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1. INTRODUCTION

Does a given Banach space have any non-trivial complemented subspaces?
Usually, the answer is: yes, quite a lot. Sometimes the answer is: no, none at
all.

You all know that a closed subspace Y of a Banach space X is said to
be complemented exactly when there is another closed subspace C' with X =
Y +C and Y NC = {0}, or, equivalently, when it is the range of a continuous
linear projection. (Of course an arbitrary linear subspace has an algebraic
complement, not necessarily closed, but the associated projection may be
discontinuous.) An easy consequence of the Hahn-Banach Theorem is that
every finite-dimensional subspace is complemented and it follows from the
definition that every closed subspace of finite codimension is complemented.
These will be referred to as the trivial examples. (We do not assume that
subspaces are closed.)

It follows from Auerbach’s Lemma [56, Prop. 1.c.3] that if n € N then every
n-dimensional subspace of a given Banach space is the range of a projection
with norm at most n. Let us mention a serious improvement of this due to
Kadets and Snobar, [48] or [43, Chap. 5]: n can be replaced by y/n. Moreover
this estimate is almost the best possible [52]. At the other extreme, Pisier [75]
constructed a Banach space for which there is a constant C such that every
projection onto an n-dimensional subspace has norm at least C'y/n.
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Of course, there are non-trivial complemented subspaces. In every Banach
space which comes to mind quickly, it is easy to find non-trivial projections.
In a Hilbert space, every closed subspace is complemented. It is interesting to
recall that the proof of this is intrinsically non-linear. The projection is first
defined as the closest point mapping onto the subspace, a mapping which is
well-defined in a large class of Banach spaces, although often neither linear
nor continuous [95]. Then particular properties of Hilbert space are used to
prove linearity of the projection. Indeed linearity of these best approximation
mappings, for every closed subspace, actually characterizes Hilbert spaces of
dimension three or more [3, §13].

The Spectral Theorem implies that the algebra of operators on a Hil-
bert space, L(H), is actually the closed linear span of its self-adjoint projec-
tions. Better still, Pearcy and Topping [72] showed that any operator on an
infinite-dimensional Hilbert space is a sum of at most five (not necessarily
self-adjoint) projections. This is obviously false in finite dimensions, where
a sum of projections must have integral trace. Moreover, they also showed
that any self-adjoint operator is a linear combination of at most eight self-
adjoint projections, a result which is also true in finite dimensions. Amongst
a number of more recent papers on this topic, it has been announced that the
number eight can be reduced to four in general [32, Theorem 1.3(a)] and even
further in low dimensions [67].

Which Banach spaces share the property of Hilbert spaces, that every
closed subspace is complemented? This question was raised very early [8,
Remarques au Chapitre XII]. It turns out that this is a characterization of
spaces isomorphic to Hilbert spaces. This result was first conjectured by
Sobcezyk [88, p. 79] and finally proved by Lindenstrauss and Tzafriri [55].

Nevertheless it is true [83] for any Banach space, that one can put a sen-
sible topology on the family F of all complemented subspaces and define a
continuous map C : F — F in such a way that C(Y) is a complement for
eachY,ie. X =Y @ C(Y).

As in [54], we call a Banach space decomposable if it admits a non-trivial
projection. All of the familiar Banach spaces are decomposable. This is easy
to see for the L,(u) spaces. For C(K), it is easy to prove if either K has a
non-trivial convergent sequence, or if K admits a non-trivial retract.

At the other extreme, there exist Banach spaces for which the only pro-
jections are the trivial ones; such spaces are called indecomposable. The
construction of such Banach spaces, which have many bizarre properties, is a
relatively recent result of Gowers and Maurey [34]. The observation that no
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closed subspace of their first example is decomposable is due to W. B. Johnson
[34, p. 852]; such spaces are called hereditarily indecomposable. This extreme
lack of projections implies that such spaces have very few operators; a result
of Weis [96, Corollary 2.3(a)] implies that every operator on a hereditarily
indecomposable space is either upper semi-Fredholm or strictly singular; see
also [1, §4]. We should also mention that there are many other senses in which
a Banach space might be considered to have few operators, other than lack of
projections. For a discussion of these and some interesting examples, see [35].

A longstanding question [54, p. 918] is whether all “sufficiently big” Ba-
nach spaces are decomposable. Although most known examples of hereditarily
indecomposable Banach spaces are separable, a non-separable example has re-
cently been constructed by Argyros [5]. In §2 we show that every hereditarily
indecomposable Banach space has cardinality equal to the continuum. (Con-
sidering Fréchet spaces does not lead to additional examples: a hereditarily
indecomposable Fréchet space must be normable [62].)

Let us make the trivial observation that, if X is not quasi-reflexive, then
X*** has a non-trivial projection. Thus, as we move to higher duals, we get
more projections. Information about the bidual also tells us about decom-
posability. Valdivia [94] showed that if X is not separable but not too far
from reflexivity, in the sense that dens (X**/X) < dens X, then X admits a
non-trivial projection.

Suppose that X is quasi-reflexive but not reflexive. Must X be decompo-
sable? Or can X be hereditarily indecomposable? The first of these questions
has been floating around for many years. A positive answer would imply
that every quasi-reflexive Banach space is the direct sum of order one quasi-
reflexive spaces. The strongest known result in this direction is the following
statement, which simply merges results of Valdivia [94] and Bellenot [10].

THEOREM 1.1. Suppose that X is quasi-reflexive, of order n. Then there
exist subspaces R, S1,...,S, of X such that X = R& S,,, R is reflexive, S,
is separable, S1 C Sy ... C Sy, and for each j, S;*/Sj has dimension j.

All of the examples of hereditarily indecomposable spaces in [34] and [35]
are reflexive. However Gowers [33] has also shown that there is a separable
hereditarily indecomposable space which contains no reflexive subspace. In
fact, it contains no quasi-reflexive subspace either. More recently, Argyros and
Felouzis [6] have shown that surprisingly many Banach spaces, including all
separable quasi-reflexive spaces, are quotients of hereditarily indecomposable
Banach spaces. Of course ¢; cannot be such a quotient.
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Following [30], we say that a Banach space has the separable comple-
mentation property (or SCP) if every separable subspace is contained in a
complemented separable subspace. Of course this property is only interes-
ting for non-separable spaces. It is blatantly obvious that any non-separable
Banach space with SCP is decomposable. In §3, we look at some conditions
which imply SCP: this gives a good stock of decomposable Banach spaces. In
particular, we give a simple proof of the fact that weakly compactly generated
Banach spaces have the SCP.

Given two cardinal numbers € < m, we will say that a Banach space has the
(¢, m)-complementation property, or CP (¢, m), if every subspace with density
character at most £ is contained in a complemented subspace with density
character at most m. Thus SCP = CP(Rp,Rg). Johnson and Lindenstrauss
[46] asked whether every Banach space has CP(Ng, ¢); this remains unknown.
In §5, we show that many Banach spaces have CP (¢, m) for suitable €, m; this
increases our stock of decomposable spaces. To introduce these spaces, it is
necessary to define some topological properties that the dual ball of a Banach
space may or may not have; this is the topic of §4.

It is possible to go down as well as up. In §6, we note that in many Banach
spaces, every subspace isomorhic to ¢y contains a complemented (infinite-
dimensional) subspace.

All of the techniques here lead to projections of norm one. In §7, we exhibit
a renorming of ¢;(N;) which admits few norm one projections, although it
obviously has many complemented subspaces.

All this summarizes the most important results about the complemented
subspace problem. Now we give a historical account of the most famous
uncomplemented subspaces.

2. THE EASIEST UNCOMPLEMENTED SUBSPACES

1932: The first example (as far as we know) appears in [8, Remarques au
Chapitre XII], which was apparently written by Mazur [8, Préface]: ¢,
and hence L;(0,1) contain uncomplemented subspaces. It was known
back then that every separable Banach space is a quotient of £; and that
every infinite-dimensional closed subspace of /1 contains an isomorphic
copy of £1. Since /5 is reflexive, it cannot contain a copy of £1, whence
it cannot be isomorphic to a subspace of £;. Alternatively, this could be
deduced from Schur’s Lemma. Hence if ) : /1 — #5 is a quotient map,
then ker () must be uncomplemented in /4.



COMPLEMENTED AND UNCOMPLEMENTED SUBSPACES 339

1933: The second example is due to Banach and Mazur [9, p. 107], who
showed that any subspace of C0, 1] isomorphic to #; must be uncomple-
mented. This follows from the fact that C[0,1]* is weakly sequentially

complete but ¢7 is not; thus /] cannot be isomorphic to any subspace of
1o, 1]*.

1934: Fichtenholz and Kantorovitch developed a representation theory for
operators on the function space Lo[a, b], and used it to show [28, p. 92]
that there is no projection from Lu[0, 1] onto C[0, 1].

1937: Next Murray [64], in the second of two papers, showed that for 1 <
p < 2or2<p< oo, the spaces ¢, and hence also L,(0,1) contain un-
complemented closed subspaces. More precisely, he showed that for each
such p, there is a sequence of constants C},, with C,, — oo, such that for
infinitely many n, £,(n) contains a subspace onto which any projection
must have norm at least C,,. The conclusion follows immediately from
this. He thus isolated the finite-dimensional nature of this problem; his
papers might be considered to be the first in the local theory of Banach
spaces. These were the first reflexive examples and they caused a big
surprise back then [11, p. 301]. It shattered people’s hopes of esta-
blishing a spectral theory for operators on L, spaces similar to that for
normal operators on Hilbert spaces. This led Murray [65] to introduce
the weaker notion of quasi-complemented subspace, a subject we will
not elaborate on here.

1940: Unaware of the work of Banach and Mazur, Komatuzaki [51] also pro-
ved that C[0,1] contains uncomplemented closed subspaces. His argu-
ment was that Lq(0,1) contains uncomplemented closed subspaces and
is contained isometrically in C[0, 1]. Applying the techniques of Murray,
he was the first to show that ¢y contains an uncomplemented closed subs-
pace. In fact, he essentially proved that any Banach space containing
L (n) for all n € N must contain an uncomplemented closed subspace.
In particular, he noted that L. (0, 1), £o and the spaces of differentiable
functions C*)[0,1] fall into this class.

1940: Phillips [74] used his now famous lemma to show that ¢y is not com-
plemented in £,. He also noted that ¢/, is injective, i.e. complemented
in every superspace.

1941: Sobczyk [88] examined Murray’s arguments carefully and presented
cleaner proofs, which are also valid in the cases p = 1, 00. In particular,
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he established the asymptotically optimal bound |C,, — %n‘%féw < %,
valid for the space £,(n) whenever n is a power of 2. Using the same
construction, he showed that many spaces with “reasonable” bases (e.g.
various Orlicz spaces) contain uncomplemented closed subspaces; this
led him to conjecture [88, p. 79] that only Banach spaces isomorphic to
a Hilbert space have the property that every closed subspace is comple-
mented.

1941: Although it does not belong to this class of results, it would be remiss
of us not to mention Sobczyk’s proof of the theorem which now bears his
name [89, p. 946]: ¢y is complemented in every separable superspace.
For a survey of other proofs, see [14].

1943: Nakamura and Kakutani [66] gave a simpler proof of Phillips’s result
that ¢g is not complemented in /. Other simple proofs of this, and a
few complicated ones, have been found over the years; see [14].

For other surveys of this topic, see [47] or [61]. Amongst topics not touched
upon here, the former paper mentions Auerbach bases and studies in detail a
number of uncomplemented subspaces of concrete function spaces discovered
in the 1950s and 1960s. The latter deals with summability domains, prime
spaces and injective spaces. They both give a proof of the Lindenstrauss-
Tzafriri characterization of Hilbert spaces (necessarily assuming Dvoretzky’s
Theorem).

3. DECOMPOSABLE BANACH SPACES

Quite weak hypotheses guarantee the existence of decomposable subspa-
ces. But first, take a step back and ask what it means to have a norm one
projection. If P : X — X is such a projection, E = P(X) and F = P*(X*),
a moment’s reflection shows that F' norms E (the sup is actually a max in
this case) and F N E° = {0}. Conversely, if F and F are subspaces of X and
X* respectively, such that F' norms E and FNE® = {0} then the natural
projection from X onto E with kernel F is well defined and has norm one.
In other words, the only way to get a norm one projection is via a pair of
norming subspaces.

Perhaps we should recall that a (not necessarily closed) subspace G of X*
is said to norm a subspace Y of X if for all y € Y, ||y| = sup{g(y) : g €
G, |lgll = 1}. (More precisely, we could say that G 1-norms Y.) Recall also
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that a vector z is said to be Birkhoff orthogonal, or simply orthogonal, to y,
if ||z|| < ||z + Ay|| for all scalars A\. We write z_Ly in this case, and for sets A
and B we write ALB to mean that aLb for all a € A,b € B. Easy examples
show that this relation is not symmetric. Obviously AL B implies AL B.

The density character of a Banach space X, denoted dens X, is the smallest
cardinal £ for which X has a dense subset of cardinality €.

LEMMA 3.1. Let X be a normed space.

(i) If E is any subspace of X, then there is a subspace F' of X*, with the
same density character as E, which norms E.

(ii) If F' is any subspace of X*, then there is a subspace E of X, with the
same density character as F', which norms F'.

(iii) If F C X* norms E C X, then E1LF°. Likewise, if E C X norms
F C X*, then F1E°.

(iv) If A and B are closed subspaces of a Banach space X and A1 B, then
AN B = {0}, A+ B is closed, and the natural projection A& B — A
has norm one.

Proof. (i) For each vector in some dense subset of Y of minimum cardina-
lity, choose a support functional. Then let F' be the closed linear span of all
these functionals.

(ii) For each functional in some dense subset of F' of minimum cardinality,
choose a norming sequence of vectors. Then let Y be the closed linear span
of all these vectors.

(iii) For z € E and y € F° we have ||z|| = sup f(z) = sup f(z + y) <
R

(iv) If z € ANB then the inequality ||z|| < ||z+(—1)z|| implies immediately
that z = 0. Clearly the projection A®B — A has norm one. The completeness
of X and the presumed inequality imply that A + B is complete also, hence
closed. 1

If £ is normed by F, then E is clearly normed by any superspace of F.
Thus if E; and F} are separable subspaces of X and X™* respectively, then
a routine back and forth argument shows that they are contained in closed
separable subspaces F¥ and F' which norm one another. This implies that the
subspaces E @ FY and F @ E° are closed, and that the natural projections
onto E and F are continuous with norm one. But if either FO or E is
finite dimensional, this is no great achievement. The hypotheses of the next
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result have been blatantly rigged to prevent those possibilities. More profound
applications of this idea appear in the next section.

PROPOSITION 3.2. If X does not admit an injective operator into £,
in particular if its density character exceeds the continuum, then X has a
decomposable subspace.

Proof. Choose E infinite dimensional, and construct F' by Lemma 3.1(i).
(In this case, we only apply Lemma 3.1(i) once, without any back and forth
argument.) Since F' is norm separable, FY = Fo0 = (X/F°%)* will be weak*
separable. This implies that X/F° admits an injective operator into £y. If X
itself admits no such operator, Lemma 3.1(iii) and (iv) force F© to be infinite
dimensional. Thus E & F is a decomposable subspace of X. |

A similar argument establishes the following.

PROPOSITION 3.3. If |X| > ¢, then X has a decomposable quotient.

The same elementary reasoning shows that if X is not separable, then
X* has a decomposable subspace; however stronger results are known. In
general we would prefer to prove that X and X* are themselves decompo-
sable, under reasonably weak hypotheses. The first result of this sort is due
to Lindenstrauss [53], who showed that certain reflexive Banach spaces are
decomposable. This will be discussed further in the next section. Of more
interest to us now is the following result of Heinrich and Mankiewicz.

THEOREM 3.4. [41, Corollary 3.8] If X is any non-separable Banach space,
then X™ is decomposable.

Their statement was actually that if dens X* > ¢, then X* admits uncoun-
tably many non-trivial projections. However their proof obviously yields the
preceding assertion. For a simpler proof of this, see [87, p. 55]. In other words,
if we weaken the requirement “F separable” to “F isomorphic to the dual of
a separable space”, then E and F can always be chosen so that X* = F @ E°.
Whether they can be chosen so that X = E @ F° remains open.

Here is a more general existence result. We need another definition. Given
a closed subspace Y of a Banach space X, we call T : Y* — X* a linear
extension operator (or LEO) if it is linear and, for each f € Y*, T'f is a norm
preserving extension of f. Clearly there exists a LEO from Y* to X* iff Y is
the kernel of a norm one projection on X*.
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THEOREM 3.5. [100, Proposition 2] Let X be any Banach space, Y a
separable subspace of X, and F a separable subspace of X*. Then X has
a separable subspace M containing Y, which admits a LEO T : M* — X*
satisfying T(M*) D F.

The proof of this also is available in [40, Proposition I11.4.3].

Think about the last theorem: it applies to any Banach space and implies
the existence of complemented subspaces in any sufficiently large dual space.
Taking F' = {0} yields the result of Heinrich and Mankiewicz mentioned
above. We recall the problem of Johnson and Lindenstrauss [46]: does every
Banach space have the property that every separable subspace is contained in a
complemented subspace with density character not exceeding the continuum?
Let’s call this the Not-too-big-complementation-property, for short property
N. The special case Y = {0} of the last Theorem implies that every dual
space has N. In fact, no Banach space lacking A is known. Some years ago
at a Czech winter school, S. P. Gulko exhibited an interesting C(K) space
and conjectured that it fails A/, but its status remains unclear. We will return
to this property in §6, where we present some other positive results. First,
we consider the related and more familiar problem of finding complemented
separable subspaces.

4. THE SEPARABLE COMPLEMENTATION PROPERTY

Recall that a Banach space has the separable complementation property
(SCP, or CP(Ng,Np)) if every separable subspace is contained in a comple-
mented separable subspace. It is easy to see that £y, fails SCP. For Sobczyk’s
Theorem and the result of Phillips obviously imply that if a separable subspace
of ¢, contains cg, then it is not complemented.

It is not too hard to verify that, for any 1 < p < oo and any measure space
(S, X, p), our old friend L, (S, %, 1) has SCP. Given a countable collection of
functions in L, (S, %, u), we can consider the smallest o-algebra ¥ with res-
pect to which they are all measurable. The conditional expectation operator
corresponding to ¥g will then be a norm one projection onto a separable subs-
pace containing the countable collection. For 1 < p < oo, Ly(p) is reflexive,
so Theorem 4.4 below generalizes this. Without going into the details, we
mention three other sufficient conditions for the separable complementation
property which generalize the example of L;(x). As shown in [57, Proposition
1.a.9], the proof of an ancient result of Kakutani implies that any Banach
lattice not containing ¢q (i.e. any order continuous Banach lattice) has SCP.



344 ANATOLIJ M. PLICHKO AND DAVID YOST

Ghoussoub and Saab [30, p. 83] were probably the first to note this explicitly.
U. Haagerup [29, pp. 111-112] showed that the predual of any von Neumann
algebra has SCP. W. B. Johnson [19, p. 38] announced without proof that
every dual space with the Radon-Nikodym Property has SCP. Theorem 3.5
generalizes this; see also §6. Diestel and Uhl [19, Problem 22] asked whether
every Banach space with the Radon-Nikodym Property has SCP; we have
recently found a counterexample, details of which appear elsewhere.

As mentioned earlier, this subject really began with Lindenstrauss [53] who
showed that reflexive spaces with the metric approximation property fall into
this class. Much stronger results are now known, of which perhaps the most
interesting is that WCG spaces (definition below) have the separable comple-
mentation property [4, Lemma 4]. We will call this the Amir-Lindenstrauss
Theorem, and we will include a succinct proof.

It is curious that the properties we are about to study are all invariant
under renorming, and yet the proofs automatically give us projections of norm
one. We note in passing that the situation in finite dimensions is rather
different. Bosznay and Garay [12] showed that most norms (in the sense of
Baire category) on finite-dimensional spaces have the property that the only
norm one projections are the identity and those of rank one. A new example,
a renorming of ¢1(Xy) for which norm one projections are not too numerous,
appears in the final section.

A normed space is said to be weakly compactly generated (WCG) if it
is the closed linear span of a weakly compact absolutely convex subset. For
Banach spaces, the Krein-Smulian Theorem tells us that the words “absolutely
convex” can be omitted from this definition, but this is not true in general.
For example, if X denotes the linear span of the basis vectors in ¢, it is
not hard to show that any weakly compact absolutely convex set in X is
finite dimensional. We give this slightly more complicated definition of WCG
because we do need to consider incomplete spaces.

The proof of the Amir-Lindenstrauss Theorem which we now give seems
to be unknown in the west. It appeared first in [76], in a journal which was
not then translated. We think that the simple method of proof may be of
interest. It does not require technical finite-dimensional constructions, vector
spaces over the rationals, the Mackey-Arens Theorem, the Stone-Weierstrafl
Theorem, the Lowenheim-Skolem Theorem or any general topology. It needs
only the following simple idea.

Let X be a normed space generated by a weakly compact absolutely convex
set K. Assume without loss of generality that K is contained in the unit ball
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of X. Denote by X; the linear span of K and by ||-||; the gauge functional of
K, and equip X; with the norm || ||;. Denote also by ||-||1 the dual functional
on X* ie. ||f|l1 = sup f(K). Obviously || - || is stronger than | - ||; on X*;
the open mapping theorem ensures that the normed space (X*,| - ||1) is not
complete except when X is reflexive. We need the following standard result,
first proved by Dixmier [20].

LEMMA 4.1. In this notation, the dual of (X*, || ||1) is (X1,]| - ||1), in the
natural duality. In particular (X1,|| - ||1) is a Banach space.

A brief digression: we use the preceding idea to give a simple proof of the
following well known result.

THEOREM 4.2. (i) Let K be a weakly compact subset of a Banach space
X. Then the restriction map R : X* — C(K) is weak™ to weak continuous.

(ii) Thus a Banach space is WCG iff the unit ball of its dual, equipped with
the weak* topology, is affinely homeomorphic to an Eberlein compact
(i.e. a weakly compact subset of some Banach space).

Proof. (i) We consider first the case when K is absolutely convex and X is
generated by K. Obviously R is continuous when X* is equipped with ||-||; and
C(K) with its natural norm. Hence it is continuous in the corresponding weak
topologies. But the weak topology corresponding to ||-||1 is just o(X™, linsp K),
which is obviously weaker than the weak* topology.

For the general case, let Y be the closed subspace generated by L, where
L is the closed absolutely convex hull of K. By the previous paragraph,
the composite restriction X* — Y* — C(L) — C(K) is weak* to weak
continuous.

(ii) If X is a WCG space, generated say by K, then the restriction of R to
ball(X*) is obviously a homeomorphism onto some weakly compact subset of
C(K). For the converse, any such homeomorphism may be assumed to send
the origin to the origin, and thus extends to a weak*-weak continuous injection
T: X* — Y, for some Banach space Y. Taking the transpose finishes the
proof. I

We have written the following so that the WCG hypothesis makes no
explicit appearance in the proof. The role of weak compactness has been
completely pushed into Lemma 4.1.
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THEOREM 4.3. Suppose that X is a WCG Banach space and, in the no-
tation of the preceding paragraphs, let Y be a || - ||-separable subspace of X1
and G a || - ||1-separable subspace of X*. Then there exist separable subspaces
E and F of (X1,]|-||) and (X*,||-|l1) containing Y and G respectively so that
the projection from X onto E with kernel F° is well defined and has norm
one.

Proof. We will construct increasing sequences of separable subspaces E,, C
X1 and F,, C X*, containing Y and G respectively, so that F), || - |-norms E,
and E,, || - ||i-norms F,_1.

Put E; =Y and choose a ||-||-separable subspace H in X* which ||-|-norms
E,. Put F; = H 4+ G, which is evidently || - ||;-separable.

Now for the inductive step: suppose that the first n — 1 pairs of subspaces

have been constructed. Since (X1,]| - 1) = (X*, | - |[1)*, we may choose a
|| - ||1-separable subspace Z, in X which || - ||;-norms F,, 1. Since || - ||; is
stronger than || - || on Xy, E, = Z, + E,_1 is || - ||-separable and also || - ||1-
norms Fj, 1. In the same way, there is a || - |-separable subspace H,, of X*

which || - |[-norms E, and then F,, = H,, + F,,_; is || - ||;-separable. Now put
E =2 E, and F = |J;2 | F,. It is easily checked that E || - ||;-norms F
and that F' || - ||-norms E.

Lemma 3.1(iii) tells us that the subspace E is Birkhoff orthogonal to F°.
Naturally the same conclusion holds for E. It follows from Lemma 3.1(iv)
that F+ F is closed, that ENFY = {0} and that the projection E® F* — E
has norm one. To finish the proof, it is enough to show that E + F© is dense
in X. For any f € (E + F°)°, f lies in both EY and the weak* closure of F.
But the weak™ topology on X* is simply the weak topology for the normed
space (X*,||-|l1) and so f lies in the || - |[1-closure of F. But E || -|[;-norms F
and thus f = 0. Since f was arbitrary, £ 4+ F° is dense in X. In particular,
E+F'=X. 1

We note that the assumption Y C linsp (K) is no real restriction, and so
every WCG space has the Separable Complementation Property.

THEOREM 4.4. Suppose that X is a WCG Banach space, that Y is a
separable subspace of X and that G is a separable subspace of X*. Then there

is a norm one projection P from X onto a separable subspace containing Y
with P*(X*) D G.

Proof. Let (yn) be a symmetric sequence dense in the unit ball of Y. Re-
placing Y by Y = linsp{y1, 42, - } and K by K +<o{y1, 5y2,--- }, we have
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Yy C linsp (K). We define || - ||; with respect to this new K. Clearly G will
be || - ||1-separable. Apply the previous result and note that Yo C E and so
Y C P(X). Finally P*(X*)=F° > G. 1

We would like to keep the exposition simple, by focusing just on the sepa-
rable complementation problem. But finding one projection made us so happy
that we are tempted to repeat this procedure again and again. Denote the
projection given by this theorem as Py. Applying the theorem again gives us
another projection Pj, whose range is separable and strictly contains Py(X),
and so that P;(X*) strictly contains Py (X*). Do it again. We get another
projection P,, whose range is separable and strictly contains P;(X), and so
that Py (X™) strictly contains P;(X™). Get the idea? We find a nice increa-
sing sequence of projections onto separable subspaces. So far so good, but
what next? Simple, let E, be the subspace of X; whose closure is the range
of P,, and let F), be the corresponding subspace of X*. Put E, = (Jo° , Ep
and F, = UZ":O F,,, and let P, be the natural projection onto E,, with kernel
FY. Keep going, getting projections P,y 1, P19, Pyy3-... Applying this trick
at limit ordinals and the theorem at successor ordinals gives a long sequence
of projections P,, for 0 < a < wq, all but the last having separable range.

But P, might not have separable range; can we continue to apply the
theorem? Yes, once we notice that the separability hypothesis was not really
used. The word “separable” can be replaced by “of density character at most
£” for any infinite cardinal €. No essential changes are required for the proof.
We should note that by choosing Y C linsp (K), the proof automatically
gives E, C linsp (K) for all ordinals . A transfinite induction argument
then allows us to carry on, showing that any WCG space has a so-called
projectional resolution of the identity. We have thus sketched the essential
ideas of the proof of the following theorem. Details are largely a matter of
bookkeeping.

THEOREM 4.5. [4] Every WCG space has a PRI

This necessitates a definition. Let 1 be the smallest ordinal of cardinality
dens X, and let wy denote the smallest infinite ordinal. Then a projectional
resolution of the identity, or PRI, is a family of projections P, on X, 0 < a <
L, satisfying:

1. |Py|| =1 for all e,

2. P,=1d and P,Ps = P3P, = P, if a < f3,

3. dens (P,(X)) < card(«) for all a > wy,
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4. Upecp Po(X) = P3(X) if B is a limit ordinal.

Note that many authors take the first index as wg rather than 0, in order to
simplify condition (3).

PRIs provide a useful tool for studing WCG spaces, by transfinite induc-
tion arguments over the index set, starting from the separable case. They
have a long sequence of applications [24, Chapters 6 and 8], [17, Chapter 6],
about which we won’t elaborate. We prefer now to concentrate on the ques-
tion: what hypothesis other than WCG will guarantee a PRI? Or just the
SCP? It is well known that the existence of a PRI alone does not imply SCP:
a simple counterexample is £o(T") @ £, where |T'| > c.

Following [24], we will call a projectional generator for X any mapping
® : F — 2%\ {0} such that F is a norming subspace (not necessarily closed)
of X*, each ®(f) is a countable set, and, for every subspace V' (not necessarily

closed) of F', we have 7N ®(V)? = {0}. Repeating the back and forth game
of the previous proofs shows that every Banach space with a projectional
generator admits a PRI.

To avoid cluttering the exposition, we have simplified slightly the definition
in [24, p. 106], to which we refer for all further details on this subject. Credit
for the isolation of this idea and the first definition of projectional generator
goes to Orihuela and Valdivia [70]. Needless to say, the concept was implicit
in a number of earlier papers.

Of course every WCG space has a projectional generator: we take F' = X™,
and for each f, choose a singleton ®(f) so that f(®(f)) = max f(K). The

final step of the last proof shows that V' N ®(V)? = {0} as required. We
recall now that properties more general than WCG guarantee this.

To work in more general Banach spaces, it seems natural to exploit the
weak™ compactness of the dual ball, since this set always generates the dual
space. Tacon [91] was the first to attempt this, and he proved (amongst
other things) that if X is a sufficiently smooth Banach space, then X* has the
SCP, and in fact a PRI. He encountered several technical difficulties, which he
overcame only by imposing a smoothness hypothesis. One of these problems
(essentially) was that a separable subspace of a dual space need not embed in
a separable dual space. This suggests restricting attention to a smaller class
of Banach spaces.

We will call a Banach space an Asplund space if every separable subspace
has separable dual. See [73, §2] or [98] for some equivalent formulations in
terms of automatic differentiability of convex functions, or [19] for the fact
that Asplund spaces coincide with spaces whose duals have RNP. In particu-
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lar, separable dual spaces have the Radon-Nikodym Property, and any very
smooth or Fréchet smooth space is Asplund.

The following statement combines results from [25] and [70]. Details can
also be found in [24, §8.2]. Note that X, when considered as a subspace of
X**, norms X*.

THEOREM 4.6. A Banach space X is an Asplund space if and only if its
dual X* admits a projectional generator defined on X, ie. ®: X — 2% . In
particular, the dual of any Asplund space has

1. a projectional generator,
2. a PRI
3. and the SCP.

With hindsight this all seems very natural; it is not hard to show that
the existence of such a projectional generator is sufficient for a Banach space
to be Asplund. However necessity is decidedly non-trivial, requiring a rather
deep selection theorem of Jayne and Rogers [44], and either a result of Simons
[86] (akin to James’s Theorem) or a trick due to Stegall [90] which involves
embedding X* in the Lipschitz dual of X.

Of course (3) is a special case of Theorem 3.5. A previous attempt to
prove something like Theorem 4.6(2) was made in [100], but the authors were
unaware of the work of Jayne, Rogers, Simons and Stegall. Wallowing in
ignorance, they obtained only partial results.

Before continuing, we need a bunch of definitions.

5. TOPOLOGY AND THE DUAL BALL

We have seen that the dual ball of a WCG space, equipped with its weak*
topology, is not just any old compact set. There is often a strong correla-
tion between geometric properties of a given Banach space, and topological
properties of its dual ball. In this section, we consider some weaker topologi-
cal properties which the dual ball might have. Here and in the next section
we show that some of them lead to interesting complementation and other
properties.

If T is any index set, let ¥(T') denote the subset of [0,1]' of all those
elements having countable support. A topological space is called a Corson
compact if it is homeomorphic to a closed subset of 3(I") for some I'. Recall
that an Eberlein compact is any topological space homeomorphic to a weakly
compact subset of a Banach space.
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To simplify the next proof, we recall that a Markusevic basis (., fy)yer
for a Banach space X is a biorthogonal system for which (z,)cr generates a
dense subspace of X and (f,),er generates a weak* dense subspace of X*. As
observed in [45], [54] and [84], the existence of a PRI together with a routine
transfinite induction argument implies that any WCG space has a MarkuSevic
basis. The following paraphrases the main result of [4]. Further information
about Markusevi¢ bases appears in §7.

THEOREM 5.1. [4] Every Eberlein compact embeds in c¢o(I'), for suitable
I", and hence is a Corson compact.

Proof. Obviously any Eberlein compact is a generating set for some WCG
space X. Let (2., f,)yer be a Markusevi¢ basis for X. We can suppose
without loss of generality that (f,)yer is bounded. (In fact, the basis can be
chosen so that (z,)yer is also bounded [76] or [77, Theorem 2], but the proof
of this is harder.) Consideration of the map z — (f,(z)),er then shows that
our Eberlein compact is weakly homeomorphic to a subset of ¢y(I') and thus
to a subset of (T"). 1

The converse is false; for some counterexamples and references, see [24,
§8.4] or [50, §1]. This leads to a proper generalization of Theorem 4.4: the
conclusion is valid under the weaker hypothesis that the dual ball of the Ba-
nach space under consideration is a Corson compact. One just has to show
that such spaces have projectional generators: see [24, §8.3] or [17].

Now we introduce a short sequence of weaker topological properties which
will be useful later. Some of them refer specifically to the convex structure of
the dual ball. Others make sense for any compact (or just Hausdorff) space.

Recall that angelic spaces [22] are those regular Hausdorff spaces for which
every relatively countably compact subset is relatively compact and sequen-
tially closed. This is a bit of a mouthful; for us, it suffices to know that
a compact Hausdorff space is angelic if and only if it is a Fréchet-Urysohn
space, i.e. the closure of any subset coincides with its sequential closure. It is
a routine exercise to show that every Corson compact is angelic. An example
of an angelic space which is not a Corson compact is the unit ball of JT™** in
its weak™ topology. (See [27, §3.c] for everything you need to know but were
afraid to ask about the James tree space JT'.) According to [68], if X is any
separable Banach space not containing /1, then the unit ball of X** is weak*
angelic. (Of course, the converse is also true.) Note that JT™ does not have
the separable complementation property.
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A topological space has countable tightness if for every subset A and for all
f in the closure of A, there exists a countable Ag C A whose closure contains
f. Obviously every compact angelic space is sequentially compact and has
countable tightness.

A topological space is said to be sequential if, for every non-closed subset S,
there is sequence in S which converges to a point outside S. Although we will
not consider this property in subsequent sections, it does fit into the scheme
of things at this point. It is easy to show that a compact angelic space is
sequential and that a compact sequential space is sequentially compact; both
converses are false. For example the ordinal interval [0, w;] is scattered (i.e.
every non-empty subset has an isolated point), and hence it is sequentially
compact, but it is obviously not sequential. Nor does it have countable tig-
htness, and hence for two reasons it is not angelic. The following well known
example shows that countable tightness does not imply angelicity.

EXAMPLE 5.2. There is a compact, sequential Hausdorff space with coun-
table tightness which is not angelic.

Proof. An application of Zorn’s Lemma shows that there is a collection
(N, )~er of infinite subsets of the integers, maximal with respect to the fo-
llowing property: The intersection of any two is finite. A standard diagonal
argument shows that I' cannot be countable.

Now we make NUT into a locally compact Hausdorff space, as in [2, Esp.
Ag]. Every n € N is an isolated point. For v € T, a set S is a neighborhood
of v if and only if v € S and N, \ S is finite.

Now let K be the one point compactification of N U I'. It is not hard
to check that K has countable tightness. Being scattered, K is sequentially
compact. However it is not angelic. The point at infinity is certainly in the
closure of the countable set N. Let A be any infinite subset of N, considered
as a sequence. By maximality, there is an index v for AN N, is infinite. This
implies that the sequence A has a subsequence which converges to . Thus
no sequence from N converges to co.

This argument shows that every sequence in N has a subsequence which
converges to a point in I'. Since every sequence in I' converges to oo, a
moment’s reflection shows that K is sequential. [

Moore and Mréwka [63] asked whether every compact Hausdorff spaces
with countable tightness is sequential. Fedor¢uk [26] and Ostaszewski [71],
under some additional set theoretical axioms, independently constructed coun-
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terexamples to this. Ostaszewski’s example was the one-point compactifica-
tion of a locally compact, perfectly normal, countably compact space. In
Fedoréuk’s space, every subset is separable, yet every closed infinite subset
has cardinality 2°. On the other hand, there are models of set theory in which
compact and countably tight implies sequential. See [7] for a proof and some
references. Thus, the Moore-Mréwka question is undecidable in ZFC.

Now we recall some convex versions of these properties.

Say that a Banach space X has property (£) if for every bounded convex
set A C X* and for all f in the weak™ closure of A, there exists a sequence in
A which coverges weak™ to f. This was probably first considered in [23]. It
is clear that if the unit ball of X* is weak™ angelic, then X has (£). This will
be a particularly interesting property for us in the sequel.

Following Pol [82], we say that a subspace F' of X* has the property (C*)
if for every bounded convex set A C F and for all f in the weak* closure of
A, there exists a countable subset 49 C A whose weak* closure contains f.
(More precisely, perhaps we should say that the pair (F, X*) has the property
(C*).) Tt is clear that X™* has the property (C*), if either the ball of X* has
weak* countable tightness, or if X has (£).

Corson [16] was the first to consider the following property: every family
of closed convex sets with empty intersection has a countable subfamily with
empty intersection. Pol [82] named this property (C), and introduced the
property (C*). Obviously every weakly Lindelof Banach space has property
(C). A fairly routine separation argument [82, p. 147] shows that if X has
(C), then X* has (C*). The converse of this, which is also due to Pol [82, p.
147], is more difficult.

Pol ([82, p. 145] or [15, §4.18]) showed that (C) is a 3-space property. Thus
the Johnson-Lindenstrauss space JL (see [46] or [99]) has (C), although its dual
ball is not weak* angelic. (It contains the example K constructed above.) It
remains unknown whether JL has (£), let alone whether (C) implies (£).

Godefroy and Talagrand [31] showed that if X is a so-called representable
Banach space, then the unit ball of X* is weak* angelic if and only X has (C).

Finally, say that X has property (C) with respect to subspaces, in short
(CS), if for every norm closed subspace F' C X*, any weak™® limit point of
ball(F') is in the weak* closure of some countable subset of ball(F'). Obviously
(C) implies (CS).

Although it will not be considered again in this paper, we recall that the
Lindelo6f property for the weak topology of a Banach space has long been of
interest. Talagrand [92] (or [24, §7.1]) was the first to show that WCG spaces
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are weakly Lindelof, using some descriptive set theory. We now draw the
reader’s attention to an alternative proof of this [69], using more functional
analytic methods, in particular the separable complementation idea.

As somebody famous probably once said, functional analysis is the study of
weak topologies. The point is to choose the right weak topology to work with.
For studying WCG spaces, the topology of uniform convergence on weakly
compact sets, i.e. the Mackey-Arens topology, would seem to be appropriate.
This choice led to a simple proof of the Amir-Lindenstrauss Theorem in [93]
(=[17, Lemma VI.2.4]), which was the simplest proof available in the roman
alphabet. When we are interested only in one weakly compact set, then the to-
pology of uniform convergence on that set would seem to be more appropriate;
this led to the simple proof in §3. Since we are interested in the separable
complementation property, the following definition seems appropriate.

If (X,Y) is a dual pairing of normed spaces, denote by y(X,Y) the to-
pology (on X) of uniform convergence on bounded countable subsets of ¥
[69]. Of course this coincides with the topology of uniform convergence on
bounded o (Y, X) separable subsets of Y. Since (X, X*) is stronger than the
weak topology, it is obvious that any (X, X*)-Lindel6f Banach space will be
weakly Lindelof.

As in [69], say that a Banach space X has the property V if its dual ball
admits a continuous embedding .J : ball(X*) — [0,1]" in such a way that
J(ball(F)) € X(I') for some 1-norming subspace F. (We remark that this is
equivalent to the existence of a countably 1-norming MarkuSevi¢ basis. See
§7 or [50] for further information.) It is obvious that a Banach space has
V whenever the unit ball of its dual is (weak*) affinely homeomorphic to a
Valdivia compact, and the homeomorphism sends 0 to 0. This includes any
WCG space. The converse is false, even for Asplund spaces: C([0,w;]) is a
simple counterexample. Since an arbitrary product of Valdivia compacts is a
Valdivia compact, it is easy to check that V is preserved by arbitrarily large ¢;
products. Thus any abstract L space, or any Li(u) space, has V. (The same
argument was used in [81] to show that L;(u) has a 1-norming Markusevi¢
basis.)

THEOREM 5.3. [69, Theorem A] If a Banach space X has the property V,
then X is (X, F)-Lindel6f and so is X™ for all n. (Here F of course is the
1-norming subspace of X*.)

We mention this result because it uses separable complemented subspaces
to construct a countable subcover. We refer the reader to [69] for the full
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details.

We do not mean to suggest that SCP by itself implies that a given Banach
space is Lindel6f in some relevant topology: ¢1(I") for I" uncountable is a well
known counterexample. For each countable A C T, let C4 = {z € () :
Yygaz(y) < 1}. Then the sets C4 form a cover of /;(I') by open half-spaces,
which admits no countable subcover. Although ¢;(T") obviously has SCP, its
dual ball (with the weak*® topology) fails most of the properties discussed
above.

6. BIGGER COMPLEMENTED SUBSPACES

Recall that if we have two cardinal numbers £ < m, then a Banach space
has the property CP (¢, m), if every subspace with density character at most
£ is contained in a complemented subspace with density character at most
m. First we consider N' = CP(Xg,c). Three cases are known, of sufficient
conditions for a Banach space to have N :

1. Theorem 3.5 shows that all dual spaces have N'. We remark that the
proof of this in [100] is in the spirit of the original work of Amir and
Lindenstrauss. The original proof in [41] was more complicated. This
result has resisted all attempts at proof by the simpler type of argument
used in §4.

2. Gulko [36] showed that if K is an extremally disconnected compact
Hausdorff space, then C(K) has N. We give a slight simplification of
his proof later in this section.

3. If the unit ball of X* is weak* angelic, then X has N [80, Proposition 5].
The proof was in the style used already in this note. The same conclusion
was announced in [36] for the case when the unit ball of X* only has
weak* countable tightness. The proof was more topological, establishing
a result about weak* continuous retractions in the dual ball, and then
deducing the projections from this. However Gulko has kindly informed
us that there is a gap in his argument, and that the proof is valid only
under the assumption that the unit ball of X* is weak* angelic. We now
present two generalizations of this.

THEOREM 6.1. Let X be a Banach space with property (£) (in particular,
with weak™ angelic dual ball), let Y be a subspace of X, F' a subspace of X*,
m = (max{dens Y, dens F'})*0. Then there exists a norm one projection P on
X such that P(X) DY, P*(X*) D F and dens P*(X*) < m.
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Proof. We will construct, by (relatively short) transfinite induction, se-
quences of closed subspaces Z, C X and F, C X*, for 1 < a < wy, such
that

1) Zy=Y and F C F;,

2) Zg C Zy and Fg C F,, whenever 8 < «

)
)

3) F, norms Z, and Z,11 norms F,

4) the weak* closure of ball(F},) is contained in Fj
)

5) dens F,, < m and dens Z, < m.

The base case is easy. Lemma 3.1 gives us a subspace F; of X which norms
Z1=Y.

For the inductive step, first suppose that a is not a limit ordinal. Again,
Lemma 3.1 guarantees us a subspace Z, of X with dens Z, < m which norms
Fo_1. Since any enlargement of a norming subspace is still norming, we
assume without loss of generality that Z, contains Z, 1. Thanks to (£),
every point in ball(Fy,_1) ) is the limit of some weak* convergent sequence
in ball(Fy_1), and thus |ball(Fa_1)w | is at most (dens Fp_1)Y0 < mY = m,
Thus Lemma 3.1 gives us a subspace F, containing ball(F,_1)  which norms
Zq and has density character at most m.

If o is a limit ordinal, just define Z, = Ug_,, Zs and F = g, Fp-

Finally put Z = J,«,, Za and F = {J,,, Fa- Note that Z is automati-
cally closed, because for every convergent sequence therein, with say =, € Z,,,,
the sequence «, is eventually constant. Similarly F' is weak* closed because
its unit ball contains all the weak* cluster points of its countable subsets.
Clearly F' and Z norm one another and have density character at most m.
Lemma 3.1 gives us the required projection from X onto Z. |

Since dens X* < 24enX for every Banach space X, Theorem 3.5 shows that
every dual space has CP(,2%) for every cardinal £. Theorem 6.1 improves this
for certain Banach spaces. It shows that if X has (£), then both X and X*
have CP (&, €"0) for every cardinal €. (Note that 2¢ > €% always.) In particular,
if X has (£), then both X and X* have N and CP(c,¢). For (CS) we have a
weaker result.

THEOREM 6.2. Let X be a Banach space with property (CS) (in par-
ticular, whose dual ball has weak* countable tightness), Y a subspace of X,
F a subspace of X*, m = (max{2°,densY,dens F})¥. Then there exists
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a norm one projection P on X such that P(X) D Y, P*(X*) D F and
dens P*(X*) < m.

Proof. The only point at which the previous proof fails under this
weaker hypothesis is the estimation of [ball(F,_1) |. Since each point in

ball(F,—1) is merely a weak* cluster point of some countable subset of
ball(F,_1), the previous estimate needs to be multiplied by the number of
cluster points that a countable subset of a compact space might have. This
maximal correction factor is clearly |SN| = 2° [97, p. 149, Ex. 108]. 1

Thus if X has property (C), in particular if X is weakly Lindel6f, then
both X and X* have CP(¢,2°€"0) for every cardinal €. For small cardinals,
Theorem 3.5 gives a better result for dual spaces, but for large cardinals,
Theorem 6.2 is an improvement for the smaller class to which it applies. It is
clear that replacing “countable tightness” by “tightness at most €7 will lead to
more results of this sort, but we think it is more important to decide whether
every Banach space has property N.

Since some Banach spaces fail the SCP, the Lowenheim-Skolem Theorem
suggests that for every infinite cardinal €, there will be a Banach space failing
CP(t, t). Let us give a simple argument which shows the existence of such a
Banach space, for arbitrarily large cardinals €.

EXAMPLE 6.3. For any cardinal €y, there is a cardinal m > €y for which
the Banach space £oo(m) fails CP(m,m).

Proof. Define a sequence of cardinals by €,,; = 2% and then put m =
sup t,,. The point of this construction is that for every cardinal € < m, we also
have 2¢ < m.

Let S be a set of cardinality m, X = /. (5) and let Y be the closure of
the subspace of functions whose supports have cardinality strictly less than
m. It is easily checked that densY = m. An ancient result of Sierpinski
[85] implies that there is an index set I' of cardinality strictly greater than m
and a family {N, : v € I'} of subsets of S, each of which has cardinality m,
and for which the intersection of any two has cardinality strictly less than m.
Considering the characteristic functions of these subsets, we check that X/Y
has a subspace isometric to ¢o(T"). If X = A® B, where Y C A, then

w*dens (A/Y)* < dens A/Y < dens A and w*dens B* < w*dens X* = m.
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Since ¢o(T") is isometric to a subspace of X/Y = (A/Y) @ B, we get
m < |T'] = w*dens (¢o(T))* < w*dens (A/Y)* + w*dens B* < dens A + m.
This forces dens A > m and so X fails CP(m,m). 1

With practically the same argument, the Generalized Continuum Hypot-
hesis implies that for all m, £ (m) fails CP(m,m).

As we mentioned, another positive result is due to Gulko, who showed
[36] that if K is an extremally disconnected compact Hausdorff space, then
C(K) has N. His argument boils down to the topological result, Lemma 6.6
below, of which we give a short proof. Of course our arguments are completely
standard, and the next two lemmas are special cases of well known results [97,
Chap. 14].

Recall that a continuous surjection f : K — L from one Hausdorff space
onto another is said to be minimal if f(S) is a proper subset of L, for every
proper closed subset S of K. We will say that two sets are almost disjoint if
neither meets the interior of the other.

LEMMA 6.4. Let f: K — L be a continuous surjection.

(i) If K is compact, then there is a closed subset S C K for which f|S is
minimal.

(ii) If f is minimal and A, B are disjoint closed subsets of K, then f(A) and
f(B) are almost disjoint.

Proof. (i) Routine application of Zorn’s Lemma.

(ii) Fix z € B and let N be an open neighborhood of f(z). We need to
show that NN is not a subset of f(A). Now C = AU f~!(N) is obviously closed
and does not contain z. By minimality, there exists a point y € L\ f(C).
Clearly y e N\ f(A4). 1

LEMMA 6.5. Let K, L be extremally disconnected compact spaces, and let
f+ K — L be a minimal surjection. Then f is a homeomorphism.

Proof. We first show that if A is any clopen subset of K, then f(A) is also
clopen. In this case, B = A will also be closed, and thus L = f(A) U f(B)
is the union of two closed subsets. Then f(B)¢ is an open subset of f(A),
and extremal disconnectedness implies that f(B)¢ is contained the interior
of f(A). In other words, (intf(B))¢ C intf(A). Lemma 6.4(ii) implies that
f(A) C (intf(B))¢. Combining these two inclusions, we see that f(A) is open.
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It follows immediately that f sends disjoint clopen sets to disjoint clopen
sets. As the topology of K has a basis of clopen sets, f is one-to-one. |

LEMMA 6.6. Let K be compact and extremally disconnected, M a metric
space, f : K — M continuous. Then f factors through SN.

Proof. We assume without loss of generality that f is surjective.

First, consider the special case when K = ST is the Stone-Cech compac-
tification of a discrete set. Since f(K) is separable, there is a countable set
N C T, which we identify with N, such that f(N) is dense in M. Define
g : BN — M by g(n) = f(n), extending of course by continuity. Define
h: BT — BN by h(n) = n for n € N, and for v € I' \ N, choose any z € SN
with g(z) = f(v) and put h(y) = z. Clearly f agrees with gh on T', hence
everywhere.

The more general case when K is a retract of some SI' follows easily from
this.

Finally, suppose merely that K is compact and extremally disconnected.
Obviously there is a continuous surjection g : fI' — K for some discrete
set I. Choose L C K so that g|L is minimal. By Lemma 6.5, g|L is a
homeomorphism and thus K is homeomorphic to a retract of 5I". 1

THEOREM 6.7. Let K be an extremally disconnected compact Hausdorff
space. Then C(K) has N.

Proof. Fix a separable subspace Y in C(K). If A is the smallest closed
subalgebra containing Y and the constant functions, then A is also separable,
and thus isomorphic to the space of continuous functions on some compact
metric space. More precisely, there is a compact metric space M, and a
continuous surjection f : K — M, such that A consists precisely of those
functions which factor through f. By Lemma 6.6, we may write f = gh,
where g : SN — M and h : K — BN are continuous surjections. Let B be
the subalgebra of C'(K) consisting of those functions which factor through h.
Clearly B contains A which contains Y. Since B 22 /., it is complemented
and has density character equal to the continuum. [

It is well known that a Banach space is the range of a norm one projec-
tion on every superspace if and only if it is isometric to some C(K) with K
extremally disconnected. Thus Gulko’s result has the following curious formu-
lation. If a Banach space is 1-complemented in every superspace, then each
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of its separable subspaces is contained in a 1-complemented subspace which
is not too big.

7. GOING DOWN

The role of ¢y in the theory of complemented subspace is peculiar. It is
complemented in every separable superspace, yet not in .. So far, we have
increased our supply of decomposable Banach spaces by showing, for example,
that separable subspaces are contained in larger complemented subspaces.
Here we note that decomposability sometimes follows by looking at smaller
subspaces.

We are motivated by the result of Diaz and Fernandez [18, Theorem 2.2]
that if a real Banach space contains an isomorphic copy of ¢y but no copy of
41, then it contains a complemented copy of ¢g. More precisely, they proved
the following almost isometric version:

THEOREM 7.1. Let X be a real Banach space which does not contain an
isomorphic copy of ¢1. Suppose that X has a subspace Y isometric to ¢y and
that ¢ > 0. Then Y has a subspace Z isometric to c¢g, which is the range of a
projection on X with norm at most 1 + ¢.

Their proof depended on a non-trivial result of Hagler and Johnson [37,
Theorem 1(a)]. We would like to point out that a variation of their result
follows from the following simple argument.

THEOREM 7.2. Let X be any Banach space for which the unit ball of the
dual space is weak* sequentially compact. Suppose that X has a subspace Y
isometric to c. Then'Y has a subspace Z isometric to ¢, which is the range of
a norm one projection on X.

Proof. To simplify notation, we suppose that Y = ¢. Let f,, be a sequence
of norm one functionals on X whose restrictions to Y are the coordinate eva-
luation functionals. By hypothesis, there is a subsequence f;, which converges
weak* to some f € X*. If e denotes (1,1,1,...) € ¢, then f,(e) =1 for all n,
and so f(e) =1 also. In particular, ||f|| = 1.

Define T : X — ¢ by Tz = (fk,(r))5>,. Clearly this is a norm one
operator with T'(e;, ) = e, for all n and T'(e) = e. Let Z be the closed linear
span of {e} U{ex, : » =1,2,...} and define the spreading operator S: ¢ — Z
by (Sy)k = yn if k = k,, for some n, and (Sy), = lim,,_,~ y, otherwise. Then
S(en) = ek, and P = ST works. |



360 ANATOLIJ M. PLICHKO AND DAVID YOST

We learnt recently that ¢ can be replaced by ¢q in this result [21, Theorem
6]. Their argument is almost as short as ours.

There are many Banach spaces satisfying the hypotheses of Theorem 7.2
but not those of Theorem 7.1. For example, every WCG space satisfies the
hypothesis of Theorem 7.2; in this case actually every copy of ¢g is comple-
mented. More generally, every weak Asplund space has sequentially compact
dual ball [24, 2.1.2]. Hence so does every Banach space with an equivalent
smooth norm [24, Corollary 4.2.5] or [39]. Our friend ¢; falls into all of these
categories.

An example of a Banach space which is not weak Asplund, but whose dual
ball is weak* sequentially compact, is the space of continuous functions on the
“split interval” space, often denoted D|0, 1].

Of course a Banach space containing ¢1(T") will not satisfy Theorem 7.2, if
the cardinality of I' is equal to the continuum. However, there are models of
set theory in which the unit ball of £; (X;)* is weak™ sequentially compact. The
sequential compactness of any compact Hausdorff space of cardinality strictly
less than 2° is a consequence of Martin’s axiom [60]. So this conclusion for
£,(I")* holds and is not vacuous for |I'| < ¢, if we assume Martin’s Axiom and
the negation of the Continuum Hypothesis.

An easy consequence of Rosenthal’s Theorem is that if X* does not contain
£, then its unit ball is weak* sequentially compact. However this does not
help us, because this hypothesis implies that X contains no copy of ¢y, and
the conclusion of Theorem 7.2 is then vacuous.

We must confess that there are Banach spaces to which Theorem 7.1 is
applicable but Theorem 7.2 is not. Hagler and Odell [38] constructed a Banach
space not containing #1, yet whose dual ball is not weak* sequentially compact.
However this anomaly does not arise in Banach lattices, thanks to the following
result [58]. For proofs and generalizations, see [59], [30, Theorem 7] or [13,
Theorem 4.1].

THEOREM 7.3. A Banach lattice is an Asplund space if and only if it
contains no subspace isomorphic to £;.

The title of [18] suggests that its main result is the following.

PROPOSITION 7.4. [18, Theorem 3.1] A Banach lattice is reflexive if (and
only if) it contains no subspace isomorphic to /1 and no complemented subs-
pace isomorphic to cg.

We now see that this result can be proved without appealing to [37].
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8. BIG SEQUENCES OF PROJECTIONS

Let us call a uniformly bounded increasing transfinite sequence of projec-
tions (Pa)1<a<a, @ weak bounded projectional resolution (or weak BPR) if g
is the first ordinal with cardinality dens X, F,, is the identity operator, and
for all «,

P,(X) has density character at most |a/, for a > wy,

Po(X) = Up<q P3(X) whenever a is a limit ordinal.

By increasing, we mean of course that P,(X) C P3(X) whenever o < f3.
The following trivial observation will be used several times.

LEMMA 8.1. If (P,)1<a<a, is @ weak BPR for a Banach space X, and
dens X is a regular cardinal, then X = | P,(X).

a<ag

In particular, a Banach space of density character N; with a weak BPR
necessarily has the SCP. For if (P,) is a weak bounded projectional resolution
for such a Banach space Y, and F is any separable subspace of Y, then for
some countable ordinal a, P,(Y) must contain E.

We will define the projection constant of (Py)i<a<a, a8 sup, ||Pall. We
define a weak A-BPR as any weak bounded projectional resolution with pro-
jection constant not exceeding M.

In case the projections also commute, we will speak of a bounded projec-
tional resolution and a A-BPR respectively.

Obviously a traditional PRI is simply a 1-BPR. It follows from Theorem
4.6 [25] that every dual space with RNP has a PRI. Later we will show that
a Banach space with just the RNP need not have a BPR. It follows easily
from [30, Theorem 5] or [57, p. 9] that any order continuous Banach lattice
has a 2-BPR. Obviously admitting a BPR is a property which is invariant
under renorming. However, admitting a PRI is not. Probably the simplest
counterexample for this is the Banach space Cy[0,w1] of continuous functions
vanishing at w; [17, p. 289]. We do not know whether a subspace of /;(X;)
can provide an example. However, we can show that renormings of £;(X;)
provide further counterexamples. More precisely, we will show that for any
constant k£ > 1, the space £1(T") (for a suitable set T') has an equivalent norm
under which every bounded projectional resolution has projection constant
at least k. This answers a question posed by M. Fabian in Jarandilla. (It is
conceivable that on this space, every projection onto an infinite dimensional



362 ANATOLIJ M. PLICHKO AND DAVID YOST

separable subspace has norm at least k£, but so far we have been unable to
prove this.)

As we have noted several times, there is an uncountable collection of in-
finite subsets of the integers, with the property that the intersection of any
two is finite. For the construction which follows, we need a family with slig-
htly stronger combinatorial properties. Fix a regular cardinal number m, not
greater than ¢, and let w denote the first ordinal number with cardinality m.
(For simplicity, we could take m = Ny, but the proof would be just the same.)

LEMMA 8.2. There is a countable set D and a collection of distinct infinite
subsets O, of D, where 1 < a < w, such that

(i) if A is an uncountable collection of ordinals and o, ..., ay, are not in
A (all < w), then there is an infinite set A; C A such that

N ©a\ [ Oa, #0
k=1

acA;

(ii) given finitely many distinct indices oy, ..., ap, all of them > wq, there
exist indices f1, ..., P, all < wo, such that the 2n sets ©,, \ O3, and
O, \ O, are pairwise disjoint.

Proof. We define D as the dyadic tree. This is undoubtedly countable. The
collection of all branches has cardinality ¢; we choose a subset of cardinality
m, subject to the following provision, and label it as {0, : 1 < a < w}. The
collection of branches which, from some point onwards, turn only to the left
is clearly countable; the provision is that all of them belong to the subset we
choose, and that they are labelled as {0, : 1 < a < wp}.

(i) Suppose that every node v & ;' ; ©q, lies in O, for only finitely many
a € A. This implies that all but countably many of the branches ©, are
contained in [ J;"; ©4,, which is a tall order for uncountably many branches
to achieve.

(ii) Evidently, from some level m onwards, the corresponding segments
of the branches ©,, are disjoint. For each £, consider the branch which
coincides with ©,, up to level m, and thereafter turns always to the left. By
construction, this branch must be ©g, for some £ < wp. |

We denote by y, the characteristic function of ©,, and by Y the subspace
of £o(D) generated by these functions. We could consider Y as the space
C (D) of continuous functions on D, suitably topologized, but we do not need
to.
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THEOREM 8.3. For m as above and any integer n € N, the space £1(m) has
an equivalent norm under which every weak bounded projectional resolution
(Pa) has liminf|| Py > 3(n — 2).

Proof. Write ey, @ < w, for the canonical basis of ¢;(m). The operator
T:0(m) =Y, T(eq) = yYa is obviously well defined and bounded. We will
define an equivalent norm on #;(m) by

]l = max{n="|lz[l, | T=I]}.

Let (P,) be any weak bounded projectional resolution for #; (m). It follows
from the argument of [78, Lemma 1] that there exist arbitrarily large indices
vy, for which the closed linear span of {eg : f < ag} coincides with the range
of P,,. To be precise, let Sy < w be chosen arbitrarily. (In particular, we may
choose By > wp.) We construct a strictly increasing sequence of ordinals [,
as follows. If n is even, choose 3,411 > B, so that the closed linear span of
{eg : f < Bn+1} contains the range of Pg,. If n is odd, choose 5,11 > f, so
that Pg, ., (X) contains the closed linear span of {eg : 8 < 3,}. In both cases,
this is possible by Lemma 8.1. Taking ag = lim §,, completes this argument.

Let U be the linear span of {eg : 8 < ag} and let V = ker P,,. Obviously
¢1(m) = U@ V. It suffices to show that ||| Py,||| is large, and to do this we will
show that the unit spheres of U and V' are close.

Let S be a dense subset of U with cardinality |ag|. Then for any a > ay,
it is trivial that e, € U 4V, so there exists an element w = w, € S such that
d(eq +w,V) < n~L Of course this distance is calculated with respect to the
new norm. Since the cardinality of [a,w) equals m and the cardinality of S
is strictly less than m, there must be an uncountable set A C [, w) and an
element w € S such that

d(eq +w,V) <n~!for a € A.

The element w must have the form w = Z}C":l A€, for some ordinals v, < ag
and real numbers \j.

Let Ay C Aand v € Nyea, Oa\UiL| O, be given by Lemma 8.2(i). Since
A; is infinite, it contains at least n elements {aq,...a,}. Let {81,...,5,} be
the corresponding set of ordinals given by Lemma 8.2(ii). It is easily checked

that
n n
I o =D sl < 1.
k=1 k=1
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Put 2 = >"}_, eq, +nw. Then
n
d(z,U) < [le—nw— el
1 k=1 . "
L ST S N LAE ()
k=1 k=1
1 n n n n
= maX{gHZeak_Zeﬁk”auzyak_zyﬂku}
k=1 k=1 k=1 k=1

< max{2,1} =2
and
n m
lllll > 1Tzl = || > Yax + 1Y Mt
k=1 k=1

n m n
> (D Yo +1 ) Aey) () =Y ya, (V) +0=n.
k=1 k=1 k=1

Also, d(z,V) <Y p_ d(eq, +w,V) <L
Finally if u € U and v € V, then |||ul|] < |[|[Pa|lllllw — v|||, which gives the
required estimate. |

Kalenda [49, Theorem 2] has recently shown that if |T'| is a regular cardi-
nal, then ¢;(I") has an equivalent norm under which there is no projectional
resolution of the identity. His proof does not yield the uniform bound for the
projection constant given above. He uses a different argument, obtaining the
result as a corollary of deeper work concerning Valdivia compact dual balls.

Replacing D in the preceding argument by a tree of uncountable height,
it is clear that we will find arbitrarily large cardinals m for which the con-
clusion of the theorem remains valid. Whether the proof will work for any
cardinal number whatsoever is not clear, and we have not bothered to check
the transfinite arithmetic. The corollary below is probably more interesting.

LEMMA 8.4. Let X be a Banach space of density character Yy which has
a A\-BPR. If Q) is any projection on X, then its range Q(X) has a weak \||Q||-
BPR.

Proof. Write Y = Q(X), and let (Py)a<w, be the given BPR on X. The
important thing is that there are arbitrarily large indices a for which QP,|y
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is a projection on Y. To see this, fix a1, and inductively define a strictly
increasing sequence «, so that QP,,(X) is contained in P, (X). This is
always possible, by Lemma 8.1 and the separability of QFP,, (X). If a =
lim vy, then it is clear for each n that QP,, (X) C P,(X), whence P,QP,, =
QP,,. Taking the pointwise limit, we see that P,QP, = QP, and so QP,|y
is a projection on Y.

The condition P,QF,, = QPFP,, above makes it easy to construct a weak

BPR on Y by transfinite induction. Clearly [|QP,|y| < AlQ]]. 1

COROLLARY 8.5. There exists a Banach space X with the Radon-Nikodym
Property but without any bounded projectional resolution.

Proof. We know that for each integer n, there is a Banach space X,,
isomorphic to £;(X), without any weak n-BPR. If X is the #; sum of these
spaces, it is clear from the preceding Lemma that X will have no BPR. It is
well known that each X, will have the Radon-Nikodym Property [19], and
easily proved that X does too. 1

Finally, a few more words about MarkuSevi¢ bases. As noted in §4, the exis-
tence of a PRI in every WCG space guarantees the existence of a MarkuSevic
basis. This can be generalized easily. In [17, p. 286] the property P is defined
inductively as follows:

(1) Separable spaces have P.
(2) If X has a PRI (P,) and every (Py+1 — P,)(X) has P, then X has P.

Then, by the same argument, every X with P has a MarkuSevi¢ basis.
Further consequences of P can be found in [17] and [42]. (For example [17]
any X with P has an equivalent locally uniformly convex norm.)

Conversely, one might ask what conclusion can be drawn from the existence
of a Markusevi¢ basis. In general, not much: there is a Banach space with
a MarkusSevi¢ basis but neither the SCP, nor any BPR. Let X = JL be the
Johnson-Lindenstrauss space [46, Example 1], [99]. A minor modification to
its definition allows us to assume that dens J L = Ny, whilst preserving all other
essential properties. Since JL* is weak™ separable, we may apply [79, Theorem
2] to find a Banach space Y with a Markusevi¢ basis of cardinality 8; which
contains X. As ¢g is not complemented in X, it cannot be complemented in
Y either. It follows from Sobczyk’s Theorem that Y fails the SCP. As noted
earlier, a Banach space of density character ¥ with a BPR necessarily has
the SCP.
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But with stronger hypotheses, a positive result holds. Recall from [77]
that a Markusevic basis (2, fy) e, is said to be countably A-norming if the
collection of functionals f € X* for which {y: f(z,) # 0} is countable forms
a A-norming subspace. (As noted, for A = 1 this is equivalent to the property
V defined in §4.) It was shown in [77, Theorem 1] that the existence of a
countably A-norming MarkusSevi¢ basis implies the existence of a \-BPR.
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