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1. INTRODUCTION

All Banach spaces under consideration are real and infinite-dimensional
(unless otherwise specified).

DEFINITION 1.1. Let X be a Banach space. A subset B C Sx- of the unit
sphere of the dual space is called a boundary of X if for each z € X there is
an f € B such that f(z) = ||z||.

It is not difficult to see that the whole sphere Sx. and the set ext Bx-
of extreme points of the unit ball Byx. of the dual space are boundaries (in
the first case this is just the Hahn-Banach theorem and in the second, the
Krein-Milman theorem). In general a boundary must not contain all extreme
points but it must contain a so called w*-exposed points.

DEFINITION 1.2. Let X be a Banach space. A functional fy € Sx- is called
a w*-exposed point of By if there is an xy € Sx such that fo(zo) =1 > f(z0)
for each f € Bx~, f # fo. Moreover f, € Sx- is called w*-strongly exposed
if ||.|| = lim f, = fo whenever {f,} C Bx- and lim f,(z¢) = 1. If an z, as
above is taken from Sx-., the functional f, is called exposed (resp. strongly
exposed) point of Bx-.

It is clear that each boundary B contains the (possibly empty) set w* —
exp Bx- of all w*-exposed points. If B = w* — exp Bx- then B is a minimal
boundary. We shall see that this is a case for polyhedral spaces.

DEFINITION 1.3. A Banach space X is called polyhedral [4] if the unit
ball of each of its finite-dimensional subspace is a polytope.
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Let us introduce the following notation. For a functional f € Sx. put

THEOREM 1.4. ([1]) Let X be a polyhedral Banach space with the density
character w.

(i) The set B = w* — strexp Bx- is a (minimal) boundary for X and more-
over for each f € B, intr, v; # (0 and thus card B < w (in particular, if
X is separable then B is countable).

(ii) Actually
card B=w. (1.1)

Part (i) of the theorem plays an important role in the study of polyhedral
Banach spaces (see [1, 2, 3]). While part (ii) (which is trivial for a separable
X) still has no applications. The proof of Theorem 1.4 which appeared in [1]
was complicated (and a proof of part (ii) was not presented in [1]). Later in
1990 the author considerably simplified the proof and a new proof circulated
as a non-widespread preprint. The main purpose of this paper is to present
this proof. In addition we give some new properties of polyhedral Banach
spaces.

We divide the proof of Theorem 1.4 into two parts. In Section 1 we prove
the main part (i) and part (ii) will be proved in Section 2.

2. A MINIMAL BOUNDARY

The proof of the first part of Theorem 1.4 is clearly inspired by [5] but the
tool we use (an opening of two subspaces of a Banach space) is different.

Recall that the “opening” of two subspaces L and M of a given Banach
space X is just the Hausdorff distance between their unit spheres:

O(L, M) = max{sup{d(z,Sy) : x € S}, sup{d(y,SL) : y € Smu}}.

The set of all subspaces of a Banach space equiped with this metric is a
complete metric space.

Denote |A| the cardinality of a set A. We start with two lemmas. The first
is just a consequence of the definition of 6(L, M).

LEMMA 2.1. ([1]) Let X be a polyhedral Banach space and L be a finite-
dimensional subspace of X. Then there exists an € = ¢(L) > 0 such that for
each subspace M C X with (L, M) < e(L), | ext By«| > | ext Bp|.




POLYHEDRAL BANACH SPACE 147

Proof. Denote |ext Br-| = 2m and suppose to the contrary that there ex-
ists a sequence {M,, } of (finite-dimensional) subspaces of X with 6 —lim M,, =
L such that |ext By.| < 2(m — 1) for all n. Without loss of generality
we may assume that for all n |ext By:| = 2(m — k) for some k& > 1. Let
ext By = {£fmymik n=1,2,...,Y = [LU (U2, M,)]. Denote f" a Hahn-

Banach extension of fAzn from M, onY,i=1,....m—k,n=1,2,.... By
passing to a subsequence we may assume that for each 1 = 1,....m — k there
exists a limit f; = w* — lim,, f' € By~. Take any functional ¢ € By- and let
g be a Hahn-Banach extension of § on Y. For each n = 1,2,... we have a
representation

m—k . m—k

g, = D aifr, Y lapl <1

i=1 i=1

Without loss of generality we may assume that for alli =1,...,m — k there

exists a limit a; = lim,, a?. Clearly, Z;’;k la;] <1 and

i

m—k

m—k
Z a;f; = w" —limz a; fi'.
i=1 " i=1
Take any vector z € Sy, and by using # —lim M,, = L, find a sequence {z,,}>° ,
z, € Sy, , such that ||.|| — limz,, = z. We have

i(z) = g(@) = limg(r,) = lim (mz a?f?) () = <mZ f) (@)

i=1 1=1

m

which gives § = Y7 *a;fi|.. By taking into account Y7 *la;| < 1,
we conclude that ext B. C {£f;}™* k > 1, a contradiction with
|ext Br«| =2m. 1

The second lemma (which is of some independent interest) is related to
Magzur’s theorem on smooth points.

DEFINITION 2.2. ([1]) A subspace M C X of a Banach space X is called
smooth if each smooth point of the sphere S, is a smooth point of the whole
sphere Sx. For a finite-dimensional subspace M of a polyhedral space X this
is equivalent to the following: M is smooth iff each f € ext By« has a unique
extension to a norm one functional on the whole space X.

LEMMA 2.3. Let X be a polyhedral Banach space and L be a two-dimen-
sional subspace of X. Then for each ¢ > 0 there exists a (two-dimensional)
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smooth subspace M with (L, M) < ¢ and such that if {£f;|p}, = ext By,
fi € Spe,i=1,...,n, then {£fi|}7, D extBg-.

Proof. Suppose that L is not smooth. Then there exist two functionals
fsg € Sx- with f # g but f|; = g|r € ext Bp.. Take any y € E with
f(y) # g(y) and put G = span{L,y}. G is a 3-dimensional polyhedral space
and a simple consideration shows that there exists a 2-dimensional subspace
L, C G such that:

(1) 6(L,L;) < min{e(L)/4, ¢/4}, (the function e(L) comes from
Lemma 2.1).

(2) |ext Br:| > |ext Bp-

(3) For each subset T C Sx- with {f|,, : f € T} D ext By: we have
{flo: fE€T} DextBp-.

If L, is not smooth then starting with L; and repeating the procedure,
we construct a 2-dimensional subspace L, which has the properties (1) - (3),
where the following substitutions are made: L by L, L; by L., min{e(L)/4,
e/4} by min{e(L)/8, e(L;)/8, €/8}, and so on. If in some step we get a
smooth subspace L, the lemma is proved. Otherwise we construct a sequence
of 2-dimensional subspaces {L,, }{° with the following properties:

(a) For each integers n > k, 8(Ly, L,) < e(Ly).

(b) For each integer n, 6(L,, L,y1) < /2"2.

(c) For each integer k, |ext Br.| > 2k.

From (b) it follows that § — lim L,, = L, exists and from (a), (c) and
Lemma 2.1 it follows that |ext B L3| = oo, a contradiction. |

Remark 2.4. To have a full similarity between Lemma 2.3 and the Mazur
theorem we should prove that if a polyhedral space X is separable then the
set of all two-dimensional smooth subspaces of X is a dense Gs-subset of the
set of all two-dimensional subspaces of X. We will prove this (even in a more
general setting) in Corollary 2.6 below.

Proof of part (i) of Theorem 1.4. Let ® be the set of all 2-dimensional
smooth subspaces of X. Put

B:{fESX*: f|LEGXtBL*, LGQ)}

By Lemma 2.3, B is a boundary for X. Let f € B, L € ® and z € S;,\ext Sy,
be such that f(z) = 1. Since L is smooth it follows that for each y € Ker f the
point z is not an extreme point of Sypan(s,yy- By the Baire Category Theorem
we get that intp, v, # 0 and, in particular card B < w. 1§
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Remark 2.5. (i) The above consideration shows that a point z € Sy is
smooth iff z € intr, v, for some f € B.

(ii) A nice alternative proof of part (i) of Theorem 1.4, which uses the Mazur
Theorem directly, is given in [7].

COROLLARY 2.6. If a polyhedral space X is separable then the set of all
finite-dimensional smooth subspaces of X is a dense Gs-subset of the set of
all finite-dimensional subspaces of X.

Proof. Let B be a minimal (countable) boundary of X. Put

A =Ujgen Ker(f — g).

By using Remark 2.5 (i) it is not difficult to see that each subspace L C X
which contains at least one point from X \ A, is smooth. Since each set
Ker(f — g) is closed and nowhere dense in X, by the Baire Category Theorem
we have that the set X \ A is dense in X. From the above consideration the
f-density of smooth subspaces (not just finite-dimensional) easily follows.

Next, for each two functionals f,g € B and for each positive integer n, we
define the set Ay, ,, of finite-dimensional subspaces L of X as follows

Af,g,n = {L cCX : E|:L‘0 € SLa f|(wo+1/an)05L = g|($0+1/nBX)ﬁSL = 1} .

It is not difficult to check that each set A; , , is 6-closed and a finite-dimensio-
nal subspace M C X is smooth iff M does not belong to any A;,,. Since
the family {A;,,} is countable, it follows that the set of all smooth finite-
dimensional subspaces of X is a Gs-set. |

3. A CARDINALITY

In this section we establish that the cardinality of a minimal boundary is
equal to the density character of the space, i.e. (1.1). To this end we explicitly
construct a subset D of a polyhedral Banach space X with |D| = |B| (where
B is a minimal boundary of X) and such that clco D = Byx. We conclude the
paper by Theorem 3.9 which also implies card B = w (but non-constructively).

We start with some auxiliary results.

PROPOSITION 3.1. ([6]) Let B be a boundary of a Banach space X. Then
for each functional f € By there exists a Borel probability measure v sup-
ported on w* — cl B which represents f.
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DEFINITION 3.2. We say that a Banach space X has the property (*) if
there is a 1-norming subset B C Sy« such that each w*-limit point of B with
the norm 1 (if any) does not attain its norm on the unit ball By.

Remark 3.3. It is not difficult to check that in the definition above B is
actually a boundary and a Banach space X which has the property (*) is
polyhedral.

PROPOSITION 3.4. ([2]) Let X be a separable polyhedral space and B =
{h:}$2, be a boundary of X. Let ¢ > 0 and {¢;}$, be any sequence of positive
numbers, 0 < €; < ¢, which tends to zero. Define a new norm on X as follows

lzl|| = sup{|(1 + e)hi(z)| : i=1,2,...}, ze€X.

Then the new norm is e-isomorphic to the original one and the space Y =
(X, [1-]ll) has the property (*).

Proof. Put By = {£(1 + &;)h;};°. Then
||2||] = sup{h(z) : h € Bi}.
It is clear that for each z € X we have
llzl] < [ll=[[] < (1 +e)lll| - (3.1)

Let f be any w*-limit point of the set B;. Since ¢; — 0, f € Bx-. Suppose
that for some z € X with |||z||| = 1 we have f(z) = 1. Since f € Bx- it
follows that ||z|| > f(z) = 1. Therefore ||z|| > |||z|||, which contradicts the
first (strict) inequality in (3.1). Thus, no w*-limit point of the set B, with
the norm one attains its norm |||.||| and hence Y has property (*). 1

ProPOSITION 3.5. Let Y be a polyhedral Banach space with property
(*), B={h;: i€ J} be a corresponding boundary of Y and D C Sy be
such that for each o C J, |o| < oo with Nic,vn, # 0, holds D N Nicoyn, # 0.
Then clcoD = By.

Proof. Let fo € Sy-, fo(zg) = 1, xy € Sy. By Proposition 3.1 there is
a measure v on w* — cl B which represents f,. Clearly supprv C {g € By~ :
g(xo) = 1}. Tt easily follows from the property (*) that the set

w* —clBN{g € By~ : g(z,) =1}
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is finite. Therefore there are a finite subset ¢ C J and positive numbers
{ai}ticos > = 1, such that fo = X ,., a;h;. It is clear that h;(zq) = 1
for each i € o, and hence N;c, 74, # 0. By the condition of the proposition
D N Nieoyn, # 0. Thus we proved that for each functional fy € Sy- which
attains its norm, there is z € D with fy(z) = 1. By using the Bishop-Phelps
theorem we conclude that the subset D C Sy is l-norming and the Hahn-
Banach theorem completes the proof. |

LEMMA 3.6. Let Z be a polyhedral Banach space and A be any dense
subset of Z. If B C Sz« is a boundary of A (i.e. for each x € A there is f € B
with f(x) = ||z||) then B is a boundary of Z.

Proof. Let By be a minimal boundary of Z and h € B,. Since A is dense
in Z, there is zy € A with zo/||z|| € intr, 5. It is clear that A € B and, thus
B D By which completes the proof. |

Proof of part (ii) of Theorem 1.4. Let B = {h;};c; be a minimal boundary
of X. From the properties of B which were proved in Section 2, it follows
that w > |I| and we shall prove the inverse inequality. Fix any decreasing
sequence {ey}72, of positive numbers which tends to 0. For any finite subset
o = {i;}j—, C I and for any integer k we define the set

M(o,k) =int Bx NNj_{z € X : (1+¢&;)h,(v) =1}.

Let z(o, k) be any vector from M (o, k) if M(o,k) # 0 and z(o, k) = 0 other-
wise. Put
D ={z(o,k) : 0 C1I, |o| <00, k€ N}.

Clearly |I| = |D|. Our goal is to prove that clco D = Bx which will give the
desired inequality w < |I|. Take any z € Sy, & > 0 and find h;, € B with
hiy(z) = 1 and kg € N with ¢, < e. Put 0q = {i} and zy = (0, ko) (clearly
that zy # 0). Denote 2o = (1+¢&p,) 2, Hy = {£xo, £20}, Li = span{zg, 20 }.
Since X is polyhedral and B is a boundary of X, there exists a oy = {i;}}2, C
I such that {h;}ic,, is a symmetric set and that {h|r, }ics, = ext By.. Since
H, C int By there is a k; € N such that for each i € o, |h;(z0)| < 1/(1+¢y,)
and |hi(z)| < 1/(1 +ep,). Put Fi =int Bx N2 {z € X : |h;,(z)| < 1/(1+
er,)} and for any ordered subset 6 C {1,2,...,n,} put o5 = {i;};es, Ms =
int By NNjes{z € X+ hy(x) = 1/(1 + €x,)}. We consider just those ¢
for which Ms N F;, # (. For each such ¢ define 5 as the largest subset of
{1,2,...,n;} which contains ¢ and for which M; N F; # (. It is not difficult
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to verify that z(o;,k;) € F; and it is trivial that z(os, k1) € M(os, k). Put
H, ={z(os,ki): 6 C{1,2,....,nm}, MsNF, #0}, Ly =span{Ly, H;}.

Since X is polyhedral and B is a boundary of X, there is a finite subset
09 = {in,4150n,42, -« -+ in, } C I such that {h;};c,, is a symmetric set and that
{hilz, Yicoiuo, D ext Bry. Take ky > ky so large that for each = € Hy U H; and
for each i € 0y U0y |hi(z)| < 1/(1 +&p,). Put F, = Fy N (N2, {r € X :
|hi;(z)] <1/(1+€g,)}). Now we construct the set H, in the same manner as
H, in the previous step. And so on. Denote Z = clU?, L;. By Lemma 3.6
B, = U2 {h;: i € o} is a boundary of Z. Let Y be a Banach space Z in
the norm

[|z||] = sup{(1 +ex )by (x) : I=1,2,..., j=m_1+1,...,n, ng=0}.

By Proposition 3.4 Y has the property (*) and by the construction, the set
D, = D N Z satisfies the condition of Proposition 3.5. Hence clco D, = By.
Since z € Bx and € > 0 are arbitrary and d(z, By) < e, it follows that
clco D = By, which completes the proof of Theorem 1.4. 1

By using a separating theorem it is easy to see that if B is a boundary of
a Banach space X then w* — clco B = Byx-. The following theorem (which
was also proved independently by L. Vesely [7]) shows that for a polyhedral
Banach space we can take the norm-closure instead of the w*-closure. We
start with a separable case. The proof in the general case is a reduction to
the separable one.

PROPOSITION 3.7. Let X be a separable polyhedral Banach space and B
is a boundary of X then ||.|| — clco B = By-.

Proof. We may assume that B is the minimal boundary. In particular, B
is symmetric, i.e. B = —B. Let f € Bx- and € > 0. Use the notation of the
proof of proposition 3.4. By using the Bishop-Phelps theorem for the space
(X, 11-1), we find a functional g € Bx,.~ which attains its [||.||[-norm
and so that ||f — g|| < € (recall that Bx- C Bx,. )+ )- From the proof of
Proposition 3.5 it follows that g = Y, @;(1 4 ¢€;)h; where o is a finite subset
of integers and Y, |a;| < 1. It is clear that the functional (1+¢) 'g € coB
still approximates f which completes the proof. |

Remark 3.8. A weaker result: the dual space for a separable polyhedral
Banach space is separable too, was proved in [1].
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THEOREM 3.9. Let X be a polyhedral Banach space and B be a boundary
of X. Then ||.|| — clco B = Bx-.

Proof. Put V = ||.|| —clco B and suppose to the contrary that there exists
fo € Sx+ \ V. Take Fy € Sx-« such that

sup{Fy(g9): g € V} < a < Fy(fo)- (3.2)

By the Goldstein theorem there is an z; € Sx so that [(Fy — z1)(fo)| <
1. Since B is a boundary of X there is an h; € B with hy(z;) = 1. Put
oo = {fo}, o1 = {h1}, L1 = span{z;} and by the Goldstein theorem find an
zy € Sx with max{|(Fo —z2)(h) : h € ogUo,} < 1/2. Put Ly = span{z;,z»}.
Since X is polyhedral and B is a boundary of X, there is a finite subset 0y C B
with {h[z, : h € 02} = ext B;. By using again the Goldstein theorem find an
z3 € Sy with max{|(Fo—x3)(h) : h € Ui_yo1} < 1/3. The further construction
is clear. In this way we construct a sequence {z;}2, C Sx and a sequence
{o1}32, of finite subsets of B such that:

(a) Tf Ly = span{z;}i_, then {h|;, : h € 0} = ext B:.

(b) For each i = 1,2,... , max{|(F, — z;)(h)| : h € Ui_Lo.} < 1/i.

Put E = [2;]32,, B1 = U201 and By = {h|g : h € B;}. By using (a) and
Lemma 3.6 we conclude that B, is a boundary of £ and, hence by Proposition
3.7 we have

||.|| = clco B, = Bg- . (3.3)

Let Gy € Bp+- C X** be any w*-limit point of the set {z;}:°, (we consider
E as a subspace of E** and E** as a subspace of X**). Then by (b) and (3.2),

sup{Go(h) : h € B1} < a < Go(fp) - (3.4)

Now we use the following easily verified equality: for each g € X*, Go(g) =
Go(g|r). Hence by (3.3) and (3.4), sup{Go(g) : g € Bpg-} < a. Thus
sup{Go(t) : t € Bx-} = sup{Go(t|lg) : t € Bx-} = sup{Go(g) : ¢ €
Bg-} < ay ie. ||Gy]| < a. However f, € Bx- and by (3.4), Go(fo) > «, a
contradiction which completes the proof. |
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