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1. SOBCZYK’S THEOREM AND HOW TO PROVE IT

Sobczyk’s theorem is usually stated as: Every copy of ¢y inside a separable
Banach space is complemented by a projection with norm at most 2. Nevert-
heless, our understanding is not complete until we also recall: and ¢y is not
complemented in .. Now the limits of the phenomenon are set: although cg
is complemented in separable superspaces, it is not necessarily complemented
in a nonseparable superspace, such as £..

The history of complemented and uncomplemented subspaces of Banach
spaces is traced back in another article of this volume [48]. It is probably
worth mentioning that it starts with two propositions: Every closed subspace
of a Hilbert space is complemented by a norm one projection and ¢; contains
uncomplemented subspaces. The first result easily follows by proving that the
metric projection onto a closed subspace acts linearly; the second result holds
since the kernels of quotient maps ;1 — X are necessarily uncomplemented
when X has not been previously chosen a subspace of /; (and recalling that
all separable Banach spaces are quotients of /7).

A more interesting question for us is: why should one suspect that c¢g
is complemented inside separable superspaces? A previous result in this di-
rection had been proved by Phillips [47]: Every copy of £+, inside a Banach
space is complemented by a norm one projection. In other words, the spaces
L (") are injective. Since it was well known (and can be easily proved) that
every Banach space is isometric to a subspace of some £ (I') it is clear that
the injective spaces are precisely the /(') spaces and their complemented
subspaces. In order to determine all the injective spaces the story starts with
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Lindenstrauss’s [38] proof that a complemented subspace of £, is again iso-
morphic to £o,. Hence the question arises whether a complemented subspace
of £oo(I") has to be isomorphic to some /o (I). It took much work by Rosenthal
[50], beyond the scope of this article, to show that there exist injective spaces
that are not isomorphic to any /. (T).

A Banach space injective among separable spaces is called separably in-
Jjective. Well might one guess that the separable version of /,,, namely cg,
could be as injective among separable spaces justas £, is among all spaces.
Sobczyk’s theorem substantiates this: ¢q is separably injective. In this case,
moreover, the story has a happy ending since Zippin [63] was able to prove
that a separaby injective space is isomorphic to ¢g. Again, Zippin’s theorem
is out of reach for us.

Another point to be careful about is the difference between working with
isometric copies of ¢y and with isomorphic copies of ¢g. It is an easy exercise
to show that if a Banach space X contains a K-isomorphic copy Yy of some
Banach space Y then X can be renormed so that one obtains a K-isomorphic
copy of X containing an isometric copy of Y. Pelczynski [45, Proposition
1] was probably the first to prove this. Taking Y = ¢, it follows that if
Sobczyk’s theorem holds for a Banach space X, i.e. if every isomorphic copy
of ¢y inside X is 2-complemented, then every K-isomorphic copy of ¢y in X is
2K-complemented. Thus, from now on a copy of ¢y means an isometric copy;
otherwise we will say explicitly isomorphic or K-isomorphic copy.

How to prove Sobczyk’s theorems? There are several apparently different
ways to tackle the proof that ¢y is complemented in a separable X or is
uncomplemented in /,,. We shall assign to each “method” one of the suits of
playing cards; so, whenever we present a proof the closing suit means which
type of approach was (mainly) used.

(#) The first method is to appeal to the plain definition: if j : ¢¢ — X is an
isomorphic embedding, one needs to obtain an operator P : X — ¢y such that
Pj = id (or show that such operator cannot exist). The full force of Sobczyk’s
theorem is that if j is an isometric embedding and X is separable then P can
be chosen with ||P|| < 2.

(&) The second approach introduces duality. Operators X — ¢¢ are no dif-
ferent from weak* null sequences of X*; in particular, the identity operator
on ¢g is the sequence of coordinate functionals (d,). Thus, what one needs
is a weak™ null sequence of X* formed by extensions (D,,) of the (4, ); alter-
natively, to show that such extensions do not exist. Again, the full force of
Sobczyk’s theorem is to obtain extensions with sup,, || D, || < 2.
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Playing harder on duality, what one needs is a weak*-continuous section
s* for the transpose j* of the embedding j. It is elementary that j* : X* —
/1 admits a norm-continuous section since #; is projective; but what one is
looking for is the transpose of a projection P : X — ¢g; i.e. s = P*, or
s* = P, a section whose transpose yields an operator X — c¢y. The weak™®
null sequence described at (&) is precisely (sdy, ), (since (d,)n can be identified
with the canonical basis of #1). Again, the result is optimal when one obtains
sl < 2.

Zippin [64, 65] introduced a more topological-oriented view: one needs to
show that there exists some constant C' > 0 and a continuous (in the weak*-
topology) map ¢ : aN — CBall(X*) such that ¢(n)(ey) = nm (here, aN is
the one point compactification of N).

(V) This method means taking as a whole the subspace ¢y and the quotient
space X/cp. A precise formulation requires some machinery from the theory
of exact sequences of Banach spaces, which is too much of a pleasure for
(some of) us to present. An exact sequence of Banach spaces is a diagram
0—Y = X —- Z — 0 in which the points are Banach spaces and the arrows
are operators, with the property that the kernel of each arrow coincides with
the image of the preceding one. The open mapping theorem guarantees that
Y is a subspace of X such that the corresponding quotient X/Y is Z. An
exact sequence is said to split if the arrow j : Y — X admits a left-inverse,
i.e. some arrow p : X — Y exists such that pj = idy. The space X is also
called a twisted sum of Y and Z. So, the approach is to try to decide when
an exact sequence
0—=c—=>X—-2—-0

splits.
(¢) This approach is only good for showing that ¢y is not complemented in

X. The idea is to detect properties of Z = X/cq which prevent it from being
a subspace of X. It willll mainly be used in 3.7.

2. cg IS COMPLEMENTED IN ANY SEPARABLE SUPERSPACE

2.1. SOBCZYK’S PROOF, 1944. Probably not many people have strug-
gled through Sobczyk’s original proof in [54]. There are good reasons for that,
such as the existence of Veech’s proof, but also the fact that Sobczyk’s paper
is written in an old-fashioned style. The reader may prefer to postpone the
reading of this section until after the “Understanding Sobczyk” section 2.7.

Sobczyk’s theorem is never stated as such in [54], it is just a comment at
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page 946, lines 21-23; while its proof occupies theorems 1, 2 and 5, and the
comments on pages 942 and 945. We can, however, deconstruct Sobczyk’s
arguments.

Let cg be the natural copy inside . Assume that we have proved that
if W is a separable subspace of £, containing ¢y then there exists a norm 2
projection of W onto ¢g. Then the way is paved to prove that every isometric
copy Yy of ¢y inside every separable subspace W of £ is 2-complemented:
for if T : Yy — ¢ is the isometry, it can be extended to a norm 1 operator
Ty : W — Ly. Putting W' = Ty (W) the existence of a norm 2 projection
P : W' — ¢y guarantees that T—'PT, : W — Y} is a norm 2 projection of W
onto Yj.

Thus, let W be a separable subspace of £, containing ¢g. The separability
assumption is used to express W as the closure of ¢y + [u;], where {z;} is a
finite or countable quantity of elements of /.. Sobczyk’s good idea and hard
work are then to assume that the projection one is searching for has the form
P(zo+ Y tjz;) = o on ¢o + [u;] (and then extend it to the closure) with a
proper, clever, but also awkward, choice of the points z; so that ¢y + [z;] =
co + [uj]-

Which points z; work? Well, the case easiest to handle —and actually the
core of Sobczyk’s proof- is that of points such that z;(n) = 1. We state
that as a separate lemma:

LEMMA 2.1. Let {z;} be a sequence of points of L, such that
(1) [.’L‘J] Necg = 0.
(2) zj(n) = %1 for all n € N.
(3) For every index n there exists an infinite set A, C N such that for all
i € Ay, one has zj(n) = x;(i) for all j.

Then P(xo + Z;’?:l tjzj) = x¢ defines a projection P : ¢y + [z,] — co with
1Pl < 2.

Proof. Fix scalars ty,...,t; and zg € ¢p. FEverything is based on the
observation that the hypotheses yield that there exists ny € N such that for
all ¢ € Ay, one has

k k k
sup | > tjzj(n) > " tjzj(no) Y (i)
Jj=1 J=1 J=1
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Since A,,, is infinite and zg € ¢ then, for i € A4,,

k
>t
=1

<

k
th:vj(i) + z0(2)| + |zo(4)]
j=1

and thus

<

k k
Zt]’{lﬁj thibj + 29
j=1 7=1

This means that ¢y is the kernel of a norm one projection, namely: zg +
>.tjzj — Y tjz;. Does Sobczyk’s argument for the general situation still
give us this conclusion? Yes; see also §2.8. Back to the proof,

k k
xo + thmj th:vj(n)
j=1

=1

[Pzl = |lzoll < + < 2||=].

What remains of the proof is to show how the conditions on the z; can be
relaxed and reduced to just (1) without affecting the norm of the projection.
For instance, assume that (3) does not hold. Consider the set z1,---,zy,.
Since there is only a finite quantity of elements of {1, —1}" that are not infini-
tely repeated in the sequences (z1(k),- - , 2, (k))k, replacing (actually, adding
some +1) a finite quantity of coordinates of of x1, then of x5, and so on un-
til z,, one obtains new elements z/,--- 2} verifying (3). The rest of the
conditions remains unaltered since z; — $; € cg; which, in particular, gives
co + [x;] = o + [7}]-

The situation when it is (2) which fails is tough. Nevertheless, the door
opens when one observes that if all the elements z; take only a finite num-
ber of values then one can reproduce the preceding argument without great
difficulties.

So, let z; be elements that only verify condition (1). Assume, as can be
done without loss of generality, that |z;|| < 1. Let N € N and divide the
interval [0,1] into N subintervals of equal length. Let m(z;(n)) denote the
number of the interval in which |z;(n)| lies. Let

. T

The elements S; = (s;(n)); take only the values {£k/N, 1 < k < N}.
Therefore, a finite number of alterations (consistent with adding some + k/N)

sign(z;(n)).
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to each S; produces a new sequence SJN satisfying (3) (and so that S; — SJN €

¢g). Making the same alteration to the z; one obtains new elements z so

J
that z; — :B;V € ¢.
We shall study what will happen when N — oco. It is easier to compare mjv
and $§V[ when M = 2!N. So, we shall assume from now on that that N = 2/

for [ =1,2,--- In that case, it is not difficult to realize two things
° :vjv — :vj\/[ € Cg.
o limy 1700 ||$§V - xf/[” = 0.

The first line implies that if z = zq n + Z?Zl tjxj.v and also = = zo v +
Z§:1 rjxj.v[ then it is possible to choose r; = ;. The second line says that,

given the above, (zo n)n is a Cauchy sequence in ¢g. If we set PNz = ZTo,N
then he projection we are looking for is

Pz = lim PY(z) = lim zqy;
N—oc N—oc

as we prove next. Since

k

N

T =Dt
=1

1PV || =

k
ICESI

k
N
<zl +| > ;8]
7=1 7j=1

K

k k
<ol + xo,N—thS;V\+ Zw(ﬁ—ﬂ)”
j=1 j=1
k k
<zl + ||zoy + 3t | +2 th(Sj-V—wéV)H
=1 i=1
k
< 2| +2 th(sjf-v—wév)\,
j=1

taking limits as N — oo we obtain ||Pz|| < 2z]|.
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2.2. PELCZYNSKI'S PROOF, 1960. This proof appeared first in [45, Theo-
rem 4]. The idea this time is that since every separable Banach space is
isometric to a closed subspace of C[0,1], it is enough to prove that isome-
tric copies of ¢ inside C[0, 1] are 2-complemented. To this end, let f, be
the images of the canonical basis e, of ¢;. Let p, € [0,1] be such that
|frn(pn)| = ||fn]ll = 1 and let A be the set of accumulation points of {p, }nen
in [0,1]. Since ||fn £ fm| = 1 it follows that |f,(pm)| = Onm; and thus that
for every t € A one has f,,(t) = 0. Let us verify two assertions:

e (¢ is 1-complemented in the subspace
C={feCl0,1]: Vte A, f(t)=0}.

Indeed,

oo

P(f) = Z [ (pn)signfn(pn) fn

n=1

is a well-defined (note that lim f(p,) = 0) norm-one projection.

e (' is 2-complemented in C[0,1].

Clearly [0,1]\A is a countable union of open intervals. Thus by affine
interpolation, each continuous function g € C(A) can be extended to
a continuous function in C[0, 1] with the same norm. This gives us a
linear operator that we shall call E.

Although we don’t need, we can’t resist mentioning the following gene-
ralization of this argument, the Borsuk-Dugundji theorem ([5, 18]; or
else [27]).

THEOREM 2.2. Let D be a closed subspace of a metric space M, and

let F' be a locally convex space. Each continuous map f : D — F has a
continuous extension E(f): M — F such that E(f)(M) C convf(D).

The map F is actually linear and thus it defines an extension opera-
tor E: C(D,F) — C(M,F) which is continuous in the compact-open
topology. Hence, one has

THEOREM 2.3. Let K be a compact metric space and let D C K a
closed subset. There exists a linear extension operator E : C(D) —

C(K); i.e., for each f € C(D) one has E(f)|D = f. Moreover, || E| = 1.
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Then
Q(f) = —E(f|A)

defines a linear projection C[0,1] — C with norm at most 2, which
finishes the proof.

[ )

2.3. MARTINEAU’S PROOF, 1964. We have not had access to Martineau’s
paper [39] and thus we had to reconstruct his arguments out from the com-
ments in [52] and the Mathematical Reviews (MR 35#3418) and Zentralblatt
reviews. Let ¢y be an isometric copy inside a separable Banach space X. It
seems that the difference with Pelczynski’s proof is that Martineau embeds
X into /o, and then considers the algebra it generates, actually a C'(K) space
with K a metrizable compactification of N. The method of constructing a
norm 2 projection C(K) — ¢y proceeds on as before.

A

2.4. KOTHE’S PROOF, 1966. As early as 1954 Grothendieck stated in
[25, Part 4, 3, Exercise 1] the following lifting result.

LEMMA 2.4. Let E be a separable locally convex space, F' a vector subs-
pace and (f,) an equicontinuous and weakly convergent sequence in F*; show
that we can find extensions e, of the f, to E such that (e,) is an equiconti-
nuous and weakly convergent sequence in E*.

This result is in fact a generalization of the analogous lifting result obtained
by Kothe in [32] for a particular class of locally convex spaces, now called
Kothe spaces.

This line of thought was reconsidered by Kothe in [33] to derive a proof
of Sobczyk’s theorem in its isomorphic form. There is also a fairly complete
description of its contents in [35, §33, 5]. The surprising and surprisingly
simple lifting result is restated as follows.

LEMMA 2.5. (KOTHE'S LIFTING) Let 0 Y — X — Z — 0 be an exact
sequence of Banach spaces in which X is separable. Let 0 — Y+ — X* —
X*/Y "+ — 0 be its dual sequence. Then every weak*-null sequence in the ball
of radius r in X*/Y* admits a weak*-null lifting sequence in the ball of radius
2r in X*. More precisely, if (u}, + Y1) is a weak*-null sequence in X*/Y*+
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with ||u}, +Y1|| < r then there exists a weak*-null sequence (z%) in X* such
that, for all n, ||z} || < 2r and z|Y = u}|Y.

Proof. There is no loss of generality in assuming that |lu}| < r. We
observe that the set of accumulation points of the sequence (u)), in Bx-
is contained in Y*: indeed, since By- in the weak* topology is a metrizable
compact, every subsequence of (u}), admits a weak*-convergent subsequence;
thus, since (uj; + Y1) is weak*-null if u = weak* lim U ) then u € Y+, Since
the norm is weak*-lower semicontinuous, ||u| < r. This can be spelled out as:

e For each € > 0 and each finite set F' C Y there exists some N (&) so way
that whenever n > N (e) there exists some w, € Y vrifying |w,| < r
and |(uf —wy)(f)] <eforall feF.

We only have to be careful with the induction now. Since X is separable,
let {yn}n be a dense subset. Applying the preceding tool to F} = {y;} and
g1 = 2! we know that for n > N(1) one has

|(uy, —wy) (1) < 270

And, in general, if Fy, = {y1,--- ,y;} and ¢, = 27% we know that for n > N (k)
and 1 <5<k
|(uy, — wp) ()] <27,

The sequence w, = wk for N(k) < n < N(k + 1) (completed with some
elements for n < N(1)) is such that

lim (u, — wy)(y7) = 0

n—oo

for all j. Since {y,}n is dense in X, the sequence (u — wy), is weak™ null.

Quite clearly ||uy, —wy| <2r. |1

From that Kothe obtains:

PROPOSITION 2.6. Let A : ¢g — X be an isomorphism from cy into a
separable Banach space X. Then there exists a linear and continuous left
inverse B : X — cq for A such that | B|| < 2|47

Proof. Let H = A(cg). Since A* : X*/H* — ¢, is a weak* isomorphism,
the elements (A*) !(e,) have norm ||(4*) !(e,)| < ||[A Y| and form a weak*
null sequence. Let z, be a lifting to X* forming a weak* null sequence with
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norm at most 2|[A~!||. Then we define Bx = (z}(x))n. It is clear that B is
linear, continuous and with

1Bz < sup|(z;,(2)] < 2/lA7[l2]-
n

Finally BA = id,, since

BAey, = (z,(Aeg))n = (A" (z, + H" (e))n = (A (A" en) (ex))n = e .

It follows that there exists a projection onto A(cg), namely AB, with norm
at most 2| Al|||A Y.

&

2.5. GOLDBERG’S SIMPLIFICATION, 1969. Goldberg’s short note [22]
has the declared purpose of presenting a simpler proof of Kothe’s result.
Everything is stated as:

THEOREM 2.7. Let A be an into isomorphism from cy into a separable
Banach space X. Then there exists a weak* closed subspace M of X* such
that

X*=M®Al); X=1Mo A(w).

Furthermore, the projection P from X onto A(co) with kernel M has
norm at most 2||Al|||A!|| and B = A 1P is a left inverse of A with norm at
most 2||A7Y.

2.6. VEECH’S PROOF, 1971. This proof [59] is one of the masterpieces
in “the book” (which Erd6s must be reading now). It follows the strategy &,
and so it tries to find a weak*-null extension of the coordinate functionals (d,)
in 2Byx+. Let D, be a Hahn-Banach extension of §,. Since X is separable, its
dual ball is weak*-metrizable by a translation invariant metric, say d. Let A
be the set of accumulation points of (Dy,), in Bx+. The following ridiculously
simple observation is the key: a sequence such that every subsequence contains
a further subsequence converging to zero is itself convergent to zero. It is then
clear that

lim dist(D,, A) = 0.

n—oo
Choosing f, € A such that d(Dy, f,) < dist(Dy,A) + 1/n one has that the
sequence (D, — fn)n C 2Bx- is weak*-null. Moreover D,, — f, extends d,
since fp(en) is an accumulation point of (Dy(en,))n, i-e. 0.

&
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2.7. UNDERSTANDING SOBCZYK. We can now translate what Sobczyk
did. Assume that one is trying to show that a weak® null sequence of norm
one functionals defined on a subspace Y of a separable Banach space X can be
extended to a weak*-null sequence of functionals on X with norm (at most)
two. The simplest situation that can be thought of is to perform such an
extension from Y to a superspace Y + [uq,...,u,]. Perhaps one would even
daydream about being able to exactly determine the extensions. Let us show
that such hope has a price: we can exactly determine the extensions at the
cost of letting them have norm 2 + ¢!

Let (Fy)n be a Hahn-Banach extension of (f,), to X. Let A be the set
of accumulation points of {(Fj(u1), ..., Fy(ux))}n in RF. Choose for each
n a point (pf,...,pp) € A such that ||(F,(u1),...,Fa(ug) — (7., 0P| =
dist((Fp(u1), ..., Fn(ug)), A). We define the functionals h, as a Hahn-Banach
extension of the functional taking the value p7 on u; and 0 on Y. It is clear
that F,, — h, is pointwise convergent to zero on Y + [u1, ..., ug]. We only have
to calculate the norm of F,, — h,,.

limsup ||hy|| < 1: taking w an accumulation point of (F,),, in Bx- (ob-
serve that [|w| <1 and w|Y = 0) and since lim |[(hy, — w)|[y;,....u, ]|l = 0 one
gets

Therefore, (F,, — hy), is a pointwise null sequence of extensions of (F},)
with norm || F}, — hy,|| < 2+ ¢ for large n. Repeating the process increasing the
number of points (uy) and with a diagonalization one gets a sequence (g )n
of extensions of (fy), with norms ||g,| < 2 +e.

When Y = ¢y what one has obtained is a projection P. : X — ¢o with
norm ||P|| <2 +e.

(By the way, observe that there is no way of pasting together all those
projections: attempts of diagonalization when ¢ — 0, such as considering a
free ultrafilter U refining the Fréchet filter and setting

P(z)(k) = lim P.(z)(k)
U(e)
typically produce nothing different from (F},),.) This erratic behaviour has
its roots in the choice of the values of the extended functional at the points
uj. Observe that even for a single point our choice is wrong. Consider the
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extension from Y to Y + [u]. At first glance our choice for h,(u) is logical
and an examination of Veech’s proof should convince us that we are setting
for hy,(u) the only possible value: if w is a weak*-accumulation point for (F,)
then ... is not, we wonder, w(u) an accumulation point of F,(u)? Well ...
yes, it is, but maybe not the right accumulation point we have chosen for
hn(u); maybe it is not the closest accumulation point to Fj,(u); after all, w
only accumulates a certain subsequence of the Fj,, not all. The values at Y
are correct: 0, since in that case that is the only possible accumulation point.)

After that it only remains one way: to choose carefully the points uq,...,
up. For instance, in the case of a single point, we can save the proof and obtain
a wonderful 2 with a special choice of u: use Riesz’s lemma to get some norm
one point u such that dist(u,Y) = 1. In fact this is, in some sense, what
Sobczyk did: the several detours of his proof have the objective of choosing
the right points z; that make the projection appear.

2.8. HASANOV’S PROOF, 1980 The following extension of Sobczyk’s theo
rem appeared in [28]. Let F be a filter on a set S. Let 7 be a cardinal. Then
F is called a t-filter if whenever A; € F for all 1 € I and cardl < 7 then
NicrA; € F. The space mo(S,F) is the closed span in Iy (S) of the set
{r €1(9) : limr z = 0}. With this notation Hasanov shows:

THEOREM 2.8. The space mo(S,F) is at most 2-complemented in any
Banach superspace E such that E/mq(S,F) has density character at most 7.

2.9. WERNER’S PROOF, 1989. This one, originally in [60], but which
can also be found in [27], was described by its author as “probably the most
complicated proof of Sobczyk’s theorem that has appeared in the literature”.
(We think —and deplore— that the next proof 2.10 beats that record.) It is
similar to Pelczyriski’s proof, inasmuch as it uses a (more abstract) version
of Borsuk’s theorem 2.3. Let K be a compact space and D C K a closed
subspace. Then Jp = {f € C(K) : f|D = 0} is not only an ideal in C(K).
It is even an M-ideal, which means that there is a subspace V' C C(K)* for
which the decomposition

C(K)*=V*® J

holds. Here the subscript 1 indicates that if u = (v, ¢) then ||u| = ||v| + |9
The following result of Ando [3] Theorem 5, Choi and Effros [15] can be
thought of as an abstract Borsuk’s theorem.
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THEOREM 2.9. Let J be an M-ideal in a Banach space X. Let Y be a
separable Banach space and let T : Y — X/J be a norm one operator. If J
is an Li-predual then there is a linear continuous lifting operator L : Y — X
for T; i.e. ifg: X — X/J is the quotient map then qL = T. Moreover, with
L] = 1.

Now let ¢y be an isometric subspace of a separable Banach space X.
Sobczyk’s Theorem will follow if we apply the ABC D E result with J = ¢g and
Y = X/J. But one first has to work to get ¢y as an M-ideal of X, something
that need not be true without renorming X. This is what Werner does, but
we prefer to simplify the proof of [62, Thm. 8].

Let f, € X* be a norm preserving extension of the n'"-evaluation functio-
nal on ¢yg. An easy calculation then shows that Y = span(f,) is isometric to £1,
and that X* =Y @ (c)*. Define a new norm on X* by fiy + 2 = ||yl + ||2||.
We will show that this is a dual norm. So, let y, + 2z, be a bounded net
weak*-convergent to y + z; we need to show that fy + 2zff < liminf fy, + zaf.

Since (cg)* is weak*-closed, we may pass to a subnet and assume that the
weak* limit 21 of z, belongs to (co)™*; then ||z1|| < liminf ||z,]|. Also (ya —¥)
is weak™ convergent to z — z; and ||z — z1|| < liminf ||y, — y||.

Although vy, is not weak* convergent to y, it is pointwise convergent on cg.
A simple calculation with the ¢; norm then yields lim(||yq | — |lva —yll) = |yl
Now we just add everything up:

fy + 28 < llyll + llz — 21l + |21
< llyll + liminf [|yq — y|| + liminf ||z, |
= liminf ||y, || + liminf ||z, ||
< liminf({lya | + [[zall)
= liminf(fya + 2zaf).

A

The ABCDE Theorem then gives a linear lifting L : X/J — X, with
fL§ = 1, and so J is complemented in X. Clearly f-4 > | - || on X*, whence
f-4<|-| on X. Since (X/J)* = J*+, we see that ff - § = || - || on X/.J, and
thus ||L|| = 1. Norm one projections are better than norm two projections,
aren’t they? This is what we have finally achieved: in any separable Banach
space, any copy of ¢y is the kernel of a norm one projection. For Lg is a norm
one projection on X whose kernel is just J. Moreover, we can replace c¢g by
¢o(T') throughout this argument.
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ProposITION 2.10. If X is any Banach space, J is a subspace isometric
to ¢o(I"), and X/.J is separable, then there is a norm one projection P on X
with ker P = J.

It seems that this can also be deduced from Sobczyk’s original proof, but
not from any of the other proofs we know. This topic will be pursued further
in §4.2.

2.10. CABELLO AND CASTILLO’S PROOF, 1998. This proof can be found
in [8] in a rather eccentric form, with the purpose of extending Sobczyk’s
theorem to the domain of topological semigroups. We shall not go that far
here. The theory of Kalton and Peck [30, 31], see also [12], describes twisted
sums of quasi-Banach spaces in terms of the so-called quasi-linear maps. A
map F' : Z — Y acting between quasi-normed spaces is said to be quasi-
linear if it is homogeneous and there exists a constant K such that for all
points z,y € Z one has

[1F(z +y) — Fz) = F(y)l| < Q=] + llyl)-

The infimum of those constants ) satisfying this inequality shall be called the
quasi-linearity constant of F' and denoted Q(F'). We shall say that a quasi-
linear map is trivial if it can be written as the sum of a bounded (homogeneous)
and a linear (not necessarily continuous) map. A quasi-linearmap F': Z — Y
gives rise to a twisted sum of Y and Z, denoted Y & Z, by endowing the
product space Y x Z with the quasi-norm ||(y, 2)||r = |ly—F(2)||+]|z||. Clearly,
the map ¥ — Y @p Z sending y to (y,0) is an into isometry while the map
Y@®rZ — Z sending (y, z) to z is surjective and continuous. In this way Y can
be thought of as a subspace of Y @ Z for which the corresponding quotient
space is Z. Conversely, given an exact sequence 0 — Y — X — Z — 0, if
one takes a bounded homogeneous selection B and a linear selection L for the
quotient map, then their difference B — L is a quasi-linear map Z — Y. The
two processes are inverse to one another in a functorial sense.
Other basic results of Kalton [30] are

(1) that the exact sequence constructed with a quasi-linear map F : Z — Y
splits if and only if F' can be written as a sum F = B 4+ L of a bounded
homogeneous map B : Z — Y and a linear one L : Z — Y. Equivalently, if
we measure the distance between two homogeneous maps F' and G as

dist(F, G) = Hslnlgl{llF(a:) - G(2)|},
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then F' is at finite distance from a linear map L : Z — Y. And
(2) quasi-linear maps defined on a dense subspace can be extended to the
whole space (see [31]).

A rather delicate point in the theory is that a twisted sum of Banach
spaces might not be locally convex: this is shown by Ribe’s example [49] of
an exact sequence 0 - R — E — ¢1 — 0 that does not split. A twisted sum
Y @r Z of Banach spaces is a Banach space if and only if the quasi-linear
map F' : Z — Y has the property, called 0-linearity (see [8, 10, 12]), that
there exists a constant K such that for all choices of finite sets {z1,...,z,}
of points in Z one has

Y F(z)—F (Z m) <KDY |l
=1 =1 i=1

The infimum of those constants K satisfying the preceding inequality will
be called the 0-linearity constant of F' and denoted by Z(F').

So, Sobczyk’s theorem means that every exact sequence 0 — ¢g — X —
7 — 0 of Banach spaces with Z separable must split. Hence, that every 0-
linear map F' : Z — ¢y from a separable Banach space into ¢y must be at
finite distance from some linear map L : Z — ¢o. We prove that.

THEOREM 2.11. Let F : Z — ¢o(I) be a O-linear map with Z separable.
Then there exists a linear map L : Z — ¢o(I) at a finite distance from F'.

We shall define the linear map at finite distance of F' over a dense subspace of
Z and then, apply the extension result (2). Let F : Z — ¢o(I) be a 0-linear
map with constant Z(F'), and assume that Z is separable. If F' is written as
(fa)acr then each f, : Z — R is again 0-linear with constant at most Z(F).
The Hahn-Banach theorem makes the sequence

0O=>R—=>R&p, 220

split, and thus there exists some I, € Z" at distance at most Z(F) from f,.
This, and the fact that for each z € Z the family (fo(2)) € co(I) imply that
(la(2)) € £oo(I), so that we have a linear map L : Z — £ (I) at distance at

most Z(F) from F.
Let (z;) be a countable subset of Z spanning a dense subspace D. We set

E={AeD": sup A(z) (1 + ([ L(z) D < o0}



406 F. CABELLO, J.M.F. CASTILLO, D. YOST

endowed with the distance function

dist(R,T) = >

k

| R(zk) — T'(21)]
2F(L+ 1L(=z0) 1)

Bounded sets are relatively compact in (E,d) (very much as in the stan-
dard proof of the Banach-Alaoglu Theorem), and so is the closure of (Iy)q-
If A denotes the set of its accumulation points and p, € A is such that
dist(l,, A) = dist(ly,pa) then it is easy to see that (dist(la,pa))acr € co(I)
and thus (|lo(2) — pa(2)|)acr € co(I) for every z € D. The key point is that
actually p, € D*. This follows from

[pa(2)| = limsup |lo (n)(z)]

n—o0

< limsup(|la(n)(2) = fa(n)(2)] + [fa(n)(2)])

n—oe

< Z(F)|=l.-

This is enough since P = (pqy)q is a linear continuous map D — £ (1)
such that, when restricted to D, the map L — P is at distance at most 2Z(F')
from F. Applying the extension result there must be some linear map at finite
distance from F on Z.

Q

3. ¢p IS NOT COMPLEMENTED IN /o

We pass now to the negative counterpart of Sobczyk’s theorem: there exist
spaces, such as /., in which no copy of ¢y is complemented. Many people
proved this fact, some without realizing it, and we hope it will be instructive
to review the proofs.

3.1. PHILLIPS’S PROOF, 1940. To be pedantic, what Phillips proved [47,
7.5] is that ¢, the space of convergent sequences is not complemented in £,. To
do that, Phillips observes that if a projection P : £,, — c¢ existed then to each
weak*-convergent sequence of functionals on ¢ would correspond a weak*-
convergent sequence of functionals on /. In modern notation, P* would
transform weak*-convergent sequences on ¢ into weak*-convergent sequences
on f.

Consider the sequence (fy), of functionals on ¢ given by

fo(x) =z(n+ 1) —x(n).
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This sequence is weak*-convergent to zero on c. Let (F),), be a weak*-
convergent sequence of extensions of (fy), to all £y. We recall a couple
of results of that same paper: first Phillips’s lemma [47, Lemma 3.3].

LEMMA 3.1. Let u, be a bounded sequence of finitely additive set func-
tions on N. If for every set A C N one has lim p,,(A) = 0 then

limz |k (k)| = 0.
keN

Secondly, the observation [47, p. 526] that each linear continuous functional
F € ?%_ can be represented by a measure p on P(N) as

Fz) = /N:E(n)du.

If (F,), were weak*-convergent to zero then for each A C N one would
obviously have lim y,,(A) = 0. Hence, Phillips’s lemma gives that if (F},), is
weak*-convergent to zero on £ then limy, ;o0 D pc [1n ()| = 0.

Returning to the proof, if Fy,(z) = [ #(n)du, then one would have

Tim Y | (k)| = 0.
keN
But the equalities pn,(n + 1) = Fp(ent1) = folent1) = 1 and pp(n) =
F.(en) = fn(en) = —1 make that impossible.
Thus no continuous projection P : £,, — ¢ exists.

[ )

3.2. SOBCZYK’S PROOF, 1941. Sobczyk observed in [54, p. 945]: “By
an argument identical with that used by Phillips (to prove the nonexistence
of a projection of £y on c¢) it may also be shown directly that there is no
projection of /., on c¢y.” Instead, he preferred to use Phillips’s statement in
combination with the following simple lemma, which we refuse to prove.

LEMMA 3.2. Suppose that X = A® B and that B = B} ® By. Then
X1 =A+ By isclosed in X, and X = X1 ® B>.

Now, were ¢y complemented in /.., the choices X = f, A = ¢y and B
its complement, together with By = [(1,1,...)], would imply 4o, = ¢ @& By,
contrary to what one knows.

[ )
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3.3. NAKAMURA AND KAKUTANI’S PROOF, 1941. In [43, Thm. 5], Na-
kamura and Kakutani observed the existence of an uncountable family (M)
of infinite subsets of N with the property that for different indices ~y, u the
intersection M., N M, is finite. The way in which they obtain such families is:
after numbering the nodes of a dyadic tree, let M., the set of numbers falling
in a given branch y. They were unaware of Sierpinski’s [53] earlier (more
complicated) proof.

From that they derive [43, Thm. 6] the existence in SN\ N of an uncoun-
table family (E,),cr of mutually disjoint clopen (simultaneously open and
closed) sets, namely

E,=M,\N

The closure of M, in SN is obviously clopen, since it coincides with the
support of the (unique) continuous extension of 15, to SN. If two subsets
A,B C N have finite intersection A N B = F then it is easy to see that
ANB =F. Since M, N M, is finite, E, N E, is empty.

Let us remark that the existence of such family is impossible in SN. And
that is not the worst possible case: Szpilrajn [56] (aka Marczewski) observed
that it is possible for a compact space K to admit a family of size d of mutually
disjoint clopen sets while a compact superspace of K does not. This follows
from the fact that every compact Hausdorff space is homeomorphic to a closed
subset of a compact topological group. The existence of invariant measures on
a compact topological group G makes mutually disjoint families of clopen sets
of G countable. It is thus enough to take as K the one point compactification
of a discrete set of cardinal d.

Nakamura and Kakutani [43, § 7] derive from the existence of such family
that the coordinate functionals on ¢y cannot be extended to the whole of £,
maintaining the pointwise null character of the sequence.

To show this, first recall that each element F' € £; can be decomposed in
such a way that for each x € £, one has

F(z) = Z Anz(n) + /ﬁN\N z(w)dp(w)

for some regular countably additive measure u on SN. Moreover,

|F|| = Z |An| + total variation of 4 on SN\ N.
n

Let now F),, € ¢%  be an extension of the nth-coordinate functional d,, on
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cp. One has
E.(z) = 6p(z) + /ﬂN\N z(w)dpn, (w)

for some countably additive measures u, on SN. Since the elements of the
family {£,}, are disjoint, the total variation of a measure y» on SN\ N has to
be zero on all except countably many of them.

Applying that to each measure p, it follows that there exists some set, say
FEyp, on which all the measures pu, have total variation 0. Since the sets FE
and N\ Ey are both infinite, it follows that the sequence (F},(1g,))n contains
both 0 and 1 infinitely often, so it cannot be convergent.

&

3.4. GROTHENDIECK’S PROOF, 1953. A formidable improvement of
Phillip’s lemma was obtained by Grothendieck in [26]: If K is a compact
extremally disconnected space, e.g. SN, then the weak* and weak convergent
sequences in C(K)* coincide. Banach spaces with that property are now ca-
lled Grothendieck spaces. It is almost obvious that quotients of Grothendieck
spaces are Grothendieck spaces and that separable Grothendieck spaces are
reflexive. Thus infinite dimensional nonreflexive separable spaces cannot be
at all complemented in Grothendieck spaces. In particular, ¢ cannot be even
a quotient of /.

Q

3.5. GROTHENDIECK’S PROOF, 1954. Again as an exercise in [25], pre-
cisely ex. 2 in 3.7, Grothendieck freely considers on his own the fact that the
coordinate functionals of ¢ () cannot be extended in a pointwise null fashion
to the whole of £o(I). There are four steps, the first two well worth stepping
into. Given a functional f on ¢o(I) we can consider it, as an element of {1 (I),
as a functional on £y (I).

e Let i be a continuous linear functional on £ (I). If Jy,...,J, are
disjoint subsets of I then

1o () == e () T < N2l

e For each sequence (juy), of functionals on £ (I) there exists an infinite
set J C I such that, for all n,
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N”‘CO(I)\IOO(J) = HBnllo(J)-

Maybe we could say some words about this point. For each n there must
be some infinite set .J;, such that |[un s (sl < 1/n (since I can be parti-
tioned into an infinitely countable quantity of infinite sets). But, proceeding
inductively, it is possible to obtain a decreasing sequence J,, of infinite sets

such that
1

< —
”NkMOO(Jn)H =

for 1 < k < n. It is enough to consider an infinite set J such that, for every
n, J\ Jy, is finite.

Intermission.

Maybe it is worthwhile to mention here that Drewnowski and Roberts
unpublished manuscript [17] (see also [12]) contains a more general version of
this; precisely:

LEMMA 3.3. Given a weakly compact operator T : ¢, — Z there exists
an infinite subset M C N such that the restriction Tl (M) is weak*-to-weak
continuous.

In particular, a continuous functional i : /o, — R (quite weakly compact),
has to have an infinite set M C N such that the restriction p|lo (M) is weak™
continuous. This means that p () € £1(M), and thus that p ) =
M|Co(M) .

End of the intermission.

Going ahead, Grothendieck’s argument claims now that if (u, ) is a weakly*
null sequence in £ (1)* then (pncy(p)) is norm null. New intermission. There
is, however, a mistifying point here: it seems that one had proved that without
using that /1 (I) has the Schur property; but at the end of the proof (p.131)
the Schur property of [; appears; on the other hand, it is far simpler to realize
that I1(/) must also have the Schur property once Iy has it! End of the new
intermission. From which it clearly follows that when I = N the weak* null
sequence of coordinate functionals on ¢y cannot be lifted to a weak* null
sequence of functionals on /.

&
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3.6. BOURBAKI’'S PROOF, 1955 A clever insight on Phillips (or Grothen-
dieck’s) proof was presented by Bourbaki in [6, EVT IV, 55. Ex. 16]. It can
also be found, no more as an exercise, cleanly in [34, §31, 2, (3) and (5)]:

A pointwise zero sequence of extensions of the coordinate functionals to
the whole /., is a weak*-null sequence in £, whose restrictions to ¢y have
to form a weakly null sequence in ¢1; hence, by Schur’s lemma, a norm null
sequence. In conclusion, that the coordinate functionals of ¢y do not admit

extensions to the whole £, forming a pointwise null sequence.

&

3.7. CORSON’S PROOF, 1961; BOURGAIN’S PROOF 1980; AND OTHERS.
Let us recall the line of reasoning {: to prove that /. /cy is not a subspace
of /o, would show that ¢ is not complemented in /4, (since any complement
would have to be isomorphic to £ /cg). It only remains to choose which
isomorphic hereditary property P the space £ has and /, /¢y has not. In
general, this may not be the most efficient way to achieve our aim. Anyway,
here are several possibilities:

1943 (Nakamura and Kakutani, implicitly) P= to admit, in the weak topo-
logy, an uncountable discrete set. That £, cannot admit such a subset
follows from the separability of its weakly compact sets. That £ /co
does was already shown with the family (E,).

1961 (Corson) P = to be weakly realcompact, whatever that means. Corson
[16] proved that if X* is weak* separable, then X is weakly realcompact.
This obviously includes /. His proof that £, /¢y is not weakly realcom-
pact is a modification of the proof that ¢o(I")* is not weak* separable.
Given both things, he derived again that ¢y is not complemented in /.

1972 P =weakly compact sets are separable. That this is so in £, follows
from the obvious fact that its dual is weak*-separable. It was already
observed in [37, p. 240] that the canonical injection lo(I") — ¢o(T") yields
a non-separable weakly compact subset of ¢o(I'); that ¢ (I") is a subspace
of s /co appears as a footnote in Rosenthal, but he avoided claiming
priority.

1980 (Bourgain) P = to admit a strictly convex renorming. That fo/co
has no such renorming was proved by Bourgain [7]. That [, admits
a strictly convex renorming follows from the well-known facts that Iy
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admits a strictly convex renorming and that if T': X — [5 is an injective
operator then X also admits a strictly convex renorming.

o

Further information about the space £, /cy can be found in [36]; and about
its generalizations £4/hy in [24].

3.8. WHITLEY’S PROOF, 1966. Anecdotal evidence suggests this is the
best known proof, perhaps because it appears in the eminently readable text-
book [29]. The proof of Whitley [61] is a simplification of Nakamura and
Kakutani’s proof, although discovered independently. It makes the measu-
res disappear, replacing them by functionals. In other words, it requires no
representation theorem for /7.

Recall the existence of an uncountable family (M,) of infinite subsets of
N with the property that for different indices v, u the intersection M, N M,
is finite. Whitley credits Arthur Kruse for the following ingenious method to
obtain such families, but it was probably first discovered by Alexandrov in
1922 [1, Espace Ag]: ordering the rational numbers into a sequence, assign to
each irrational number v a set M., of (indices of) rationals converging to 7.

The argument now is that given any linear continuous functional f €
cé-, its kernel contains all, except perhaps countably many elements of the
family (M,). To prove this, observe that the set A, = {M, : f(M,) > 1/n}
cannot have more than n|| f|| elements since given k elements M, € A, then
|| >_ signf (M) M, || < 1 and

k
f (Z signf(M%.)M,yi) > %
i=1

That being true, the existence of an operator T : £y, — £ with kernel
¢o would imply the existence of a bounded sequence (f,) of functionals in
c(J)- such that N,Kerf, = ¢y, something impossible since uncountably many

members of (M,) would be in that intersection.

&

3.9. AMIR’'S PROOF, 1962; ULGER'S PROOF, 1999 More proofs? Yes,
why not. Since complemented subspaces of injective spaces are injective, it is
enough to show that ¢g is not injective. Or, using an argument worthy of Ber-
trand Russell: if we prove that ¢ is not complemented in some Banach space
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then it is not complemented in £,. Of course, relatively recently, Rosenthal
[51] showed us that injective spaces contain £o.

Amir [2] proved that if a C(K)-space is injective then every convergent
sequence in K must be eventually constant. Amir’s argument is as follows:
let (z,,) be a convergent sequence of distinct points. Set the elements p, =
Oopi1 — Ozy, € C(K)*. It is clear that (yu,) is weak™*-convergent to 0. Now
choose distinct neighborhoods U,, of z, and define an element F' € C(K)**
by F(u) = > pu(Uzp. One has F(u,) = —1, and thus (u,) is not weakly
convergent to 0. This obviously implies that C(K) is not a Grothendieck
space. But every Banach space is isometric to a subspace of £ (T") for some
I', and the latter is a Grothendieck space. Thus every injective space is a
Grothendieck space. 3.4).

A. Ulger mentioned to the second author during the 1999 Spring School at
Paseky the following approach (see [19]). A Banach space X is said to have
the Phillips property (see [19] if the canonical projection p : X** — X* is
sequentially weak*-to-norm continuous. The name comes from Phillips who
proved that ¢y has that property (it is Phillips’s lemma we’ve already seen in
section 3.1). In [19] they also define the weak-Phillips property of X when
p is sequentially weak*-to-weak continuous; and then they prove in theorem
2.4 that a Banach space X has the (weak) Phillips property if and only if for
every operator T': X™* — ¢ the restriction T|x is (weakly) compact. Hence,
no operator T : £o, — ¢g can exist such that T'(cy) = ¢q.

4. WHICH IS THE STATEMENT OF SOBCZYK’S THEOREM?
Good question. We have a couple of possibilties to explore.

4.1. IN WHICH SPACES IS EVERY COPY OF ¢y COMPLEMENTED? This
line of thought starts with Rosenthal’s observation that Veech’s proof also
shows that copies of ¢y inside WCG spaces are complemented. In other words,
copies of ¢g inside C(K) spaces with K an Eberlein compact are complemen-
ted. Thus, let us consider the problem shifting the situation from the space
X to C(Bx~); and then formulating the properties of X in terms of topolo-
gical properties of the compact space (Bx«,w"). Following this line one is
asking in which C(K) spaces are the copies of ¢y complemented. Let us call,
momentarily, K-Sobczyk any Banach space in which every isometric copy of
co is K-complemented. The classical result asserts that separable spaces are
2-Sobczyk.
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In [42] Molto shows that if the compact space (Bx-,w*) is (so-called)
cofinitely sequential then X is 2-Sobczyk. Since Corson compact spaces are
cofinitely sequential, it follows (corollary 6) that Banach spaces such that
(Bx+,w*) is a Corson compact are 2-Sobczyk. Of course, this is not the
last word since Valdivia introduced in [58] a more general type of compact
space, called nowadays Valdivia compact, and proved that if K is a Valdivia
compact then every separable subspace of C'(K) is contained in a separable
1-complemented subspace of C(K). In this also, C'(K)-spaces are 2-Sobczyk,
as well as spaces X such that (Bx-,w*) is a Valdivia compact.

Molto shows in [42] that the well known compact space A with A% = () (see
[1, Espace Ag]) is a Rosenthal compact, whatever that means; as we should
know C'(A) contains an uncomplemented copy of ¢g. This suggests that maybe
Valdivia compact are the last word. Or maybe not: Patterson [44] shows that
if K denotes the two-arrows space (which is a Rosenthal compact, see [20])
then C(K) is 2-Sobczyk.

4.2. THE STATEMENT OF SOBCZYK’'S THEOREM A more general line
of thought appears when one observes that Sobczyk’s classical proof can be
amended (see also the proof 2.9 or Hasanov’s argument) to prove that copies
of ¢o(I) inside spaces X such that X/co(I) is separable are complemented.
Thus, one may ask if there exists a general version of Sobczyk’s containing
the two results, namely:

QUESTION. Are copies of ¢(I") inside WCG spaces complemented?

This problem was considered in [4]. Let us first observe that the definition
of K-Sobczyk spaces given in that paper is more general than the previous
one: a Banach space X is said to be K-Sobczyk if every M-isomorphic copy
of ¢y(I) is KM-complemented in X. The following observations might help
to clarify this point.

When one has an isometric copy of ¢o(I) inside some C(K)-space, if p; is
some point of K where é; attains its norm 1 then the family (p;) is a copy of
I inside K, and moreover €;(p;) = 0;;. After some lemma or other this means
the existence of a map ¢ : I — B(C(K)*) such that ¢(i)(€j) = §;; for all
1,7 € I. Of course, this is not enough to get a complemented copy, since it
remains to verify if the condition weak*-lim¢(i) = 0 can be obtained.

When one has instead a k-isomorphic copy of ¢y(I) inside C(K) then one
only knows that k! < ||&]| < k; so, if p; are points where €;(p;) = ||&|| then
each point p; can be “shared” by at most k£ functions (i.e., it is possible that
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for some i one has €;(p;) = ||€;| for at most k indices j). Therefore one cannot
guarantee that €;(p;) = d;;.

In any case, if I denotes the closure of I in K, while it is clear that if co(I)
is complemented in C/(I) then it is complemented in C(K). We do not know
if the converse is true.

QUESTION. If ¢ (1) is complemented in C(K), is it complemented in C/(I)?

It is therefore worth mentioning the following partial answer regarding the
topological nature of the compactification.

PROPOSITION 4.1. Let I be a fixed set. Then the assertions (E1) and (E2)
are equivalent; so are as assertions (RN1) and (RN2); and asssertions (G1)
and (G2).

(E1) Every copy of ¢y(I) inside a WCG Banach space is complemented.

(E2) IfEb(I) is an Eberlein compactification of I then cy(I) in complemented
in C(Eb(I)).
(RN1) Every copy of ¢o(I) inside an Asplund generated Banach space is com-
plemented.

(RN2) If RN(I) is a Radon-Nikodym compactification of I then cy(I) in com-
plemented in C(RN (I)).

(G1) Every copy of ¢y(I) inside a WCD Banach space is complemented.

(G2) If G(I) is a Gulko compactification of I then co(I) in complemented in
C(G(I)).

Proof. The proofs follows the same schema. (1) implies (*2) since if K
is an Eberlein (resp. Gulko, Radon-Nikodym) compact then C(K) is WCG
(resp. WCD, Asplund generated). Conversely, (x2) implies (x1) since when
X is WCG (resp. WCD, Asplund generated) then (B(X*),w*) is an Eberlein
(resp. Gulko, Radon-Nikodym) compact; and because closed subspaces of an
Eberlein (resp. Gulko, Radon-Nikodym) compact is a compact of the same
type. 1

We left out the case of Valdivia compacta because it is not true that
subspaces of Valdivia compact are Valdivia compact. Nonetheless, some of
the best results in [4] have been obtained for Valdivia compacts. Precisely:

THEOREM 4.2. Let K be a Valdivia compact. The space C(K) is 2m+1-
Sobczyk for copies of co(I) with cardl < X,,.
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This result is optimal since [4] also exhibits a scattered Eberlein compact
K with density character N, containing uncomplemented copies of some cg(T")
(see also [11]). Further, in [4] it is also shown that the spaces of continuous
functions on ordinal spaces are “quite” Sobczyk; precisely:

THEOREM 4.3. Let k be an ordinal. Let X be a (1 + €)-isomorphic copy
of co(I) inside C[1,k] for e < /3 — 1. Then X is ocomplemented in C[1, k).

Let us close the paper with some related information. The following “ne-
cessity version” of Sobczyk’s theorem can be found in [23]:

THEOREM 4.4. A closed subspace of ¢y(I) is complemented if and only if
isomorphic to some cq(J).

Several oblique readings of Sobczyk’s theorem can be followed in [11]:
the existence of retractions onto the derived space and their connection with
Sobczyk‘s theorem, the definition of an ordinal uncomplementation index, and
the relationships between the nature of a Boolean algebra A on N , the Stone
compactification, AN, of N it defines and complemented copies of ¢ inside
C(AN).

The paper [4] contains many more results with a Sobczyk’s like flavour; as
a token, let us mention:

THEOREM 4.5. Let K be a Valdivia compact. Let X be an isomorphic
copy of ¢o(I) inside C(K). There exists a subset J C I with cardJ = cardl
such that co(J) is complemented.

Further variations on non-Sobczyk’s theorems can be followed through [13]
and [9]. For instance, in [13] it is shown:

THEOREM 4.6. Let Z be any non-separable Banach space. Then there

exists a nontrivial exact sequence 0 — ¢g — X — Z — 0 in which X is not
WCG.

(this complements the fact that every exact sequence 0 — ¢y =+ X — Z — 0
with X WCG splits); of course the same result is valid for ¢q(7).

Some of the results of [9] can be considered as explorations of the limits
of Sobczyk’s theorem. For instance, could C(w®) replace ¢g = C(w) in some
sense? Could the previous Z be a given nonseparable C(K)? The answer to
the first question seems to be a resounding no since
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THEOREM 4.7. There exists a nontrivial exact sequence 0 — C(w¥) —

X —c9— 0.

while we left open the second one:

PrROBLEM. Let K be a nonmetrizable compact space. Does there exist a

nontrivial sequence 0 - ¢g - X - C(K) - 07?
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