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1. INTRODUCTION

It is well-known that the notions of type and cotype have found interesting
applications in the context of the theory of absolutely summing operators (see
[6], [7], [15] or [21]). These results are often related to the inclusion of all the s-
absolutely summing operators -for every s- into another ideal. As a particular
example we recall the following result. Let T" be an operator from a Banach
space F in a Banach space F' that has cotype 2. It is well-known that all
s-absolutely summing operators are 2-absolutely summing for each s > 1 (see
26.4(3) in [6]). Moreover, a result due to Maurey gives more information
about this case: if E also has cotype 2, T is 2-summing if and only if T is
I-summing (see also [6]). In the present paper we investigate the following
questions that are closely related to these results.

1) What can we say if we require in addition that also E has finite cotype
q, q 727

2) What can we say if F' has cotype p and E has cotype ¢7

The main idea is to define the new class of ideals of (2,(1,0))-mixing
operators (M(Q’(l’g)),O < o < 1), and to use their properties in order to
answer the stated questions. We will define (M9 (1)) as the quotient ideal
Py 1731’(,, where P is the ideal of 2-absolutely summing operators and Py , is
the ideal of (1, 0)-absolutely continuous operators defined by Matter in [12].
If 1 < p < oo, the ideal Py, of (p,o)-absolutely continuous operators was
obtained by Jarchow and Matter using the interpolative procedure defined
in [8] and [12], although the ideal of absolutely continuous operators was
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introduced by Niculescu (see [13]). The reader can find more information
about all these ideals in [10], [11], [17] and [16].

Throughout this paper we will employ standard Banach space notation.
Let E be a Banach space. Then Idg : E — E will be the identity operator,
and W (Bpg) will be the set of all regular Borel probabilities on the unit ball
Bpg: of E' (endowed with the weak* topology). If z1,... ,z, € E, we will use
the following notation:

n 1
wp((z;)) = sup (ZI <z, > |p)p,
ZL"GBE/ i=1
n 1
(@) = (D llmil?) "
=1
" p 1-0
o)) = sup (3 (1< sl > [~ hail) ™) 7
#E€Bp "=

Mi(qp) = i {l (1) wg((a7)) : 2i = Tiy },

where%+%:%,0§0<1and1§p,q§oo. Note that

w1 (1) < 01,0((20)) < wi(2:))-

Let U be an operator ideal and F a Banach space. We will put E €
Space (U) iff Idp € U. We will denote by p’ the conjugate index of p.

Let 1 <p<qg<ocand 0 < o < 1. An operator T € L(E,F) is
(g, p)-mixing if for every Banach space G and operator S € P,(F,G), the
composition ST is p-absolutely summing. The operator ideal of all (g, p)-
mixing operators will be denoted by M, ), and the ideal norm by M, ). The
reader is also expected to be familiar with the properties of (g, p)-summing
operators, with the concept of (Rademacher) cotype of a Banach space and
the operators of cotype p. We will denote by (C,, C,) the ideal of operators of
cotype p. If M is an ideal norm, we will put M(E) for M (Idg).

We will need the following results. A Banach space E has cotype p (p > 2)
ifft E € Space(Pp,1), but this fails for p = 2 (Talagrand, [18], [19]). The
(strict) inclusions between operator ideals M,y C P, C My, hold,
where %4— % = ;7 and p < s < ¢ (see Chapter 20 in [14]). Thus, if ¢ > 2
and E € Space (./\/l(q/’l)) then E has cotype ¢, but the converse does not
hold (see Chapter 32 in [6]). In order to obtain the main result of our paper
(theorem 12), we will use the above results, a composition formula and the
characterization theorem of My (1 q))-
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2. THE QUOTIENT OPERATOR IDEAL OF (2, (1,0))-MIXING OPERATORS

DEFINITION 1. (MATTER) [12, 3.1] Let U/ be an operator ideal and let
0 <o < 1. An operator T : E — F belongs to U, if there exist a Banach
space G and an operator S € U(E,G) such that

|T]| < ||| Sz~ Vz € E. (1)

If U is a normed operator ideal and « is its norm, U, is a normed operator
ideal; the norm is given by 7" — inf «(S)!~“, where the infimum is extended
over all operators S an all Banach spaces G satisfying (1).

For the particular case U = P, we obtain P, ,. This ideal satisfies inter-
mediate properties between P, and P(ﬁ, p) and its description generalizes
the case Pp. In particular, Matter got that 7" € P, , iff one of the following
statements holds.

a) There is a constant C' and . € W(Bpr) such that

1—0c

|Tz|| < C(/ | <z,2’' > |pd,u>T||xH” Vz € E.

B!

b) There is a constant C such that, for each sequence (z;)] C E,
l&((T«Tz)) < C(sp,a((fvi))'

In addition, the operator norm mp, ,(T") on P, »(E, F) is the smallest num-
ber C for which a) and b) hold (see Proposition 4.1 in [12]).

DEFINITION 2. Let 1 < p < oo and 0 < 0 < 1. We say that an operator
T € L(E,F) is (p,(1,0))-absolutely summing if there exists C' > 0 such that
for each finite family z1,... ,z,, € E,

((Tzy)) < Coro((z;))- (2)

We denote the normed operator ideal of all (p, (1,0))-absolutely summing
operators by (P(,,(1,0)) T(p,(1,6))), Where the norm m, 1 5))(T) is the infimum
of all constants C satisfying (2).

DEFINITION 3. Let T € L(E,F) and 0 < 0 < 1. We say that T is
(2,(1,0))-mixing if it belongs to the quotient operator ideal My (1 5)) =
Py 1731’(,. We denote by M3 (1,,)) the quotient ideal norm, that is defined by
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M(Q’(l’o-)) = Sup{7T17U(ST) : '/TQ(S) < 1},

where the supremum is taken over all Banach spaces G an all 2-absolutely
summing operators S : F' — G.

THEOREM 4. For every operator T € L(E,F), the following conditions
are equivalent:

(i) T € M,1,0)(E,F).

(ii) There is a constant C' > 0 such that for each probability measure u on
By there is a probability measure v on Bgy such that for all x € E

T ' 24 ' %<C ' d A o
| <Tz,y > [du(y’))” < | <z,2" > |dv(z) |2|”.

F! BEI

(iii) There is a constant C' > 0 such that for each pair of finite collections
T1y... ,Zm in E and yy,... ,y, in F’,

(> Z|<ij,yk>| JT) 7 < O o) lal(5}).

i=1 k=

(iv) There is a constant C > 0 such that for each finite sequence x1,... ,xy,
in K
Mg, 1 0)((T$J)) < Cb1o((25)).

In this case, M3 (1,4y)(T) = inf C, where the infimum is taken over all C
satisfying (ii), or (iii), or (iv).

Proof. (i) = (ii). If T € Mg,1,0))(E, F) and p is a probability measure
on B, then the canonical embedding I : F' — Lo(p) is 2-absolutely summing
and hence IT € Py ,(E, L2(pt)). By theorem 4.1 in [12], (see Definition 1 a)),
there exists a probability measure v on B such that for every x € F,

o=

@) = ([ 1< 7o > Pduty)

!

l1—0o
< 7T1’U(IT)</ | < .’L‘,;L" > |d1/(xl)) ||;L‘”U
B

B!

Finally, since m2(1) < 1, we have 71 ,(IT) < M3 (1,5))(T), and (ii) holds.
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(ii) = (iii). Let z1,... , 2, € E afinite family of vectors. Let (y})7_; C F".
Consider the probability measure on By given by

p= O 126 O lwil®)
k=1 k=1

where J;, is the Dirac measure at the point myk Then
k

n

mn 1 1—-0o
(3 (1< Tay > 7))

j= k=1

1—-0o

= l2((y;g))(z (/B | < ij’y/ > |2du(y'))ﬁ>

=1

<

< 012((%))(2 (/B | < :vj,m' > |du(x’))||$j||ﬁ>1—g

< Coro((25))l2((yz))-

(iii) = (i). Condition (iii) means that all discrete probability measures p
on By satisfy for every finite family of vectors z1,... ,z,, € E

m
(X () 1<Tapy > Paut) ™) < Corol(ay).
= /B
Since the set of all discrete probabilities is dense in W (Bps) with respect to
the weak C(Bpr)-topology, we can state that this inequality is true for every
pu € W(Bpr). The domination theorem for 2-absolutely summing operators
gives 11 »(ST) < Cma(T).

(iv) = (i). Let S € Po(F,G), a finite family of vectors z1,... ,mz,, € E
and € > 0. Then there are 7,... , 7, and yi,... ,yn such that Tz; = 7;y;
and

(7)) wa (7)) < (14 ey, 1 (Ta)),

‘l—0o

where %4— % =1— 0. Then

Lo ((8Txj)) < L((75)2((Sy;)) < ma(S)Lr((75))w2((y5))
< m(S)(1+ e)myy, 1 ((Tz)) < m2(S)C(1 + €)d1,5((2))-

—o
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According to Theorem 4.1 in [12] (see Definition 1 b)) the above inequalities

mean that ST € Py, and thus T' € My (1,4))(E, F).
(i) = (iv). T € M) (E,F), for every finite family of vectors
Zi,... ,Tm € E, Proposition 16.4.3 in [14] gives

mey, 1 ((Tzj))

‘l—0o

<o {(3([ 1< > Panty)) 0

< Csup{(i (/ | < zj,z' > |du(m’))||mj||ﬁ)1—g e W(BE/)}

j=1 Bgi

1—-0o

e W(BF’)}

< C01,6((5))-

COROLLARY 5. Let 0 < 0 < % Then M(31-4),1) C M2,(1,0)), and
1-0 o
Mo (1,0)(T) < M5 o) 1y (T[T
for each operator T' € My1_q)1)(E, F).

Proof. Let T' € M3(1-5),1)(E, F). Then for each s € W (Bp) there exists
v € W(BY,) such that (see Chapter 20 in [14])

1

([ 1<moy > P due)) T
Bpr
< M(2(1a),1)(T)</B | <z,2’' > |du(m')> Vz € E.
E/
Then, for all z € F,
%
([ 1<Toy > Pau))
Bpri
1
<( | 1<Tay > POuy)) e
B
1-0
< My gy o DI ( /B | <z,0' > (@) )l
E' I

PROPOSITION 6. Let 1 <p<ooand 0 <o < 1. Then
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D) P2y C Pip10)) C Pip,1)-

2) Pw(i-0)1) € Ppi-0)1).0 C Pip,(1,0)), where Piy(i—o),1), i the inter-
polated operator ideal related to P, _s),1) following the interpolative
procedure given in Definition 1.

3) Space (Pp1-0),1)) = Space (Pp-o)1).0) = Space (P, (1,0)))-

Proof. 1) is a direct application of the inequalities w1 < 01,6 < wi.

2) The first inclusion follows from definition 1. For the second one, if
T € Pp(1-0),1),0, then there is an operator S and a Banach space G such that

S € Ppi—o)1)(E,G) and || Tz|| < ||Sz|' 7|z|°. Then if z1,... 2, € Eis a
finite family of vectors,

-

1 (T:)) < (Zus%uxjnl 7 P17

SN G ”((wjumjnﬁ)) mr (S)d((ay)).
3) Let E € Space (P, (1,0))). Consider z1,... ,z,, € E. Then

Lpy((%5)) < 7 (1,0)) (LdE)01,6((75))-

Since [l |[PC) = Yz la ]|~ |IP, we get

bt () = (3l 7717) 7
j=1

m
< My 1,0 (TdE) SUD (Z <$j”$j”_07$,>|”$j”$j”_0||:)
ZL‘GBE/ j=1

1

(a ))(IdE)wl((mj))-

/\

Therefore, E € Space (P(,(1—4),1)- This, together with 2), implies the result. NI

THEOREM 7. Let 2 <p < oo and g = Then

p—2
2(p—1)"
Space (M2,(1,6))) C Space (Pp,1))-

Proof. Let z1,... ,xym € E. Theorem 4 gives
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My, 1 ((25)) < M2,1,0))(Idp)d1,0((2))-

Y1—0o
Put r = 55 Then2+——1—aand
br((25)) <mg 1 y((25)) < Mig,(1,0))(TdR)d1,0((2)),

and then, according to 6.3),

E € Space (P(;,(1,0))) = Space (P(r(1—¢),1)) = Space (P(,.1))-
|

Remark 8. Let p > 2. By application of Talagrand “s result [19], Corollary
5 and Proposition 7 we get both a necessary and a sufficient condition for a
Banach s€ace to have cotype p. Suppose that the relation between p and o is
Then

) If E has cotype p, then for each 0 < o’ < 1 satisfying o < o’ there
exists C' > 0 such that for each y € W(Bpg) there is v € W(Bpy) satisfying

/ 2 / > ’ W\ a’
| <z, 2’ > |“du(z') )" <C | <z, 2’ > |dv(z") lz||” ,Vz € E.

E’ E’

2) Let 0 < o < 1. If there is C' > 0 such that for each u € W (Bp) there
exists v € W (Bp) satisfying

1 1—
(/ | <a.a' > Pdpa'))” < 0(/ <@’ > lv(a)) el Va € E.
Bpi Bpi
then E has cotype p.

3. APPLICATIONS. ABSOLUTELY SUMMING OPERATORS BETWEEN SPACES
OF COTYPE g ANS SPACES OF COTYPE p.

PROPOSITION 9. Let 0 <o < % and let E, F and G be Banach spaces.
Then P( 2 Q)M( ( )) C P( 1 (1 0_)) and

1—25°

T 1,00 (ST) ST _2_ 5 (S)M2,01,0)) (T),

1-20°V7? 1-20"

for each T € M2, (1,5))(E, F) and each S € P(L %) (F,G).

1-20°
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Proof. Consider a finite family of vectors z4,... ,z,, € E and € > 0. There
are 71,... ,Tp and y1,... ,ym € F such that T'x; = 7;y; and

L (7)) wa((y5)) < (L +€)mg 1 ((T)),
where % + % =1—o0. Then
L ((STxj)) <1 = (1))l 2 ((Sy;))

< () ()
<2 y(S)(L +om 2(Tzy))
<2 () My 1)) (T 0+ ()

The following corollary is closely related to some classical results about
operators between L, spaces of integrable functions. The reader can find
more information about this problem in [9] and [1].

COROLLARY 10. Letq > 2,0 = %—% Then L(L1, Lg) = P(%,(l’a))(Ll,Lq).

Proof Corollary 11.12 in [20] gives L(L1,L,) = Pg2)(L1,Lq). Since
q = 1795 20, L, has cotype 2, and cotype 2 spaces are in Space (M(zyl)) C
Space (M(2,(1,0))) (see Chapter 32.2 in [6]), the result follows just by applying
proposition 9. 1

ProOPOSITION 11. Let ¢ > 2 and let E,F and G be Banach spaces. If
1 < s < oo, then C;Ps C Pqz). Moreover, if S : F — G is an operator of
cotype q, then 7 9)(ST) < Cy(S)bsms(T') for each T € Ps(E, F'), where b; is
the second constant from the Khintchine inequalities.

The proof of this proposition can be obtained following the lines of the
proof of the proposition 26.4.(3) in [6]. It is a direct consequence of the
definition of cotype ¢ and the Grothendieck-Pietsch domination theorem for
s-summing operators.

THEOREM 12. Let E, F and G be Banach spaces.

1) Let S: F — G be an operator of cotype 2 and p > 2. Let E be of cotype
p>2. Let 0 <o < 2 such that p < (122). Then for each 1 < s < o¢
and every T € Ps(E, F), ST is (1, 0)-absolutely continuous. Moreover,

71,0 (ST) < M2,(1,0))(E)Ca(S)bsms(T).
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2) If S: F — @G is an operator of cotype q > 2, the Banach space E has
cotypep > 2, T € Ps(E, F) and for o = %—é the inequality p < q(1—o0)
holds, then ST is a (2, (1,0))- absolutely summing operator. Moreover,
for each 1 < s < 00

Tr(%,(l,a)) (ST) < M(2,(1,U)) (E)CQ(S)I)STI'S(T)

3) If F has cotype q > 2, E has cotype p > 2, and for o = % — l the
inequality p < q(1 — o) holds, then each operator T € L(E, F) fa,ctormg
through a C(K)-space is (4, (1, 0))-absolutely summing.

Proof. 1) On one hand, since E has cotype p with p < 2;:2), then

E € Space (My,(1,5))) on account of Remark 8.1. On the other hand, the

proposition 26.4.3 in [6] gives

wlSSPS(E7F) C P?(EaF)
and 7o (ST) < Co(S)bsms(T). Then
Ui<sPs(E, F) C Piro(E, F)

since £ € Space (M(2,(1,4))), and 71 4(ST) < M3 (1,5)) (E)C2(S)bsms(T).
2) Put 0 := 1 — 2(1 9) then

—20

If E has cotype p, if p < g(1 —0) =

L

a
FE € Space (M(Q’(l’o—)))

according to Remark 8. For each 1 < s < o0, (CyPs)(E, F) C P(g,2)(E, F) and

T(q,2)(ST) < Cy(S)bsms(T) according to Proposition 11. Since g =
application of Proposition 9 gives

_q
T—250 all

T _1_ g))(ST) < T2 2)(ST)M(2,(1,0'))(E) < Cq(S)bsWs(T)M(Q,(l,a))(E)-

1-20°V7? 1-20"

3) It is enough to consider that every T' € L(E, F') factoring through a
C(K)-space is (q,2)-summing if F' has cotype ¢ (see theorem 21.4 in [20]).
Then the same argument given for the proof of 2) gives the result. 1

Nowadays we know the cotype of a broad class of Banach spaces. For
the case of the real interpolation spaces the reader can find the results in
the paper of Xu [22]. In the general context of the Calderén-Lozanovskii
spaces, the paper of Cerdd and Mastylo gives nice characterizations of the



ABSOLUTELY SUMMING OPERATORS 191

spaces of finite cotype [2]. Creekmore got the results for the case of the
Lorentz function spaces in 1981 [3] although a direct argument related to the
properties of concavity and convexity of Banach lattices due to Defant may be
used to show them [5]. This means that the former theorem can be applied in
a straightforward fashion for couples of these spaces in order to give a (1, 0)-
domination theorem that is satisfied for all the s-summing operators between
them (for every s > 1). Another interesting application can be found for
spaces of real functions that are integrable with respect to a vector measure
since C'urbera got several results about the type and cotype of these spaces
(see [4]). We give the following example.

We know that all 2-summing operators from a space Li(u) in a Banach
space F' are 1-summing (see Corollary 2 of 23.10 in [6]). Moreover if F' has
cotype 2 we get Pp(Li(p), F) C Pi(Li(p), F) for each p > 1 (see 26.4(3) in
[6]). We can give a general version of this fact if y is a vector measure. Let
v be a countably additive vector measure with values in the Banach space E.
We consider the space L;(v) of real functions that are integrable with respect
to the vector measure v in the sense of Lewis (see [4]).

COROLLARY 13. Let E be a Banach space of cotype p > 2 and v a count-

able additive E-valued vector measure. Let F' be a Banach space of cotype 2,
0<o<3andp< QF__QZ) Then for each 1 < s < oo,

Ps(Ll(V)aF) C Pl,a(Ll(V)a F)

The proof is a direct consequence of Theorem 1 in [4] and theorem 12.1.
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