i

with

_.0'

o =011 ...9¢ _ =0 )
R ATI dy]l~~~]k+1 Z Tt k1A yll G T et

463

The dimension of the 7rk+1’k—hor1zontal distribution H=, generating the de-

composition

(14.5) Ty = Hz= 0V, J" ',

k+1,k

equals to dim J*7 (the codimension is just the fibre dimension of 7y 1), and

the corresponding horizontal lift

* 7 0
(146) 7Tk+1’k(TJk ) (C a : + ZCJI ‘”a ) |7Tk+1,k(j§+17) —

Yir...de

(CZDEZ + Z C;.._szél&"jf) |jg’§+1’y € TJk+17T

=0

realizes a splitting of the exact sequence

(14.7) 0—V,

Tk+1,k

T TJ" e = ) (T TFm) —
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The affine translation generated by = is evidently

(14.8) Ve I i1 = Vi J5 T @ w1 (T7TF ).

k+1,k

Since 41k is an affine bundle, affine connections could be studied, as well.
Such a connection must represent an affine bundle morphism between 7y
and (m11x)1 over JE7, which means that the corresponding components are
affine in y,?l~~~jk+1'

The point of the importance of connections on 7414 in the geometry of
equations studied is that the integral sections of connections on i1y are
(local) (k + 1)-connections on 7. Such a connection T**1) € S(myy; &) must

satisfy
GIDGHD — = o plktD)

which in coordinates reads as a first-order system of P.D.E.
ar?

Ji-Jk+1 _ =0 ro, v v v
T - _‘j1...jk+1’i(x 'Y e ’yT1...7‘k7F1"1...1"k+1)
X
a
6F31...3k+1 — =0 ) (.’L‘T v v l-w )
ay)\ - - 1---.7k+1A 'Y e ’yTl...T‘k’ T1eeTh41
(14.9)
g
8F]1..-]k+1 _ :O'il...ik (mr v v Fu )
a )\ ] - ‘_‘jl---ijrl)‘ 7y 3. ’yT‘l...’/‘k’ 1 Thp41/"
Yi
1.

All the characterizations of the integrability of E are easily derived from the
general situation for a connection on 7 (see also Section 7).

15. CHARACTERIZABLE CONNECTIONS

In this part, the ideas of Sec. 13b find the application. First recall that

.7l Th+2
kLl,k‘ J Tk+1,k — J s

is by definition
(15.1) DD o g(DEFD (), I EHD) = JH 0D Hdx) 0 414 0 TEFD(2).

Therefore, if vy € Syy(n) is an arbitrary section of the (k+1)-connection T'(+1),
then
by (7, DY) = THIE idx) 0 01 o TFHD (1)

(15.2) ) o .
= 144100z ) € g1 (J7TET).
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Secondly, for any I'(k*+1)

1 1
kp@+1) == kt1,k0F(k+1)°7rk+1,k S gk — T
reads
.1 K (k1) 1 . (k+1)
(15.3) J:x — J(x,idx)ot ol (2),

which together with (15.2) means that for an integrable T'*+1) holds
kpasn 0§ T =k, o

= JYI®HD idy) 0 41 0 DH+D = p+DD)

11‘\(/{)—1—1)
(15.4)

bl

(see (10.3)).
On the other hand, let =: Jktlzr — Jlmﬂ_l’k be a connection on 71k,
and ®: J¥*lr — Jlm; be a fibered morphism over J*¥7. By (13.20),

E'f{)”bE = k%’b oB: JH M = Jlmpyy

is a connection on 71 for an arbitrary a,b € R. In particular, a (local)
connection T**1) can be considered representing both the morphism & =
L1) © Lk+1) o Tk+1,5 and the section of 7411 ;. Then denoting by

Ype+n g = Kkpeen) 0 5,
the following assertion can be presented (cf. Section 13).

PROPOSITION 15.1. Let ItV be an integral section of a connection E
on Ty41 % Then  is an integral section of T**1) if, and only if, T(+1) o jky
is the integral section of Xp(x+1) =-

By Sec. 6, for an arbitrary connection = on 741 and b € R,

Hk+2) 06 p.0b =, 7kt Th+2
e, ™= ZLl,k,E_ktl,kOH‘ JUT = I
is a semiholonomic connection on 7,1, which can be analogously to (8.6)
decomposed to the (k + 2)-connection

F(519-1-2) f‘<k+2)

= Sk4+10° b

and to a certain multiple of the composition R o E of the formal curvature R
with =. Just the last term finds its importance in the following definition.



466 ALEXANDR VONDRA

DEFINITION 15.1. A connection E on 741 ; will be called characterizable,
if
(15.5) Ro=Z=0.
The (k + 2)-connection
+2) _ e

—_
(=)
—

ms

(15.6) r

L1,k °

will be then called the characteristic connection of Z. Accordingly, the hor-
izontal distribution H k42 will be called the characteristic distribution of =

and the maximal-dimensional integral manifolds of the characteristic distri-

bution (i.e. (k+ 1)-jets of integral sections of F(Ek+2

of E.

)) are the characteristics

PROPOSITION 15.2. A (k+ 2)-connection I'*+2) on 7 is the characteristic
connection of a connection E on w1y if, and only if, one of the following
equivalent conditions holds:

k
(15-7) FJU1 WSS J1 <Jk+1t + Z ngljkriﬂ\y’”l i
=0
k . .
(15.8) Drwsz; = Dai+ ) DIy},
£=0
k
(15.9) hz = hpoie) = ZDE/\ e w]l Je
=0
(15.10) Hrpgevy = H= N Cry -

Proof. The first three local conditions are immediate consequences of
(13.13) and (13.14) together with (8.3), (8.4) and (14.2), (14.3).

Since Hp+2 C Cr,,, for an arbitrary r*+2) and due to dim(Hz N
Criyrx) = n for an arbitrary =, (15.10) holds if, and only if, Hpu+2) C Hz,
which is equivalent to (15.8).

In keeping with Section 13, the class of characterizable connections on
Th+1,,k With the same characteristic (k + 2)-connection on 7 is generated by
the class of ¢; y-admissible deformations on 71 . More precisely, if we call
any such Z associated to I'*+2) then for each soldering form

k+1
SV T — Vwk“ .

Jk+17'r ® 7T]>:;+1’k (T*Jkﬂ')
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satisfying locally

k
ory...T A _
(15.11) ‘Pg‘l...iji + Z ‘le.l..jkil,\?/m...m =0,
£=0

hz + ¢ is the horizontal form of another connection on 1 associated to
F(k+2).

Let us finally complete the diagram (13.11) by connections:

k1
x L0 gktlp

jdxl I‘(k+1)T I‘(k+2)T kLLkT

T(k+1)

JUT G id x) :]%JFQ’R_ ﬂ+271'

(15.12) X —>jk7 Jkn e =, T 1k

idxl Wkl 7rk+1l
x b,y dy, X.

16. THE METHOD OF CHARACTERISTICS

We start with the statement which turns out to be intrinsically related
to both indirect integration methods we will present. On the other hand, it
follows the above ideas very naturally, hence the verification is trivial. Suppose
k> 0.

PROPOSITION 16.1. Let = be a characterizable connection on 71, and
) be its characteristic (k+2)-connection on . Then each integral section
) of 2 is a field of paths of 42,

2
F(HkJrl

Proof. Let T*+1) be an integral section of Z. Then by (15.6) and (15.4),
rk+2) § ple+1) — g

= =K © Eo F(k+1) = kLl,k °© le(k+1) = F(k+1)(1)a

which is just (10.11) for r =1. |
Recall that for such I*+1) € Sy (mj411) it holds by (10.12)
Hpgon (2) = CT7 (2) ¢ T.T®H D (v)

for each z € T**+1(V), which can be expressed by saying that I'**1 is an
‘integral including manifold’ of Hp(x+2).
Since each field of paths is integrable, by Sec. 10 we get:
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COROLLARY 16.1. If = is characterizable and integrable, then its charac-
(k+2)

teristic connection I'c is integrable, as well.

In fact, the maximal integral manifolds of H= (integral sections of =) are
foliated by the characteristics, whose equations are by (9.6) and (15.7)

k-+2 k-+1
0" y0 —=7 g i
Ozt ... Qplk+19gi Tkl SRR Oz ... 0z k+1

k
. Z corre (oo s k1 i1y
(=0 TGk A AR Ox™ ...0x"+1 ) Ox™ ... OxTtOxt

(16.1)

In other words, under the integrability conditions, the looking for solu-
tions of the first-order system (14.9) can be transferred to the looking for the
solutions of the (k + 2)-th order system (16.1) — the integral sections of E are
‘pieced together’ by characteristics.

Moreover, knowing an r-dimensional integral submanifold M, of H=, the
characteristics can be applied when constructing an integral submanifold M,
of dimension > r containing M, — this task is the well-known Cauchy initial
problem. Clearly, the case when M, in itself is foliated by characteristics must
be eliminated, in such a case M>, = M,. In this respect, a point z € M, can
be called characteristic (with respect to E) if T,M, D H.x+2(2), and the

Cauchy problem is solvable just around the non-characteristic points of M,.

It is evident that the integrability of = is not necessary for the integrability
k+2)
of T

. Nevertheless, the above method of characteristics can be applied,
as well.

The relation between the characterizability of connections on 7y and
the integrability of (k + 1)-connections on 7 is hidden within the following
construction, which completes the ideas of Sec. 13.

DEFINITION 16.1. Let T**1) be a (k + 1)-connection on m. The formal
mixed T*+Y _curvature map is the map

(16.2) Ko t I Tk — w,’;ﬂik(vﬂkakflﬁw ® 75 (A*T*X))

defined for each jjl.,wx € J'm41, by means of the F-N bracket as

(16.3) fpaern) (G, %) = (X575 [rroen = hys By (G57))-
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_ The motivation of the definition is similar to that of Def. 13.1; namely, if
T +1) is another (k + 1)-connection on 7, then

(DD, TR+ T(k+1)

, =pryo K o'
(16.4) ) :=pry r(k+1) ©J . o
= [hr(k+1) - hf(k+1)7hf(k+1)] J ™ — Vﬁk k— IJ T ® 7rk(A T X)
is the so-called mixed curvature of the pair T*+1 and T*+1_ Since

© = by = A

is a soldering form on 7, the mixed curvature k(DD T*R+D) s nothing but
the ¢-torsion 7, of T which locally means

h;(f(kJrl), F(k+1))

(16.5) ore R P .
= Df(k+l)i((pg1...jkp) #‘prl...rkp 6 o &® dz" N dxp,
T1...TE ]1 ]k
where 7 . =T7 . — f‘?-ln.jkp' Moreover, due to [45] we have
~ 1
(16.6) D, TEH) = Ry — R — 5o,

and thus e.g. also
(DD, D0D) (0D FED) = 2Ry — Rpgeony).

Let us return to the definition. First, the local expression of K41y can

. . . e - - -
b? immediately derived \ivhen substituting YT i for Fj1~~~jk+1’ 25 ke for
ore . are

J1dk41  _OT1..Tg J1Jk41 k+1,k
a2 Zjogesa fOT D5, An nd D; for Dg41); in (16.5); for example
if K =0, then

81“3’ 81“" bl ; ;
pry o Kp = 8mi+8)‘yz_ 7= ]/\yz—z (I’ —yj) 8—y"®dm Adxt.

Secondly, (16.6) may be now rewritten to

~ 1.
Kpt+) = Rpgany — R — Hp(k+1)
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with R\F(Iﬂ»l) := RojlTk+D o (Tk41,%)1 and Kpx+1) being defined analogously
to Kpa+1) by

k\p(kﬂ)(j}%x) = (x(ig), [Proesny — hos hpaerny — hx](j];;’)’))-

Let now = be a connection on 7. Then

c TR T, (V7 JEr @ mi (A2T*X))

HF(k-+1)’E = Kpk+1) 0 & Thtlk

represents a ’curvature-like’ term generated by T**1) and 2, where
RrgsnoZ=Roj' Tk om

does not depend on Z and it vanishes if, and only if, D51 js integrable, RoZ=
does not depend on T* 1) and it vanishes if, and only if, Z is characterizable,
and finally A1) o E integrates I'**1) and E together: if I'A*1) is an integral
section of Z, then Kpx41n 0 Eo k1) — Rr+1) © 0+ = 0, In particular,
if = is characterizable with the integral section T+ then Krk+n g = 0.

17. THE METHOD OF FIELDS OF PATHS — PART 1

The ideas of Sections 16 and 10 suggest the second indirect integration
method, dual to the method of characteristics. Actually (by Prop. 16.1 and
Coroll. 16.1), if = is an integrable characterizable connection on 71 4 associ-
ated to the (k4 2)-connection I'*+2) on 7, then each integral section of [(¥+2)
is locally embedded in a field of paths I'*+1) which is the integral section of
E. Accordingly, the problem of the looking for the solutions of the (k + 2)-th
order system represented by I'**2) can be transferred to the looking for an
integrable and characterizable connection = on ;41 associated to I‘(k+2),
and after this to the solving of the corresponding (k + 1)-th order fields of
paths. As already mentioned (cf. Sec. 10), if T(¥) is a field of paths of I'(k+1)
which is the field of paths of T**2)_ then I'®) is a field of paths of I'*+2) and
the procedure can be repeated.

DEFINITION 17.1. Let T*+2) be an integrable (k + 2)-connection on 7.

A (generally local) integrable connection = on 741 4 associated to r(k+2) ig
called the integral of ['(k+2).
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Denoting here by Z(y; 1) the integral of '¢+2) the following diagram can
be presented.

Jk+1
X L2 gktig

idxl 7Tk+1,kl F(k+2)T

ik (k+1) =
N k+1
X L2y gkp L ghtigp 0D, J g1k

idxl Wk,k—ll F(’cH)T

k—1 (k) =
_ T k
X L0 gle s ghr 8 Jimes

r(k+2)
N Jk+27.r

1 re =
x 25 g —— xS Jimy,

idxl 7TLOl p(?)T

r =
x 25 v L5 g =5 Jmy

ol e
X ld_X> X ld_X> X.

Natural question on the existence of integrals for a given (k+2)-connection
may be considered both locally and globally. The former case can be answered
in terms of first integrals.

Notice first that due to (15.10), each first integral of a characterizable =

is the first integral of its characteristic T**2). The converse is not true in
general, nevertheless, the following assertion holds.

PROPOSITION 17.1. Let T'*+2) be an integrable (k + 2)-connection on

and {a', ..., aK}, where K = dim 71 1, be a set of independent first integrals
of I'*+2) " defined on some open subset W C J*+1x. If the matrix
o L
(17.1) A= (a%)
Yji-dra

is regular on W, then there is an integral = of I'k+2) on W, defined by

(17.2) H= = anih{dd', ..., da™}.
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Proof. First it should be stressed that we suppose W C w;jl’O(V), where
(V,1)) is a fibered chart on Y.

By definition, the distribution (17.2) is completely integrable. Let us de-
note by (A7 ) the inverse matrix to A given by (17.1), where o and

Jre-Jr1L
J1---Jk+1 label the rows and L the columns. Then the annihilators of Hz are

da* da® N
(17.3) dy;fl---ijrl —|—A]1 Jet1l g da’ +Z Ji.. Jk+1La A dyhmiz

11 g

and it remains to show that the characteristic connection to =, given by

L
=7 = —A9 6L
=g Jk+1t T Jiedktrl g

L
=0 _ge 90
IR TP J1eJr1 L ayA

(17.4)
L
:UZle _ _Ao' . aa
Iy T TR S J1~~~Jk+1Lay_)\ 0
01..0p

is just D(k+2) (this obviously automatically determines also the characteriz-
ability). Since

k
=OT1.Ty
Jl Jk+1l = ]k+1)\y1"1 Tt
= —Af L E y
- J1--Jk41 i A T1..T¢l
835 8 Yy
— A° aaL F)\ —T7
Ji.. Jk+1L8 P T1..Th41l J1eJr+19)
7"1 Th41

the proof is completed (see (15.7)).

It should be noticed that if T**2) js integrable, then the existence of a set
of independent first integrals satisfying the condition (17.1) is due to the
horizontality of Hp(k+2).

The problem of global integrals is much more complicated. In fact, two
questions appear in terms of the above considerations. First, whether there
exist transformations ‘converse’ to those of Sec. 15, allowing a global assigne-
ment I'*+2) + = and secondly, what conditions force Z to be the integral
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of T+2)? Ag already announced, especially the first question represents an
open problem for dim X > 1 and k£ > 1. For k£ = 0, the following assertion
can be presented, reformulating the corresponding result of [22]. It should be
stressed that all concepts involved are global.

PROPOSITION 17.2. Let T'?) be a 2-connection on ™ and A a linear con-
nection on X. Then there is a connection

(17.5) Ep =gao0j'T®

on my associated to I‘(Q), being determined in virtue of a natural fibered
morphism

(17.6) ght Jtmay = Jimyg

over J'm which is locally expressed by

L ok k k k
arn Ziy = §(Z§'k,\ + 05 Ak;) + ad (Ajy — Ag),
25 =yl — 20

for an arbitrary a € R.

It appears that the presence of a linear connection on the base X is essen-
tial, it cannot be omitted. If 7: TX — V,, TX ® A’T*X,

) . .

k

T = AUW ® d,’EZ N d,’EJ,

is the classical torsion of A, then its contraction is a one-form
T =T, dz’

on X with 7; = Afk — Agi. It can be shown that the linear connection A on

X canonically generates the soldering form of type T on 71,0, which locally
reads

(17.8) Sa=T: 9

s dy’ — {de’
ayg®(y y; dz’)

hence, it is trivial if, and only if, A is symmetric (torsion free).
As a consequence, the connection (17.5) can be written in the form

(17.9) E) =E8 +a Sh,

“—a
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where the components of Z§ are by (17.7)

1 /org
=0 — ik (WAk-

=0 _ 170 _ /=0 , A
gy =15 — 805,

(17.10)

with I'Y; being the components of T(),

Recall finally that the family of connections on 71 ¢ associated to ' can
be obtained by means of ¢; g-admissible deformations on 7 (see (15.11)),
where 119 = id 1.

Remark 17.1. On the other hand, there is a construction of global associ-
ated connections for £ > 0, but with dim X = 1, established in [62]. In this
situation, the role of a linear connection is played by a volume form on X.

18. STRONG HORIZONTAL DISTRIBUTIONS

While the above ideas and results on the relationships between horizontal
distributions had to do with integral methods for the corresponding connec-
tions, in what follows we deal with in some sense complementary ‘strong
horizontal’ distributions, which will prove to be related with the symmetries
of equations studied. In what follows, £ > 0.

First recall that a non-vanishing (1,1)-tensor field F' of constant rank on
a manifold M is called an f(3,—1)-structure if F? — F = 0. Regarding a
formula

F3_F=FF -I1)(F+1I),

there is a direct sum decomposition on T'M induced by any such F' :
(18.1) TM =Tm(F? — F) @ Im(F? — I) @ Im(F? + F)
with the eigenspaces corresponding to the eigenvalues —1, 0, 41, respectively.

PROPOSITION 18.1. Let = be a characterizable connection on 71 and
' +2) be its characteristic connection. Then

(18.2) Fz = 2h= — hpgsny — 1

is an f(3, —1)-structure on J**17 of rank = dim .
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Proof. Since both hz and hpk+2) are projectors and due to Prop. 15.2,
which implies
(18.3) hz o hygeta)y = hpaers) © bz = by -
it is easy to verify that
(18.4) F2 = vpan),

which immediately leads to F2 — Fs = 0. The rank of Fs is evident from its
local expression. |

Next assertion should be viewed as the external version of Prop. 11.1.

COROLLARY 18.1. Each characterizable connection E on 41 deter-
mines a direct sum decomposition of T J*+1x:

(18.5) TJ* e =V,

Tk+1,k

T © Hygeszy ® Hp,

given for any ¢+ ¢ T k17 by

(18.6)  ¢"V = w=(C*Y) + hpuss (C*FY) + (hz = hreua ) (D).
Proof. Directly by (18.1), since

(18.7) F2—F==2vs, F2—1I=—hposz, F2+Fz=2(hz —hpus)-

1

Evidently,

(18.8) Hz = Hpys) & Hp,

which suggest the following definition.

DEFINITION 18.1. The eigenspace Hp. = Im(hz — hpx+2)) will be called
the strong horizontal distribution generated by =.

In fact, the strong horizontality means together with (18.8) also

T =V,

Tk+1,k

(18.9) v,

Th41

Jk+171'@ HFE

It appears that there is further interesting object which can make the role
of the strong horizontal distribution more transparent.
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DEFINITION 18.2. A reduced connection on 71 is such a section

Cesp)t Thpt oV I ) = Vi JE

which is a vector bundle morphism between }_ , ,(7;x,) and 741, over
JEHL

In other words, a reduced connection I ;) represents a lift
XY (Mg p) = X% (JF ),
or equivalently a splitting of the exact sequence

k+1
JTr — VMH

(18.10) 0=V,

k+1 * k
Th+1,k JTm — 7rk+1,k(V7rkJ ) = 0.

In coordinates,

r
k41 Z (k+1,k)
( 72 G 9 GyT |m> ’
J1---J¢
ZC“ Ky, )\ |k+1 011 o A |k+1 3
a . ]1 ~Jk41 ayﬂ et

11 g

(18.11)

where the functions FU“ J]:[ A€ F(J*+1r) are the components of T (et 1,0)-

In particular, F(k+1 k) generates a lift
X% (Jkr) = X% (JF )
by the composition

(18.12) Jhtlg IR gkl gk idx—g(f)

T
k+1 k.~ (k+1k) k+1
ST x Ve i — Ve ST

This lift we will denote by I' (41 ) (¢ (k)). Accordingly, each reduced connection
L (k+1,k) O0 7414 can be identified with the decomposition

Jk+17r -V Jk-l-l

Tk+1,k

(18.13) v

Thil o Hr(k+1ak)’

where the generators of the (dim 7y, 1)-dimensional distribution
Hr gy = Il gy,

are evident from (18.11).
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DEFINITION 18.3. A vector field (") € X% (J"7), 0 < 7 < k, will be called
the r-integral section of a reduced connection I' (1 ) on g1k if

(1814) I’(k+1’k)(jk*7'<'(1")) — jk*?"+1<—(1‘)

On the other hand, reduced connections on 741, work within the 2-
fibered manifold (11.20). More precisely, if we are given a reduced connection
L (k+1,k) o0 Ty 1k and a (kK + 1)-connection T +1) on 7, then the composition

; (k+1) s ;
Vi, Jh BN gk s vy gl T
(18.15)

k+1 ko Lkt k+1
ST x Ve JhIr — Ve T,

locally expressed by

chl Jz |Z —

Jl Jt

k o 9
ZCH g a ax |T(k+1) F;“]ZH)\[) o |F(k+1)(z) ’
Yjiednm

11 K7

(18.16)

defines canonically (cf. (11.17) and (11.18)) the (k + 1)-connection on 7o 7y :
VzY — X. In what follows, both (18.16) and this connection we will denote
(with a slight inaccuracy) by T'(41,1) © rk+1),

The point is that an arbitrary characterizable connection = on 741 nat-
urally generates a reduced connection F(Ek F1k) OD Thik by the restriction of

the horizontal lift (14.6) to 7y, . (Vr, Jkr), ie.

(18.17) Clerie) = hE|7r,’;+1,k(Vrk Jhm)s

which in coordinates reads

Ol1...9¢ _ =m0
(1818) F]1]k+1)\ - ‘_‘jl---jk+1)“

The evident fact that

= =Hp. = H=NYV, JEtlg
TGiin) F= Th+1

results in the reformulation of Corollary 18.1.
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PROPOSITION 18.2. Each characterizable connection Z on w1y splits
into the direct sum of its characteristic connection T defined by (15.6)

and the reduced connection F(Ek H1E) defined by (18.17;

Clearly, I’(:k+2) corresponds just to the lift hE|H7"k+1 L ie. hF(k+2) = hz o h.

(:k-l—l,k)
tribution) is closely related to the symmetries; more precisely, to the symme-
(k+2))

As already announced, T’ (or equivalently the strong horizontal dis-

tries of the integral sections of Z (and thus by Sec. 11 also of T’

PROPOSITION 18.3. Let = be a characterizable connection on 71 and
F(Ekﬂ’k) the associated reduced connection. If T+ ¢ Sy (Tp41,%) Is an inte-
gral section of =, then

18.19 U1 g o TEHD = oGt
(k+1,k)

on T},}W(V). Consequently, if (") € X¥(J'r) is an r-integral section of
F(Ekﬂ’k), then §(’)|WM(V) is the r-symmetry of T*+1).

Proof. Directly by (11.17), (18.16), (18.18) and (14.9). N

Roughly speaking, the strong horizontal distribution generated by = con-
sists of the prolongations of the symmetries. This must be consistent with the
results of Sec. 11 (see Prop. 11.6). In fact, if ¥ is a linear connection on 7.,
then the composition

idX W k
T x Vi, JEn 8 T e x T — Vi, J¥

Tk+1

i1s a reduced connection F(k+1,k) on 741k such that for an arbitrary (k + 1)-
connection T'*+1) it holds Figs1p) 0 -+ = kprt1y o W

Remark 18.1. In order to certify the name reduced connection, we should
recall that there is a natural identification of the tangent space T(J*r), of
the fiber (J¥r), = 7, ' () with the fiber p, (), where p = mo7y: VY — X;
i.e.

(VmJ’%) > T(Jkx),.

T

for each z € X. Consequently, each reduced connection I yq gy On T y1k
defines for a fixed x the mapping

()0 X (ghmy, T(TF7)e = T (5 1),
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which is the horizontal lift with respect to a uniquely defined connection on
Tt 1,k (Jk+17r)m — (Jkﬂ')m
(clearly, we have to consider the connected components of fibers only).
19. AN EXAMPLE

Let us consider two connections Z;, Z on 7o with the fibration being
studied in examples of Sec. 12:

=, DEm:a_x+(v+yvy lmvm)auy (u + yuy — lmum)aiy
DEng‘F 0 —i—lxvy 0 +ui+lmuyi
dy ' Ouy 27 Y ou, Quy 2 7 Ovy
D=, %+yai+%ai
1
Dz, (%—i—y "‘5%
B DE‘C_%+U6iuy+u6ivy
DEy—a%“aimM%
D=, 6%4—1/%4-:5%
D=, (%‘f‘yaim"‘maiy

Both connections are characterizable with the characteristic 2-connection I'?)
presented by (12.4). While =5 is integrable with integral sections which differ
from (12.1) by additive constants only, =1 is not integrable. The corresponding
2-dimensional strong horizontal distributions are generated by D=,, D=, and
for Zy it means that

lel = uDz, +vDz,
jICQ = emy(DEu + DE'U)
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for the symmetries (y,(2 of I' (12.1) expressed by

C— Q_F g
L= T

a 0
—
(2= <8u+8fu>

20. THE METHOD OF FIELDS OF PATHS — PART II.

Let us complete the ideas of Sec. 17 within the framework of the 2-fibered
manifold
Jhr g Tk phay Tk X

where r > 2. The corresponding diagram is now

(mr)1

J1(7Tk+ ,k,idx)
X Jlm, —————2 2 J17rk+,«

idxl (Wk)l,Ol (77k+'r)1,0J(

(20.1) L T Thtr,k Jhtr (Thk+r,k)1,0 J17Tk+r,k
idxl Wkl 7Tk+'rl
x Jd x Adx X,
The map
(20.2) k: Jlﬂ'k X jkg J17Tk+1n’k — Jlﬂk+r,

defined for ¢ € Sj(mk) and ¢ € Sy (Thyrk), Imp C Domep, by
(20.3) k(jg¥hs d(a) ) = a0 ).

locally does not effect the coordinates

mia ya’ s ay;fl...jk_i_,,ay;a s 7y]ql...jk;ia
and
(
ygl---jk+1;i = qul---jk+1i + Z ;Tlrl J;:Jfl/\ym T3t
(20.4) k: <
k
y}-’l...jw;z- = Z;-’l...ijrTz' + ;lekcfw\y” re3i

\ =0
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with z’s being the induced coordinates on J 17rk+r7k. Clearly, there is a natural

candidate for a morphism between 7y, and (7)1, over J k. namely, denote
by

(20.5) Do = 111, © Thyrfor1: S m — Ty

the composition, whose coordinate expression coincides with (13.14). Then
the affine morphism
]kq,ot J17Tk+1n’k — J17Tk+1n

defines an affine subbundle

1
Aﬂk+r,k = ker Sp(I’O C J Thtr

(see Sec. 13), ie. A consists of the points z € Jlmy,, satisfying

Tk+r.k
(20.6) Uk © Thgr ot © (Thpr)1,0(2) = I (Tpgr e, idx) (2).

Following the terminology of Sec. 6, such elements will be called 7y, ;-semi-
holonomic jets; the local expression of (20.6) is again just (13.4). In fact,

( o __ ,,0
Yi = Y
a — a
Yjignii = Ygi g
o = 27 E oT1.-.T¢
(207) kq)O: yjl...jk_;,_l;z j1 jk+1Z+ ]1 ]kJrl)\yT‘l NZ
k
o = T1--T¢
y]l---]k+'r§ 31 Tkl +Zz1 Jk+TAyT1 reir
\ =0

Thus there is a canonical inclusion

(20.8) Jhtr e o Jrtle c A

T,k

which corresponds to the associated vector bundle

=V,

Tk+r,k

(20.9) A T @, (T*X) C Y,

Tk+4r

T @ 1 (T°X).

Tk+r,k

Remark here that the study of invariant subspaces of the above nature has
been presented in [24], studied by means of the methods of natural operators.
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Notice now some properties of the sections of 7, i, called jet fields; again,
we work with global sections for the simplicity only, the same applies (under
appropriate restrictions) for the local ones.

A section v € Sy(w) will be called an integral section (or a path) of a jet
field ¢ € S(mgyr k) if it is the solution of the equation £¥ = (Jkn) C JF*7r,
i.e. if ¢ o j¥y = j¥*7y on U. In this respect, ¢ will be called integrable if
there is an integral section of ¢ through each point of Y. In coordinates, the
equations of ¢ are

y;'rl~~~jk+1 = (p;'fl---jkﬂ
(20.10)
y.?1~~~jk+r - (p;'fl---ijrr

with the components of ¢ being functions on J*x.
For an arbitrary jet field ¢ € S(7j44.1), there is a distinguished associated
projection; namely, by

(20.11) Ffpk+1) = Tk4rk+1°

. (k+1) . .
we get a (k + 1)-connection I'y;’ " on 7; in coordinates,
(20'12) F?l---jk+1 = (103'71---]'“1‘

PROPOSITION 20.1. A jet field ¢ € S(my4r1) is integrable if, and only if,

I‘gcﬂ) is integrable and ¢ = I’c(pkﬂ)(r_l).

Proof. By Sec. 10, if R(pkﬂ) is integrable, so is its prolongation. Conversely,

if v is an integral section of ¢, then I‘fpkﬂ) o jhy = Tk4rk+1 © © O gky =
Thtr k41 O gktry = jE+ly 5o that if ¢ is integrable, so is Ffpkﬂ). The rest of

the assertion is evident from (20.10) and (10.6). 1

As for higher-order connections, there is an n-dimensional 7, _1-horizontal
distribution H, on J k+r=1x naturally associated with ¢. In fact,

(20.13) H, =span{Dy;, i =1,...,n},
where the generators Dy; are defined by

k+rk+r—1
D, = D; O YO Myyr—1,k;
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i.e. locally

k+r—1 P
(20.14) Dyi = axﬁZyﬁ Jﬂa -+ Z Chdvigmg

Y150 Yij1.e

As to be expected (and as to be proved by direct calculations in coordinates),
a section v € Sy(n) is an integral section of ¢ if, and only if, j**"=1y(U) is
an integral manifold of H,.

Remark 20.1. Due to the horizontality, H, is involutive (= completely
integrable) if, and only if,

(20.15) [Dyi, Dypl =0

for all ¢,p. It should be stressed that this condition is not equivalent with
the integrability of ¢ in the above presented sense. Nevertheless, the integral
section of ¢ could be defined to be ¥ € Sy(mgi,—1) such that (U) is an
integral manifold of H,. Of course, now the equations must be considered on
T 1.

Adding sections and connections, the diagram (20.1) turns out to be of
the form

x I, Jimy ﬂ(w—’MX)> I gy == J My
idxl EWT E(kwT k%T
(20.16) X Y Jhr s ghr S Tl
idxl wkl 77k+'rl
y Moy oy Ay

where by X,) we denote a connection on 7.
As regards X ;. it can be called 7y, g-semiholonomic, if

(20.17) Sy S — A

Th+r,k?

which by Sec. 7 and (20.7) means just

(20.18) NG =Yg X st = Y
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and
k k+r
0 0 9
(20.19) Dsi =+ Z?J}Ig iAo + Z X i
ox" =0 Leeede ay;-l][ I=k+1 et 81/;—1][

In this respect, if ¢ € S(7g4, k) is a jet field, then by (20.14) and (20.19), ¢ can
be identified with a (special type of) 7,1 x—1-semiholonomic connection on
Tk+r—1. Lhis completes the ideas of Remark 20.1.

Our main concern is with connections on 7, ;. Here are the main asso-
ciated concepts (cf. Sec. 14) for an arbitrary

2 JH T o J17rk+,«’k :

the local equations

a =0

Zgy o gei T S

L0 —=0
J1eeJe A T g1 e A
(20.20)

Ulek _ -:-Ulllk
Jreded T T geA

for ¢ =k+1,...,k +r, with Z's from F(J*¥+7r);
hz: M =TI ' @ w1 (T ),

where (14.2) holds with

k+r
0 0
Dz = — + Z B i —
Oz* f=k+1 ay?b--jz
k+r
0 0
= by j1...][)\
(20.21) oy S Y7,
k+r
D,l_lzk _ + Z EO"’U..‘.’L]C .
EX A G1eede A )
6y211k e:k-i-l ! ¢ ang1][

the 7, ;-horizontal distribution H= spanned by (20.21), i.e., the decompo-
sition

TJ* " = H= 9V, JEtT g,

Tk+4rk
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The point is that the integral sections (if any) of a connection = on Ty, j
are (local) jet fields from S(my., 1) satisfying

(20.22) jlo=Eop,
the local expression of which can be easily derived by (20.20).

DEFINITION 20.1. A connection = on 7, 5, will be called characterizable,
if the connection

(20.23) Ko, 0 E
is holonomic. The connection I’(k+’"+1)
to E.

ke, o E will be called characteristic

By (20.7) and (20.18), ke, 0 E is 744, k-semiholonomic for an arbitrary =;
it is semiholonomic if, and only if,

k
T E::m e
le~~~Jk+11_ ]1 Jk+1t —j1 ]k+1>\y7"1 T
/=0
(20.24)
k
q . .= :UTI T
y]l---]k+r—lz ]1 Jkr— 11+Z“ 91 Jhgr— 1)\y7"1 T
=0
and it is holonomic if, moreover, the functions
k
o =0 ) —0T1...T¢
(20.25) Lj.. ket = S T T Jk+r)\y’"1 el
=0

are totally symmetric.
Analogously to Prop. 15.2 we get:

PROPOSITION 20.2. A (k474 1)-connection T*+7+1) on 7 is the charac-
teristic connection of a connection Z on 7y, if, and only if, the components
of T+7+1) and = are related by (20.25), which equivalently means

k
(20.26) Drisri; = D= + Z DJEI)'\"M?/])‘\l...jﬂ

or

(20.27) Hyotr41y C Hz.
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The motivation of the above constructions is the following.

PROPOSITION 20.3. Let = be a characterizable connection on 7y, j, and

¥+ jts characteristic connection. Let ¢ € Sjoc(Th+rk) be an integral

section of E and I‘((pkﬂ) the (k + 1)-connection on =, defined by (20.11). Then
I’L(pkﬂ) is a field of paths of F(E]H_Hl) and

k r—
(20.28) @ = D=1,

Proof. Tt is easy to see (cf. (15.4)) that for an arbitrary jet field ¢ we have

(20.29) kagoj'o =k amojlo=J"(pidx)ou o TYHD.
1,k ¢

Then J**" 17 5 P(EIHTH)O‘P = kg 0200 = kg,05 0 = J(p, idX)OLl,kOFSOk+1).
Since by definition

T 1)) = L s 0 3577) = G1GH)

_ k42 k+r+1
=Ju Y= Thirtt k20 ),
we have

F(wk+1)(1) - Jl(F(wkH)a idx) o0 Ft(pkﬂ)

= J Tk hs1,1dx) o J' (9, idx) 0 1 5 o THFFY

1 . k+r+1
= J (TMhtrpy1,1dx) © F(E ) o O = Thyr k42 ° P,

in particular, D1 is integrable. Then analogously by (10.3),

TEADE) = T (mprpranidx) © T (,idx) 0 01 0 TEH) = mpyy 45000,

and the procedure ends with

_ . k+r+1 k+r41
Ffpk+1)(r 1) _ Jl(ﬂk+r,k+r71aldx)01ﬂ(5 +r4 )o(p _ 7Tk+r+1,k+r°F(E +rt )o(p =0,

which proves (20.28). Finally,

F(Ek-l—r-l—l) o F(@k+1)(r—1) = I’Ek-l—r-l—l) o= JYp,idy) o0 Fgokﬂ)
—J! (Ffpk+1)(r_1)aidx) o110 Ffpk+1) _ Ffpk'i'l)(’"),
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As usually, the situation may be described diagrammatically:

Lo
gty L@l Jhtrl

F&k+1)T F(EHTH)T k%T

Jkx LN LR —— J17Tk+,«7k.

In this arrangement, the following definition appears very naturally; again,
any connection Z on 7, ; whose characteristic connection is the given [ (ktr+1)
will be called associated to it.

DEFINITION 20.2. Let T(:+7+1) be an integrable (k+r + 1)-connection on
m. A (generally local) integrable connection Z on 7y, j, associated to T (k+r+1)
is called the my ., -integral of T'(F+7+1),

In other words, a second version of the method of fields of paths was
presented. In contradiction to Sec. 17, now we are not looking for fields of
paths directly, but through their prolongations. It is evident that the crucial
problem is again that of the existence of ., j-integrals. In this respect, the
following assertion can be proved in the same way as Prop. 17.1.

PROPOSITION 20.4. Let T'*+7+1) be an integrable (k + r + 1)-connection
on m and {a',...,a®}, where K = dimmy,, be a set of independent first
integrals of T*+7+1) " defined on some open W C J¥*7 7. If the matrix

Y3, e

where ¢ =k +1,...,k +r, is regular on W, then

H= = anih{dd',..., da"}
defines an .y, p-integral of Lkt on W,

For an application (and in fact the motivation) of the above consider-
ations, we refer to [65], dealing with the particular case of one-dimensional
base X (and thus O.D.E.) and generalizing the Hamilton-Jacobi method from
variational analysis studied in [39].
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21. THE MANIFOLD m: Rx M — R

Suppose we are given an m-dimensional manifold M and consider the
trivial bundle

(21.1) m=pr;: RxM — R
A (local) section of 7 is then of the form
(21.2) v = (idg, ¢),

with ¢ being a curve in M. By jiv — ¢(0), where  is an arbitrary section of
7 on some neighbourhood of zero, a canonical izomorphism

(21.3) (Jim)o =71 0) =2 TM

is realized, which immediately leads to the identification

(21.4) J'n =R xTM,
where
(21.5) (J'm,m10,Y) = (R x TM,idg x 7ar, R x M).

Recall the notion of the k-th order tangent bundle T*M to M, which can
be defined recurrently. Put 7°M = M, T'M = TM and T]{/’[O =T1pm:TM —
M. Then for each k > 1, T*¥*1M is the (k + 2)m-dimensional submanifold of
TT*M on which coincide the projections
(21.6) Tripg: TTEM — TEM
(21.7) TrEE b TTR M — TTF' M,

acting within the commutative diagram

kk—1

T
TTEN My k=1 0f
(21.8) TT’“MJ/ TTk—lMJ/

kk—1

ThM D Ty

and T]I\C/[H’k is the restriction 7y pr|7k+1,7-
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More transparently, T*M is the set of equivalence classes of curves in M
with the k-th order contact, which corresponds to the identification

(21.9) TFM = (J*7)g = 7,71 (0)
and thus to
(21.10) JEr =R x TFM.

The fact that
. M1k =1dr X 77, 70 R X — R x
(21.11) v Zidg X TEE R TRIM 5 R x TFM

is now a vector bundle could become important when speaking on connections.
Denote the coordinates: if the fibered coordinates on Y = R x M are

(t,q%), then those induced on J¥7 = R x T¥M are (t,¢°,... ,qfk)) with
) dke”
qi’k)(Ji“v) = W"”

with v given by (21.2) and toy =1t, ¢° oy = ¢” o ¢ = ¢’ (t). In what follows,
we suppose t to be a global coordinate on R.
As regards repeated jets, substituting 7, for 7 in (21.4), we have

(21.12) Jlny 2R x TTFM
with (by (21.5))
(21.13) (J g, (mr)1.0, J¥7) =2 (R x TT* M, idg X Ty, R x TFM).

Since vertical vectors find wide application in our exposition, it is worth
mentioning here that there is another important interpretation of J'7; namely,

(21.14) Jn =2V, Y,

ie. VY 2R xTM C T(R x M) =TY. This identification can be roughly
expressed by j'v — 4 and it locally reads ¢ = 1. Substituting 7 for 7 in
(21.14) yields

(21.15) Jimy, 2V, JPr 2 R x TTF M.

On the other hand, (21.14) together with m; being substituted for 7 in (21.10)
results in the izomorphism

(21.16) JE(moryvy) =2 JEm =2 R x TPTM
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over X with

(J*(m oy lvoy), J5 (v vy, idg), JF7)

(21.17) X ) .
~ (R x T*T M, idg x TFry, R x T*M).

Then the izomorphism between (11.19) and (11.20), exchanging J*(1y |y y, idx)
with 7 Jkﬂ|V1rlc Jkx, can now be described by the commutative diagram

k idRXHg\Z) k
RxTFTM —— RxTTM
(21.18) idRXTk-TMJ/ lidRXTTkM
RxTFM —— RxTFM

with ISZS\I/C[) realizing the canonical exchange

(TET M, T 77, T* M) ~o (TT* M, 771 5, T* M)

evidently idg X ng\lf[) = 1, l.€.

(qgaqaaq?1)7Q(Ul)a R ’q(k))’qgk)) — (qa’q(ol)’ e aqgk)aq‘ aq.(l)a e 7q(k))

For k =1, ng\}[): TTM — TTM is denoted by k.
Recall finally the family of natural vector-valued one-forms on R x TFM,
which is expressed by

k 2k
k k
(21.19) E ciJZ-( ) + E Cicl-(i)k ® dt + cop 17k + coprolRr,
i=1 i=k+1

where ¢; € F(R), Irk,, and
k—i+1

k .0 .
(21.20) J® = 3 i ® dqf;_y)
j=1 (i+7-1)

(for i = 1,...,k) are the unique natural (1,1)-tensor fields on T*M,

0
In = < @dt
R =g @b
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and
k—i+1 /. .
(i+j—1)! )
(21.21) ck) = , i
i ; TR aq(iﬂ_l)

(fori =1,...,k) are the absolute (generalized Liouville) vector fields on T* M.
Notice that Ji(k) = (Jl(k))i and CZ-(k) = Ji(f)lCl for s = 2,...,k, and that some
of the above forms will become of particular importance later.

22. A CONNECTIONON m: Rx M — R

In this arrangement, a (first-order) connectionT: Y — Jimon 7: Rx M —
R can be identified with a m-vertical vector field

0
22.1 — 1o M
(22,1 V=T () 5
on R x M, which is equivalently a vector field along pry: R x M — M, called
a time-dependent vector field on M. The vector field

0
Dr = —
r'= 5 + v
generates the one-dimensional (and thus completely integrable) horizontal dis-
tribution Hr and consequently the Pfaffian system

dqg® =17 dt.

equivalently expressed as the first-order system of ordinary differential equa-
tions in normal form

9 po(s, M

dt o
The integral sections of I' are the ‘graphs’ of the integral curves of v, which
means that v o~y = ¢. In particular, if v does not depend on ¢, the connection

I" represents the submanifold
FNY)=RxImv CRxTM

and its integral sections are the genuine graphs.
In keeping with the identifications of Sec. 21, here are the mappings related
to the vertical prolongations of I":

VI'RXxTM —- RxTTM



492 ALEXANDR VONDRA

is a section of idg x T'137, while
VI:RxTM — RxTTM
defined by
VI = (idR X I<&M) o VI

is a section of idg x 7pps. In particular, for time-independent v in (22.1) we
have
VI =idgr x Tv. VI =idr x v°.

where v¢ is the complete lift of v, defined by the following commutative dia-
gram:

TM <™ _ TTM < TTM

A <]
M +*— TM —— TM.
Notice also that for a given ¢ € XE(R x M), J*((,idr) is a section of

idg x T'1ps, while its prolongation J'C is a section of idg x 7r37. In particular,
if we consider

(22.2) ¢(=idg x &
with £ € X(M), then
JYH¢,idR) = idg x TE. TH =idr x &

Of course, even for v € X(M), we can consider time-dependent symmetries,
satisfying

B
[C,aﬂ)]:o.

23. SEMISPRAY CONNECTIONS

Let k& > 1. In accordance with Sec. 8, a (k + 1)-connection I'*+1) on
m: R x M — R is a section

PED R x TRM — R x TFH M

of idg x T]]\C/[+1’k. Any (k+ 1)-connection is characterized by its horizontal form

hyk+1) = Dpgs1y ®@ dt, where the absolute derivative

0 . o
(23.1) Drt1y = ot + . %HQW + Lkt aq°,
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is the so-called semispray on R x T*M, defining the one-dimensional -
horizontal semispray distribution Hy+1). Due to the product structure and
analogously to the first-order case, [+ can be represented by the vector
field

k—1 9 9
(23.2) wk+h) = Q&H)—g + F((Tk—l—l)—a
= o i)

along pry: R x T¥M — T*M, which is nothing but a time-dependent semis-
pray on TFM:; in the autonomous situation, a semispray on T*M is a section
of T]]fj'l’k.

The (k+1)-th order (generally nonlinear) system of O.D.E. represented by
a (k+1)-connection T*+1) on 7: Rx M — R can be described both globally as
the

((k 4+ 1)m + 1)-dimensional submanifold
(23.3) LR x TFM) € R x TFH M

of R x T*+1M and locally by

dk-l—lca - N dkc/\
(23.4) R F(k+1) <ta ey W) ;

the Pfaffian version of (23.3), (23.4) is

dg°® = qa) dt

dq(y—_1) = dq(y dt

The integral sections of T**1) are thus the ‘graphs’ of the geodesics of the
semispray (23.2) in the sense that w1 o jktly = c(b+1),

In agreement with Sec. 21, the vertical functor V applied to a (k + 1)-
connection T'*+1) gives

VI R x TTFM — R x TTF ' M

as a section of idr x TT]]f/[H’k, and the vertical prolongation VI'**t1) defined

by
V¢ o (idg x £4)) = (idg x £{ETD) 0 i+,
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is a section
YIE+D . R x TFTM — R x TFH'TM

of idg x 751, In fact, due to (21.16), VI'**1) is nothing but a (k + 1)-
connection on 71: R x TTM — R, i.e. a section of

(71'1)14:—1—1,1:: Jk+171'1 — kal.

In particular, for the autonomous situation, when w*+1) given by (23.2) is an
ordinary semispray on T*M, it generates canonically the semispray Twk+D)
on T*TM by the following commutative diagram:

phigg SO ket S sy
w(k+1)T Tw(k+1)T TTw(kJrl)
TRM STk M kg
In other words,
VT = idg x Tw*+D),
Y+ = jdp x Twk+D,

Analogously to the first-order case, for a given ¢ € XZ(R x M), J¥((,idR)
is a section of idg x T*ry, while its k-th prolongation J*¢ is a section of
idg X 7prys. In particular, for ¢ defined by (22.2) we have

JE(¢,idr) = idg x TF¢.
THC =idg x 7

where ka is the k-th flow prolongation of & (§T0 =¢T = ¢0).
In view of Sec. 11, a vector field (") € X(R x T"M), 0 < r < k, is the

r-symmetry of I'*+1) if, and only if, one of the following equivalent conditions
holds:

23.5 jk T+1< ol (k+1) _ TF (k+1) jk TC

(23.5)
(23.6) J! (vpr+1) © Ve C ) Pk =yt o Up(k+1) O jk*rC(r)-
(23.7)
(23.8)

23.7 Evr(k+1)(jkfrg(r))hl—\(k+l) =0.

23.8 [Dr(k+1>a jkirc(r)] = Dr(k+1) (CO)DF(HI)-
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where ¢0 = dt(¢(")). The corresponding autonomous situation for the (zero-
order) symmetries of a semispray w1 on TFM can be then described by
the following commutative diagram

rh+1
THIM s TTH M
w(k+1)T TTw(kJrl)

ert
"M ——— TTFM

(cf. (23.5) and (23.6)) or by

[w(k+1)’§T’“] -0

(cf. (23.7) and (23.8)).
For example, a vector field ¢V € XY(R xTM),

(W =7+ GGy Do

is the (vertical) first-order symmetry of a 2-connection T'® on 7 (or of the
corresponding semispray Dp)) if

C(UU = D (¢%).
oy,

81‘”
DF(2) (Cg) ( C)\

) A
@ (¢M)-
3‘1(1)

Since for a vector field ( € XY (R x M) we have

J¢ = <"— +D((%)5 o

¢ is a (vertical) symmetry of I'®) if, and only if,

ore. ore.
Driy 0 D(¢%) = 520+ 52D
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24. CONNECTIONS ON Tpy1 5t R X TEHHIM — R x TFM

Let £ > 0. The first jet prolongation J17rk+1’k of Tp41, is the manifold of
1-jets of (local) (k + 1)-connections on =, the induced coordinates on which
we denote by

o o o o a(k
(t,q°,. .. 1 A(k+1)7 Z(k+1)1 #(k+1)A> "« - ’z(k(-i—)l)/\)'
where
ore,
o 1 k41 (k+1)
Z(k+1) (](m,y)r( i )> - ot (@)
ore,
o 1 (k+1)) _ (k+1)
(241) Z(k+1)X (J(:c,y)r ) g |(2.)

ar?

a(k) .1 1)\ O (k1)
Z(k+1)X (J(m,y)r( )>_ 8q?k) |(:v,y)

with z € R, y € TFM.

There is an interesting submanifold of J 17rk+17k having to do with the re-
lations between the autonomous and the time-dependent situations. Namely,
in accordance with (21.11), there is a canonical inclusion

(24.2) R x JUrb R o gl
defined by
(24.3) (z, jgw* V) — 5t TEFD

for T+1) being defined by w1 (see (23.1), (23.2)). The local condition for
this submanifold is by (24.1) just

(24.4) 21 = 0.
In this respect, the morphism
(24.5) iyt I T, — R x T2 M

locally reads

k
o _ o o (i) A
(24.6) Ulk+2) = Z(pt1) + Z Z(hr1)ad(i+1)-
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and its restriction to (24.2) generates the morphism
(24.7) KD, ik btk phi2 g

over T*+1 M with local expression
: (4)
_ ot A
(24.8) Uhr2) = Z 2+ 9(+1)"

A connection on 741 .: R x TH1M — R x TFM is a section
(24.9) E:Rx THM — Tl

with the horizontal form

k
(24.10) hz = D=y @ dt + Y DY) @ dgf.

1=0

The absolute derivatives with respect to Z are the vector fields

0 0
D=y = — + Ej
o - 0 )aq(kJrl)
0 0
D= — 4+ =Y
g 5 1+ Ele+1)x
(24.11) 9 0{j+1)
D(Tk,\) = a,\ Eak(k)l A L
2 oqhy MO,

generating the ((k 4 1)m + 1)-dimensional 7y y-horizontal distribution H=
and thus the Pfaffian system

(24.12) dgfyyq) = Efyqy dt + Z k+1
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which in coordinates means a first-order system of P.D.E.

aFUk+1 —0 v v 4
G = Bl (0" i D)
aFUk+1 —0 v v v
a( 3 ) == k+1))\(t,q yoee aQ(k)aF(kJrl))
(24.13) !
ore
(k+1) _ —o(k) v A N
. “(k+1),\(t’q v 40y ey

(k)

for (local) (k + 1)-connections on .
As usually, the integrability conditions for = are expressable in terms of
its absolute derivatives (24.11) by

(24.14) [D=o, DY) =0
(24.15) (DY, DY) =0

foro,A=1,....,mandi,j=0,...k.
Following (24.2), a connection A on T]Iffl’k can be considered as a connec-
tion on 711 of the particular type

(24.16) 2 —=idg x A: Rx T*'M - R x JlT]l\c/[Jrl,k

.with th‘e compopen.ts Ef(fk+1.) =0 and E((Tk(?l))\ € F(T**1M). The correspond-
ing horizontal distribution is

k

) : .
(24.17) he = o @dt+ Y DY, ®dq)y = idrw + ha.
=0

and the integral sections can be identified with the semisprays on T*M (for
k > 1) or the vector fields on M (for k£ = 0). Just the case of k¥ = 0 might be
of particular importance due to the fact that A represents a (generally non-
linear) connection on 7pr: TM — M with integral sections being the vector
fields on M whose covariant derivative with respect to A vanishes, i.e. those
parallel with respect to A.

The deformations of connections on ;41 are the soldering forms on
Tk+1,k; a local expression of any such a myyqg-vertical endomorphism on
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R x TFH1M s

k
0 o o (i) A
(24.18) p = o (‘P(kﬂ) dt + Z @(kll))\ dQ(i)) .
i=0

(k+1)
Nevertheless, there is a distinguished subfamily of the above soldering forms

created by the natural soldering forms on w1 . Actually, by (21.19-21), any
such a soldering form is expressed by

(24.19) o= HIED 4 oMY @ dt
for fi, fo € F(R), i.e

(24.20) ey = k+ 1D faqly, @l = 13

and the rest of the components vanishes identically. As a consequence we
have:

PROPOSITION 24.1. All natural ¢ y-admissible deformations on 7y . are
of the form

(24.21) PESLIAE
with
(24.22) SkAD — ki) c* ) @

k+1 _(k—i—l)! k+1

and f € F(R).

Proof. By (24.6) and (24.20), a natural soldering form ¢ is ¢; y-admissible
if, and only if, (24.21) holds. 1

In coordinates,

0
(24.23) SR = 5 © (dg” — qfy) ).
Y(k+1)
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25. ASSOCIATED CONNECTIONS

Owing to the dimension of the base, each connection Z on 711 : R X
TFIM — R x TFM is characterizable and a semispray connection I'*+2) .
Rx TF1M — Rx T*+t2 M is the characteristic (k4 2)-connection of Z if, and
only if, for the corresponding semispray Dp+2) on R X T+ M holds

k
(25.1) Drk42) = Dz + Z D(EZ,)\q();+1)‘
i=0
which means

g

k
o _ :'0'() A
(25.2) i) = sy + Z = kll)/\q(ﬂrl)

(1]

(see (24.6)); the semispray Dp+2) expressed by (25.1) can be called charac-
teristic to =, as well. The diagram (15.12) now reads

1epte+D) id,
R x TR+ LTI o Rty R x TH2M = RxTH2M
(25-3) Tp(k+1) Tp(k+2) ]kLl‘kT idgxlkg‘fl'H)T
k re+1 k1 E 1 1_k+1,k
R x T*M RxTHIM —= 5 Jlmas < Rx Jirbb

which in particular defines the characteristic semispray on T*+'M for a con-
nection A on T]]fj'l’k by means of (24.16) in the autonomous case.

The equations for characteristics are by (23.4) and (25.2)

korQCU dk+1cy
_ a v
diktz T Sk <t’c e kAT )
k k+1 v i+1
—o(i) y d¥TicV\ d e
+ E  Elk <t’c P gkl ) dpit

and with respect to the ideas of Sec. 16, the looking for the solutions of the
first-order P.D.E. system (24.13) can be transferred to the looking for the
solutions of the (k + 2)-th order O.D.E. system (25.4).

On the other hand, the very beginning of Sec. 17 suggests the importance of
the looking for connections on 71 associated to the given (k4-2)-connection

(1]

(25.4)
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on 7. In this respect, the role of another natural (1,1)-tensor field from (21.19)
appears; namely,

k+1

(25.5) hz, = hF(k+2) +I+— 5 T2 (kvr(kH) - 2£Dr(k+2) S{ )>:|
is the horizontal form of a connection Zg on 71 associated to F(k+2), where
(25.6) SFED — g+ _ okt g g,
i.e.

k k+1

+1)
(25.7) =>i aq 1) — 4y dt).
i=1

The components of = defined by (25.5) are

arg, ,
=o(i) _Z+1 (k+2) . _
(25.8) o = 1 XTI i=0,...k
k
(25.9) Eler1) = Tlito) ZE JZ )\q/\1+1

1=0

Following Prop. 24.1, the family of all connections on 71 j naturally associ-
ated to a (k + 2)-connection I'**+2) on 7: R x M — R is defined by

(k
(25.10) hz = hzo + fSLHY

with f € F(R).
It should be noticed that (25.5) corresponds to the fact that

1
(25.11) F=

k+1
5, = ) (k'ur(kw) - 2£Dr(k+2) Si )>

is the f(3, —1)-structure associated with Zq.
As regards the strong horizontal subbundle and the corresponding reduced
connection on 71, the decomposition (18.13) is

R x TTFH M = (R X VT]kMJrl,ka—i—lM) @ HF(k+1,k)
with

V;

Tk+1,k

Thr 2 R X Vi s THIM € R x TTH M 2V, TP
M
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and
Hrypyn = H2 O Vi, JFm = span{DE(;-), i=0,....,k, A=1,...,m}

for I'(j, 11,1y generated by a connection = on 7y 41 by (18.17). Now it is evident

why the components F(,C(le))\ (or H((Tk(le))\) must be transformed like those of a

connection on T]]\cj'l ok (cf. also Remark 18.1 in view of (21.9)). Evidently, in
the autonomous situation (24.16) we have

HF(k+1,k) = Hj\.

Remark 25.1. Following Remark 17.1, let us finally recall the result of
[62]. Let m: Y — X be an arbitrary fibered manifold over one-dimensional
base X endowed by a volume form Q = wdt. By [56], there is a naturally
defined vector-valued one-form

+i+1\dw 0
AR (f . ) ———— ® (dg{y) — qf; 1) dt)
Pl ) dti 8q( i) (@ ( +1)

on J*¥t17, where 4, j are non-negative integers and (Ztg) = w. Then

1 1 2 B
(25'12) hEQ [hF(k+2) +I+-— k+2 <k”UI‘(k+2) - ; »CDF(kJrz) SS(I +1)>:|

is the horizontal form of a (global) connection ZEq on 7414, associated to
I'(k+2) " Clearly, (25.5) corresponds to Q = dt and S((ilzﬂ) = Sikﬂ).

On the other hand, the result can be related to that of Prop. 17.2, for
k =0 and dim X = 1. The ‘strong horizontal components’ of Z¢ defined by

(25.12) are then
s L[y _dwl
AT 2 g\ dt w

(1)

with the quantity A(t) = —‘fi—‘;’ % being transformed in the same way like the
component of a linear connection on X. Consequently, there is a geometric
interpretation of Ef} in this situation; namely, it is just Zq for an arbitrary
volume form 2 on X which is the integral section (i.e. A* o Q = j'Q) of the

dual connection A* on 7%.
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26. EXAMPLES

Let k = 0. Consider the pair of equations

9 _ A(z,y, 2)
ozr

(26.1) e
~“_B .
9 (z,y,2)

called sometimes the system of simultaneous equations of the first order. The
integrability conditions (24.14) now read

0B 0B 0A 0A
26.2 —+ —A=—+ —B.
( ) ox + 0z oy + 0z
and the general solution of (26.1) can be viewed as a one-parameter system
of surfaces in R?. The characteristic 2-connection is the equation

(26.3) y' = A(z,y,y') + B(z,y,9 )y

and it is easy to see that in case of A = A(x,y), B = B(z,y), (26.2) means
just the condition for (26.3) to be exact, i.e. Adzx + Bdy = dz.
Moreover, since

% - A.2) ~ f):
(26.4) o
@ B(xayaz)+f($)

is a system associated to (26.3) by means of S{l) (see (24.23)), if f(x) is such
a function that

9B 9B, 94 aAB:<aB 9A >f_f,‘

bt it “ _B_
8x+82 dy 0Oz at !

26.
(26.5) 0z 0z

the system (26.3) can be reduced to the first-order one by solving (26.4). In
particular, for the system

y" = A(z,y) + B(z,y)y.
(26.5) reads

0A 0B o
(26.6) 9 oy BT
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and the corresponding first-order equation is of the form

y = / Bla,y)dy + f(x)y + o(z).

where ¢(z) is determined by (26.4) together with (26.6).
For example, for the equation

y" = a(z)y’ + b(z)y + c(z)
we have A(z,y) = b(z)y + ¢(z), B(z,y) = a(z), and (26.6) now means
b=d + fa+ f2+ f.
As a consequence we have: for arbitrary a,c, f € F(R), the linear equation
(26.7) ' =ay +(d + fat+ P+ fy+e

is solvable in quadratures. Namely, the one-parameter family of fields of paths
of (26.7) is created by linear equations

y' = (a(z) + f(2))y + o(z)

with ¢(z) satisfying
¢'(z) = c(z) = f(z)p(2).

Another second-order equation

" 2y12 b 2\ 1 2 /
(26.8) ==t g )V tay (= flz.y,9))

with a,b € R, is characteristic to

0z 9
o =W

(26.9) 0z 2z n b 9
—=—+4+— —ay".
oy y 22 Y

The last system constitutes an integrable connection since both sides of (26.2)
equals to 2ay. It is easy to see that

2z =0y’ +ay*(z —y) — % (=g(z,9))
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is the general solution of (26.9) and accordingly it represents the reduction of
the order of (26.8) in the sense that

%g(w,y) og = f(z,y,9(z,9)).

On the other hand, the integration of the system

0z
% @)zt
g—; — o(v)(z + 0.

with f,g € F(R), ¢ € R, can be transferred to the integration of the corre-
sponding
y' =W +(f(@) +9y)y)

which immediately yields
In|z+¢|l = /f(x)d$+/g(y)dy+k.

27. CONNECTIONS IN R X TF"M 5 Rx TFM — R

We have already used the evident fact of the coincidence between semiholo-
nomic and holonomic jets, which is due to the one-dimensionality of the base.
On the other hand, the ideas of Sec. 20 suggest the possibility of an effective
description of the concepts, studied up to now (both in time-dependent and
autonomous situations) by means of slightly less transparent constructions.

A 7y, p-semiholonomic connection on my 4, : R X TE+" M — R is a section

YRxTH"™M - A CRxTTH" M

Tk+r.k

of (Tp4r)1,0] Argrp It generates a one-dimensional 7 ,-horizontal distribu-
tion Hs, spanned by

a k a k+r a
(27.1) Dy=o+Y Gt O Shnae
o — O i=k+1 4G

which can be called the 7y, ;-semispray on R x TkE+7 M:; it should be stressed
that the ‘classical’ semispray (23.1) is just the 71 y-semispray on R x TkFM.
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In a standard way, both the time-dependent and independent versions of
Tk+r k-SEMisprays on TE+" M can be derived, as well.

As regards connections on 1, there is again a distinguished subfamily
of them, which is due to the existence of a submanifold

(27.2) R x JUrbtE oy gl g

This is defined analogously to (24.3) with local jet fields from Sy, (74rk)
being substituted for local (k 4 1)-connections on «. If the annihilators of the
horizontal distribution of a connection = on 7y, are

k
g _ =0 :U(i) A
=0
for{=k+1,...,k+r, then
— k k—+r.k
(27.4) E:Rx THTM - Rx J'ry,

holds if, and only if, Ea) = 0 for all £. If, for example, A is a connection on

T]]\cj_r’k, then

E:idRXA

is of the form (27.4), which can be applied when studying the interrelations
between non-autonomous and autonomous formalisms.

For an arbitrary connection Z on 7y, , the connection (20.23) is 7jyy 5~
semiholonomic, i.e. its horizontal distribution is spanned by 7, y-semisprays,
and their relations could be studied. Nevertheless, our main concern is (in ac-
cordance with the motivations and results of Sec. 20) with the characterizable
connections on my,j, in sense of Def. 20.1 (see also Section 25). By (20.24),
kg, o 2 is holonomic if, and only if,

(27.5)
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and the characteristic semispray connection TE+7+1) ig locally defined by

(27.6) F((TchrrJrl) =

[1]

k
o —o(1 A
k) T Z = lc(ﬂr))\q(prl)'

This in particular defines the characteristic semispray on T*t" M for a char-

acterizable connection on T]]fj'?"’k by

k+r—1 9 k © 9
o ot A
WA = Z q(i+1) 94, + Z A(k“))\q(ﬂ_l) aqE’H )

As regards the jet fields ¢ € S(mp, ), these can be identified with 7, -
semispray distributions spanned by

9 k—1 9 k+r—1 9

(277) D(p = a : q(UH-l) aqg; + Z (10?2'-1-1) aq(az) .

(1) i=k
and in view of Prop. 20.3, we should recall that the equations for the prolon-
gations T:+1(") of a semispray connection I'**+1) on 7 are

S
Il
)

9e+1) = Dlrs1)
qak+2) = D(F((Tk—l—l))

quk+r+1) = D(r)(F((TkJrl))'

where D(T) = pk+rk+r—1  pk+Lk (= gT:)

Finally, here is the ‘one-dimensional’ version of Prop. 20.4.

PROPOSITION 27.1. Let T**7+1) be a (k + r + 1)-connection on © and
{a',..,a®}, where K = rm, be a set of independent first integrals of T(k+7+1),
defined on some open W C J*t7 . If the matrix

L
(27.8) A= (8@0 ) .
04y

where { =k +1,...,k +r, is regular on W, then

(27.9) H= = anih{dda',...,da™}

defines an ., -integral of T*+7+1) on W
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Proof. First it should be stressed that we suppose W C W;iT’O(V), where
(V,1)) is a fibered chart on Y.

By definition, the distribution (27.9) is completely integrable. Let us de-
note by (AETZ) ;) the inverse matrix to A, where o and (£) label the rows and
L the columns. Then the annihilators of H= are

- , Oab b , Oal |

and it remains to show that = is characterizable and its characteristic connec-
tion is just T*+7+1) Since for an arbitrary £ it holds

=0 i=0 (7)
k+r—1 L I
aa aa
(OL ( > aor i py (k+1"+1)>
i=k+1 aq(i) aq(kJrr)
_{q&ﬂ)’ forb=k+1,....k+r—1
F?k-l-r—l—l)’ for £ =k +r,

the proof is completed (see (27.5) and (27.6)). |
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