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INTRODUCTION

Quadratic polynomial vector fields have been intensively studied over the
last thirty years. The problem of determining all the possible phase portraits
of such systems is important in many branches of science. Quadratic sys-
tems have been employed in mathematical ecology to model the populations
of a predator-prey system, in chemistry to model the concentrations of two
chemical reactions, in astrophysics, fluid mechanics, etc. [23].

Moreover, quadratic systems present also an interest in pure mathematics.
The problem of determining the maximum number of limit cycles and their
distribution in phase space has aroused a lot of interest in the last years.
In spite of the considerable effort that has been devoted to the problem, it
remains unsolved.

Considerable progress has been made in the study of quadratic systems
that do not present limit cycles. All possible topologically different phase
portraits have been determined for several families of systems.

Homogeneous quadratic systems have been studied by Lyagina [16], Markus
[17], Vulpe and Sibirskii [26], Korol [14], Newton [19], Date [11] and Vdovina
[25].

Systems possessing a star nodal point have been studied by Berlinskii [7].
Quadratic systems that have two invariant straight lines have been considered
by Reyn [22].

Chordal systems have been analyzed by Gassul, Li-Ren and Llibre [13] and
Gassul and Llibre [12]. Hamiltonian and gradient systems have been recently
studied by Artés and Llibre [5], [6].
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All possible phase portraits of quadratic systems with a center have been
obtained by Lunkevich and Sibirskii [15] and by Vulpe [27].

The topological classification of structurally stable quadratic systems with-
out limit cycles was discussed for the first time by Tavares Dos Santos [24].
later on, Cai Sui-Lin pointed out in [8] that the classification of [24] was
incomplet and he added eight more examples. The complete topological clas-
sification of this type of system has been recently obtained in [4].

Cairé and Llibre [9] determined all the possible phase portraits of a semi-
homogeneous family of quadratic systems.

None of these systems possess limit cycles.

In this paper we study a new family of quadratic systems that do not
present limit cycles.

We prove that this family has a general first integral and that it is equiva-
lent by domain to a linear system. From these two results we have been able
to find all the topologically different phase portraits and we have proved that
there are exactly 47. (Unless we have critical points which are not isolated).

The paper is organized as follows: In section 1 we give some results con-
cerning the general system (1). In section 2 we consider the quadratic case
and analyze the nature of finite critical points. Finally in section 3, we analyze
the nature of critical points at infinity.

1. GENERAL RESULTS.

We consider the following system:

& = P(z,y),
(1)
9y =Q(z,y),
where
P(z,y) = lel(xay)%bz’y) - 02f2(x,y)%z’y),
Qesy) = o alay) LD gy, 20D,

and ¢; # 0, o # 0 and fi(z,y), fa2(z,y) € CL.
The system (1) admits fi(z,y) = 0 and fa(z,y) = 0 as invariant curves as
we can see from the relations:
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wher
e 0f1(3,9) 0fs(5.y)  0fi(2,9) Ofa(s,9)
oz oy y or

J(xay) =

LEMMA 1.1. The system (1) has the general integral:

I(z,y) = |fa(z,y)|“ [z, y)[7=.

Proof. By a direct calculation, it is easy to verify that I(z,y) =0 N

In consequence, the system (1) has no limit cycles.

LEMMA 1.2. If J(z,y) # 0 and the application H defined by H(z,y) =
(f1(z,y), fa(z,y)) is injective, then the system (1) is equivalent to a lin-
ear one in the two domains: Dy = {(z,y) € R?/J(z,y) > 0} and Dy =
{(z,y) € R?/J(x,y) < 0}. Furthermore, when critical points exist in the do-
main J(z,y) # 0, then they are either saddles when c¢1cy < 0 or nodes when
cicg > 0.

Proof. we make the change of variables X = fi(z,y), Y = fo(z,y),
and obtain the following system:

(2) X =cJ(z, )X, Y =cyJ(z,y)Y.

The Jacobian matrix of H(z,y) is J(z,y) which is nonzero, furthermore H
is injective; therefore, H is a global homeomorphism in D; and Dy which
transforms the system (1) to the system (2). Furthermore, since the critical
point (0,0) of the system (2) is either a saddle when ¢;c9 < 0 or a node when
c1co > 0, the corresponding critical points of the system (1) when J(z,vy) # 0,
given by fi(z,y) = 0 and fo(z,y) = 0, are saddles if ¢;co < 0 and nodes if
c1cg > 0, whenever they exist. Besides, in Dy and Dy, system (2) is topologi-
cally equivalent to the linear system X=cX,Y=cY. 1

Remark. Concerning the stability of the critical points of (1) in the domain
J(z,y) # 0, it is easy to show that when critical points exist in D; and in
D5, and when the critical points in D; are stable nodes, then those in Dy
are unstable nodes, and vice-versa. To show this, it is sufficient to consider
system (2); the eigenvalues associated to (0,0) are ¢1J (o, y0) and caJ (20, o),
where (zg,1o) are the coordinates of the corresponding critical points of (1)
in the domain J(x,y) # 0. These two quantities change signs when we pass
from D1 to DQ.
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2. BEHAVIOUR OF THE SYSTEM IN THE NEIGHBORHOOD
OF FINITE CRITICAL POINTS

In this section, we consider the case where (1) is a quadratic system, with
fi(z,y) = ao + a1z + agy + azz® + aszy + asy’,

fo(z,y) = bo + biz + bay.

By a change of coordinates, we can take without loss of generality by = b; =0
and b2 =1.
We obtain a quadratic system of the form:

P(z,y) = agcr + arciz + azcir® + az(c1 — )y + as(c1 — c2)zy
+ as(cy — 2c2)y2,
(3) Q(:’E, y) = CQy(al + 2&355 + a4y)7

and our goal is to prove the following theorem:

THEOREM. The phase portraits of the system (3) are homeomorphic to
one of the figures 1-47 and 22 (except for the orientation).

Let us remark that H = (f1, f2) is injective. This can be shown directly
by using the Rolle theorem. Therefore H is a global homeomorphism in Dy
and .D2.

Let us also remark that in this section, D; and Dy design two half-planes
separated by the straight line J(z,y) = 0.

Before studying the nature of critical points, we start by localizing their
positions. When J(z,y) # 0, the critical points are given by the solutions
of fi(z,y) = 0 and fo(z,y) = 0, which lead us to a second degree equation
h(z) = 0 whose discriminant is A = a? — 4agas, with ag # 0.

When A > 0 it is easy to verify that the two critical points M (z,y4) and
Ms(z?,y3A) are symmetric with respect to a point belonging to J(z,y) = 0.

The other critical points, whenever they exist, are situated on the line
J(z,y) = a1+2a3x+asy = 0. After expressing = in terms of y and replacing in
P(x,y) = 0, we obtain a second degree equation h1(y) = 0 whose discriminant

1S

A, — (—2&2&3 + a1a4)2(cl — 62)2 B (61 — 202)01A JAD
! 4a§ 4a§ ’

where Ay = a2 — 4azas and azAg(c; — 2¢o) # 0.
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Therefore, we obtain the following conclusion:

On the line J(z,y) = 0, when Ay > 0, we have two critical points; when
A1 = 0, we have only one critical point; and when A; < 0, we have no critical
points.

One can remark that when A = 0, the equation h(z) = 0 has a double
solution but it is easy to verify that this double solution belongs to J(z,vy) = 0.

Now, since the nature of critical points in the domain J(z,y) # 0 has been
already studied, we can focus our study only on the nature of critical points
on J(zr,y) =0.

2.1. NATURE OF CRITICAL POINTS IF A > 0.

PRrROPOSITION 2.1. We suppose that A1 > 0. Ifc¢; < 0, ¢co < 0 and
(c1 —2¢9)Ag >0 o0rcy >0, ca >0 and (c; — 2c9)Ag < 0, then there are four
critical points for the system (3). Two of them are saddles and are situated
on the straight line J(x,y) = 0 and the two others are nodes and they are
situated in the domain J(z,y) # 0. The corresponding global phase portraits
are homeomorphic to figures 1 and 2.

Proof. If A1 > 0 and a3(c; — 2¢9)Ag # 0 then we have two critical points
Ms(z} ,y4,) and My(z% ,y3,) on the line J(z,y) = 0.

Let us denote by )\}V[i and A?Mi (2 = 3,4) their eigenvalues calculated in
terms of y; we obtain:

A}\/Ii = Ve f(y) and )‘%\/[i = —y/caf(y) (i =3,4), where
f(y) = y((e1 — e2)(2a2a3 — aras) — (c1 — 2c2)Agy).

Hence Mj is either a saddle or a linear center and similarly for My. Let us
remark that f(y) = 2azyP’(y) where

(a1 + asy)
2a3

P(y) =P <m S ,y> and Ply) ==, =

The function f(y) has two zeros:

(—2a2a3 + a1a4)(—01 + 02)

y1=0 and gy =

(01 — 2C2)A2
We also have
Acy YA
(yl) 4&3 ’ (y2) (01 — 2C2)A2
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We first suppose that a3 > 0, ¢; > 0, co2 > 0 and (¢; — 2¢9)Ay < 0; then
P(y1) < 0 and P(y2) < 0 and we have the following distribution of signs of
the quantities P'(y), P(y),y and f(y) as shown in tables 1 and 2:

y YA, Y1 Yo YA,
P'(y) | - - - + +
Py) | + - - - +

y |- - + + +
[ [+ + - + +

Table 1

y YA, Yo y1 YA,
P(y) | - - + + +
P(y) | + - - - +

y |- - - + +
f) |+ - : - -

Table 2

In this case, y; is either in the interval ]ylAl,yg[, as represented in table 1 or
in the interval Jys, yQAI [, as represented in table 2.

We see that at ylAI and yQAI, f(y) > 0. Since ¢y > 0, we see that M3 and
M, are saddle points.

The same procedure can be applied when a3 < 0, and we will find the same
conclusion; this is also the case when ¢; < 0,¢9 < 0 and (¢1 — 2¢2)Ag > 0.

Since A > 0, we have two critical points in J(z,y) # 0 which are saddles
when ci;co < 0 or nodes when cico > 0 according to Lemma 1.2, and then the
proposition 2.1 follows. |

PROPOSITION 2.2. We suppose that Ay > 0. If ¢; > 0 and (¢; —2¢2)Ag >
0, or ¢ <0 and (¢; — 2¢9)As < 0, then (1) has one saddle and one center
on J(z,y) = 0 and either two nodes when cicg > 0 or two saddles when
cica < 0 in the domain J(z,y) # 0. For these cases we have the phase
portraits corresponding to the figures 2 and 3.

Proof. We apply the same procedure as for the previous proposition. |

PROPOSITION 2.3. We suppose that Ay > 0. If cieco < 0 and Ay < 0 then
the system (3) has two centers on J(z,y) = 0 and two saddles in the domain
J(z,y) # 0. The corresponding phase portrait is homeomorphic to figure 5.
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Proof. We follow the method employed in the proof of proposition 2.1 |

PROPOSITION 2.4. We suppose now that Ay < 0, then the system (3) has
only two nodes in J(z,y) # 0 if cyco > 0 and two saddles if cico < 0. The
phase portraits are topologically equivalent to the figures 6, 7 and 47.

Proof. We apply the same procedure as in the proposition 2.1 |

PROPOSITION 2.5. We suppose that Ay = 0, then the system has three
critical points; one is situated on J(x,y) = 0; the neighborhood of this point
is a union of hyperbolic sectors or a cusp; the two other critical points in the
domain J(z,y) # 0 are saddles in the case cico < 0 and nodes if ¢icy > 0.
These cases correspond to the figures 8, 9 and 10.

Proof. If we suppose that Ay =0 then we have

(2&2&3 — a1a4)2(—01 + 62)2
C1 (01 — 2C2)A2

Since A > 0 then c¢i(c; — 2¢2)Ag > 0.
The critical point on J(z,y) = 0 is given by Ms5(«ay,as), where

A =

2agaza4c1 — 4ajazascy — 2a9a3a4C9 — alaZCQ + 8ajagascy
a1 =
2a3 (01 - 262)A2 ’

(2a2a3 — a1a4)(01 - 02)
(01 — 202)A2

It is easy to verify that Mj is a critical point of type N.E. (the determinant
and the trace of the jacobian matrix are both zero). We translate the origin
at M5 and perform the transformation z = — 2y +v, y =u, t = ast,

2a3
where

a9 = —

. — 2a3(—2ag9a3 + ajaq)ca(—c1 + ¢2)
3 (61 — 202)A2 )
We obtain finally the following system:

2
Py(u,v) =v+ 5%

UV,
Qs

— 2c2)A
Q1(u,v) = _ o= 22) 202 4 B2,
4a3a3 a3

Therefore, we have a union of hyperbolic sectors or a cusp at the origin ac-
cording to theorem N.E. (see appendix and [1]). 1
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2.2. NATURE OF CRITICAL POINTS IF A < 0. The proof of the following
propositions are similar to the last one. We can summarize the situation as
follows:

PROPOSITION 2.6. We suppose that Ay > 0. If cieco < 0 and Ay > 0,
then system (1) has only two saddles and they are situated on J(x,y) = 0.
This case corresponds to the phase portrait 11.

PROPOSITION 2.7. Ay > 0. If ¢; > 0 and (¢; —2c9)Ay < 0, or ¢; < 0 and
(c1 — 2¢9)Ay > 0, then, the system has only one saddle and one center and
they are situated on the line J(z,y) = 0. The phase portraits are topologically
equivalent to the figures 12 and 13.

PROPOSITION 2.8. A; > 0. If ¢y > 0, ¢ > 0 and (¢; — 2¢2)Ay > 0, or
c1 <0, ¢ <0 and (¢; —2c9)Ay < 0, then the system has only two critical
points which are centers and they are situated on J(z,y) = 0. We have the
figures 14 and 15.

PROPOSITION 2.9. Ay < 0. We have no finite critical point in this case
and we obtain regular curves in the vicinity of any point on the plane, (see for
instance Nemytskii and V.V. Stepanov [18]). The phase portraits correspond
to 16 and 17.

PrOPOSITION 2.10. Ay = 0. The system has only one critical point and
it is situated on J(z,y) = 0. The neighborhood of this critical point is a union
of hyperbolic sectors or a cusp. We obtain figures 18 and 19.

2.3. NATURE OF CRITICAL POINTS IF A = (0.

PROPOSITION 2.11. We suppose that A = 0 and az(c1 —2¢9)Ag # 0, then
A1 > 0 and we have two cases.

In the case where Ay > 0, we have only two critical points and they are
situated on J(xz,y) = 0. The first is a non-elementary critical point. It is a
saddle when cice < 0 and when cicg > 0, its neighborhood is a union of a
hyperbolic sector and an elliptic sector . The second point is an elementary
critical point. It is a saddle when ca(c; — 2¢9)Ay < 0 and a center when
ca(c1 — 2¢2)Ag > 0. We obtain the phase portraits 20, 21, 22 and 23.

In the case Ay = 0, we have a critical point of type Z (the matrix of the
linear part is zero). So, we distinguish two cases: the case where —2asa3 +
a1a4 = 0 and the case where c; — cg = 0.
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a) Case where —2agas + ayjaqy = 0. For this case we obtain the following
results:

When As < 0, ci1(c1 — 2c2) < 0, the phase portrait of the system is
homeomorphic to the figure 24.

When As < 0, ci1(c1 — 2c2) > 0, the phase portrait of the system is
topologically equivalent to the figure 25.

When As > 0, ci1co < 0, the phase portrait of the system is topologically
equivalent to the figure 26.

When As > 0, ci1(c1 — 2¢c2) < 0, the phase portrait of the system is
homeomorphic to the figure 27.

When Ag > 0, co(c1 — 2c2) > 0, the phase portrait of the system is
homeomorphic to the figure 28.

b) Case where ¢; = ¢o. When Ag < 0, the phase portrait of the system
is homeomorphic to the figure 24, and when Ay > 0, it is topologically
equivalent to the figure 27.

Proof. When Ay > 0, the proof is direct using theorem N.FE.
When A; = 0, we obtain an homogeneous quadratic system and we use
theorem Al and A2 in the appendix (see for instance [28]). I

2.4. PARTICULAR CASES. We summarize the different cases in the fol-
lowing proposition:

PROPOSITION 2.12. We suppose now that ag(c; — 2¢9)Ay = 0, then we
must consider the following cases:

a) ag = 0, aq(cy — 2¢9) # 0: We have two critical points; one is situated
in the domain J(z,y) # 0 and it is a saddle or a node and the other is
on J(z,y) = 0 and it is a saddle if ay # 0. The phase portraits for these
conditions correspond to the figures 29, 30 and 31. When a; = 0 and ag # 0,
we have no finite critical points. This case corresponds to the figures 32 and
33. When a; = 0 and ag = 0 then the line y = 0 is composed of critical points.

b) Ay =0, as(c1 —2c¢2) # 0: If we suppose that (2asa3 —aya4)(c1 —co) # 0,
then we have two critical points (A > 0) in J(z,y) # 0 which are both either
nodes or saddles and a third one on J(z,y) = 0 which is a saddle point when
c1c2A > 0 or a center when c1coA < 0. When A = 0 we have only one critical
point on J(x,y) = 0 which is a saddle when ¢i1co < 0 and we have a union of
a hyperbolic sector and an elliptic sector when cicg > 0. The corresponding
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phase portraits are represented in figures 34, 35, 36, 37, 38 and 39. We suppose
now that 2asas — ajaq = 0. If A < 0 we have no critical points; if A > 0
we have only two critical points in J(x,y) # 0 which are nodes or saddles
according to lemma 1.2. When A = 0 the line J(z,y) = 0 is composed of
critical points. The corresponding phase portraits are represented in figures
40, 41, 42, 43 and 44. The case ¢ = co is a particular case of the above
results.

c) a3 =0, agy = 0: When ay # 0, we have only one critical point which
is either a node when cicos > 0 or a saddle when cico < 0 in the domain
J(z,y) # 0. This corresponds to the figures 45 and 46. When a1 = 0 and
ao # 0, we have no critical points. When a1 = 0 and ag = 0 then the line
y = 0 is composed of critical points.

Proof. The proof is straightforward. [

3. BEHAVIOUR OF THE SYSTEM (S) IN THE NEIGHBORHOOD
OF CRITICAL POINTS AT INFINITY

For the study of the critical points at infinity, we introduce the Poincaré
compactification of the plane vector field via the central projection. We use
the variables (u, z) defined by: z = X, u = ¥ (z # 0) and (w, z) defined by:

T’ x
z = é, w = % (y # 0). These transformations define the charts that are
needed in the analysis of the critical points at infinity.
After rescaling the time by setting dt’ = zdt, we obtain, respectively, for

the two charts the following systems:
Py =u(—(c1 — 2¢9)az — (1 — 2¢c9)agu — (¢ — 202)a5u2 — (1 — e2)ayz
— (c1 — e2)aguz — agey 2%),
Q2 =z(—azc1 — (1 — e2)agu — (¢1 — 202)a5u2 —ajc1z — (1 — c9)aguz

- 600122)a

P3 =(c1 — 2¢3)as + (c1 — 2¢p)aqw + (c1 — 2¢2)azw? + (¢1 — ¢3)agz
+ (c1 — e2)aywz + agey 22,
Q3 = — coz(ag + 2a3w + a1 2).

PROPOSITION 3.1. We suppose that az(c; —2co)Ag # 0. When Ay < 0 the
origin O is the only critical point at infinity. It is a node when ¢y (c; —2c¢9) > 0
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and a saddle when c¢1(c; — 2¢9) < 0. When ‘1421 — 4agay > 0, there are three
critical points at infinity: O, Mg, M7. We have the following results:

If cicg < 0 then Mg, My and O are nodes.

If co(c1 — 2¢2) > 0 then Mg, My are saddles and O is a node.

If c1(c1 — 2¢2) < 0 then Mg, My are nodes and O is a saddle.

Proof. The proof is direct. |

3.1. PARTICULAR CASES.

PRrROPOSITION 3.2. We suppose that a3As = 0; then we have the following
cases:

a) AQ =0 and a3(01 - 202) 75 0.

al.- If (az — %) (c1 —¢2) # 0 then we have two critical points: O which

is either a saddle or a node and the second is Mg. If ¢1(c1 — 2¢9) < 0 then it’s
neighborhood is either a union of a hyperbolic sector and an elliptic sector
otherwise Mg is a topological saddle when co(c1 —2c) > 0. The corresponding

phase portraits are represented in figures 34, 35, 36, 37, 38 and 39.
a2.- If ag — % = 0 then we have the following results:
as
If A < 0 we have two cases:

c1(e1 — 2¢9) < 0; the local behaviour in the neighborhood of Mg is given
by scheme 1 (see page 113) and then we have the phase portrait 40.

c1(e1 —2¢y) > 0; we have the scheme 2 and therefore the phase portrait
41.

If A > 0 then we have three different cases:
c1co < 0; we have the scheme 5 and then the phase portrait 42.
c1(e1 —2¢2) < 0; we have scheme 4, and therefore the phase portrait 43.

ca(e1 — 2¢9) > 0; we obtain scheme 3 and the corresponding phase por-
trait is represented in figure 44.

a3.- If ¢y = ¢y then we have scheme 1 for A < 0, and scheme 5 for A > 0.

b) asz = 0, a4(01 — 202) 75 0.

First, we suppose that a; # 0. In this case we have two critical points:
The origin O and another point My. The point M7 is a saddle when
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ca(c1 —2¢2) > 0 and a node when cy(c1 — 2¢3) < 0, while the origin O is
degenerate. For this latter critical point we have the following results:

When ci1c9 < 0 or ca(c1 — 2¢2) > 0 the behaviour of the system in the
vicinity of O is homeomorphic to scheme 5. This corresponds to the
figures 29 and 30.

When c1(¢1—2¢2) < 0, we have scheme 4 and therefore the phase portrait
31.

Second, we suppose that a1 = 0 and ag # 0 we must consider two cases:

ca(e1 — 2¢9) > 0; the local phase portrait is given by scheme 6 and the
global phase portrait is represented in the figure 32.

ca(e1 — 2¢9) < 0; we have scheme 7 and then the phase portrait 33.

Third, when a1 = 0 and ag = 0, the origin O is not an isolated critical
point.

c) a3 =0, ag = 0. In this case O is the only critical point at infinity and
it is degenerate. If we suppose that a1 # 0 and a5 # 0, then the local phase
portrait of the system in the vicinity of O is homeomorphic to scheme 6 when
cico < 0 and to scheme 7 when cicog > 0. This corresponds respectively to
figures 45 and 46. If ay = 0 or a5 = 0 then the critical point O is not isolated.

Proof. For the proof of a), we use theorem N.E.

For b), when a; # 0 it is easy to determine the nature of critical point
M. The point O is degenerate with Jacobian Matrix be identically zero. By
using Forster Theorem (see for instance [18]), the proposition follows.

We suppose now that a; = 0 and ag # 0. In this case we use the technic
of “Blow-up” (see for instance [2]).

Since z(—(c1—2¢2)asu? —u(—(c1—c2)aguz) = ascou
of variables:

u =uy, z=uy+ 21 and we find the following system:

22, we make the change

2 3
Py = — (¢1 — 2¢9)agu] — (agey + agey + asep — agco — 2asc9)uy

2 2
— (2apc1 + ager — ager)uizr — agciul 21,

2 2
Q4 = — agcouy — (c1 — c2)aquizy — (agey + ager + aseq — agscs — 2asco)uizy

2 3
— (2a9c1 + agcy — ageg)urzi — apey 2y
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We now make a horizontal “Blow-up” by introducing the transformation: u; =
21u2, 21 = z9. We obtain, after rescaling the time (dt' = z9dt), the following
system:

P5(U2, 22) = a4czu%(1 + Ug),

Q5(ug, z9) =29(—(c1 — c2)aqug — a402u% — agc1z9 — (2agcy + agey — agea)ugze

2
— (apey + agey + aser — agey — 2a5¢9)us 2.

For this system we have two critical points: O which is degenerate and
Mg (—1,0) whose associated eigenvalues are )\}\48 = (¢1 — 2¢9)ay and A?V[S =
coay. Then My is a saddle when co(c; —2¢9) < 0 or a node when ¢y (¢1 —2¢2) >
0.

Since 2z3(agcoud) — ug(zo(c1 — c2)aqus — agc129) = ugze(agus + agzo)cy, we
make another change of variables: us = u3, 29 = ug + 23 and supposing that
ag + a4 # 0, we obtain the system:

Ps(us3, z3) = a402u§(1 + ug),

Qe(us, z3) = — (agey + a4c1)u§ — (2a9¢1 + agcy — ages + 2a4c2)u§

— (ager + ascr + asep — agco — 2a502)u§

— (2apc1 + agc1 — ager)uszs

— (4apcy + 2ag¢1 — 2a9c9 + a4c2)u§z3 — (2apc1 + 2a2¢4

+ 2a5¢1 — 2a9¢o — 4a5c2)u323 — agclzg

— (2agct + ager — agea)uzzs — (age + aser + ascy

— ascy — 2a502)u§z§.

Let us introduce another “Blow-up” defined by us = u4z3, 23 = 24. After
rescaling the time by setting dt' = z4dt we obtain the following system:

Pr(ug, z4) =ug(l + ug)(aocr + agcrug + ageiuyg + 2a9c1u424
+ agociug24 — aoC2U424 + 2agclu224 + a2c1u?124 — a2c2uiz4
+ 2a402u?124 + agcluizz + azcluizz + a5cluizz
— agcquizi — 2ascouizi + ageyulzi + ageyud 2]

3.2 3.2 3.2
+ asciuyzi — agcouyzy — 2ascauyzy),
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Q7(u4, 24) =24(—apc1 — 2apc1Us — asc1Us + sCoUy — agC1 U}
— a4clui — 2&001U4Z4 — A9C1 U424 + 9C2U4ZY
— 4a0c1u?124 — 2a2c1u?124 + 2a2c2u?124 — a402u?1z4
— 2a0c1u§124 — agcluim + a202u2z4 — 2a402uiz4
— agcluizz — GQCluiZZ — %cmizf + GQCQUZZZ
+ 2a5couizi — 2agciulzi — 2agciuizs — 2as5ciusz]
+ 2&26211,?122 + 4a5c2uizz - agcluizz — aQCluizZ
— asciuiz? + agcoud st + 2ascoui ).

We obtain three hyperbolic critical points for this system: O, My(—1,0) and

Mlo(—ao‘fi‘_)a4 ,0). Their eigenvalues are, respectively:

aoaq apaq
(ager, —apcr), (asc1, —ascs), <—a0+a461, —a0+a402>
Hence, O is a saddle point. When ¢i1co > 0 My is a saddle and Mg is a node.
When cicy < 0 My is a node while My is a saddle.

Now, “going down” through the transformation, we can conclude that if
co(c1 —2¢2) > 0 the local phase portrait is homeomorphic to the scheme 6 and
if ca(c1 — 2¢2) < 0 we obtain scheme 7. The phase portraits are respectively
32 and 33. We obtain the same results when a4 + a9 = 0; in this case, it is
sufficient to employ another change of variables.

c)az=0, a1 =0

If a5 # 0 and a1 # 0 we can again use the technic of “Blow-up” as above,
but vertically, and we find that the local behaviour in the neighborhood of
the origin is homeomorphic to the scheme 8 when cics < 0 and to scheme 9
when cjca > 0. We have respectively the phase portraits 45 and 46. 1§

Remark. Let us make some remarks concerning proposition 2.4. When
A >0, Ay <0 and c¢i(c; — 2¢9) < 0; from the expression of Ay we conclude
that Ag < 0. Then the origin O is the only critical point at infinity (with
the exception of its antipodal point). Both points are saddles. Another way
of finding this result is to employ the Poincaré-Hopf theorem which says that
the sum of the indices of all critical points is independent of the vector field
and is equal to the Euler-Poincaré characteristic, which is 2 for the sphere.
Then the sum of the indices is 2. Now, if we suppose that Ay > 0, we will
have three infinite critical points, two finite critical points and their antipodal.
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The sum of their indices is equal to 6, in contradiction with the Poincaré-Hopf
theorem. In conclusion, we must have Ay < 0.

We can make the same analysis when A > 0, A; < 0 and ¢;(¢; —2¢2) > 0.
For this case, we must have Ay > 0.

Let us also remark that the most of phase portraits that we have drawn are
already known. For example, for the cases where we have a center [27], those
originated from homogeneous quadratic systems [28] (figures 24,25,26,27,28),
systems with one finite critical point [10] (figures 18,19,24,25,28,38,45,46) and
chordal quadratic systems [13] (figures 16,17,32,33,41).
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4. APPENDIX
THEOREM N.E. ([1]) Let (0,0) be an isolated critical point of the system
&=y+ X(z,y)

y=Y(z,y)
where X and Y are analytical in a neighborhood of the origin and they have
expansions that begin with second degree terms in x and y. Let y = F(x) =
kox? + k3x3 + ... be a solution of the equation y + X (z,y) = 0 in the neigh-
borhood of (0,0), and assume that we have the series expansions

fx)=Y(z,F(x)) =az*(1+..) and

®(z) = (%—f + %—Z) (z, F(z)) = bz’ (1+ ...),

where a #0, « > 2 and § > 1.

(a) If a is even, and

(a.1) « > 203+ 1, then the origin is a saddle-node (index 0), see scheme
10;

(a.2) either o < 26 + 1 or ®(x) = 0, then the origin is a critical point
whose neighborhood is a union of hyperbolic sectors (index 0), see
scheme 11.

(b) If« is odd and a > 0, then the origin is a saddle (index —1), see scheme
12.
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(¢) If @ is odd and a < 0, and

(c.1) either o > 2B + 1 and 3 even; or a = 23 + 1, 8 even and b +
4a(B +1) > 0, the the origin is a node (index 1), the node is stable
if b < 0, or unstable if b > 0;

(c.2) either a > 2B+1 and 8 odd; or o = 23+ 1, 3 odd and b* + 4a(B +
1) > 0, then in the neighborhood of the origin, there are a union
of a hyperbolic sector and an elliptic sector (index +1), see scheme
14.

(c.3) eithera =23+ 1 orb>+4a(f+1) <0, or a <2B+1 (or ® =0),
then the origin is either a focus, or a center (index +1).

THEOREM Al. ([18]) Consider the following system:

. 2 2
T = a1z’ + a1pry + asy

§ = biazy + baoy®

We set A = (byg — a12)? + 4aga(b12 — a11). For the above system, suppose
that the right sides of the two equations do not have a common factor, and
suppose A < 0. Then, when ay1(b12 — a11) > 0 the global phase portrait is as
shown in figure 24, and for a11(b1o — a11) < 0 the global phase portrait is as
shown in figure 25.

THEOREM A2. ([18]) For the above system, whose right sides do not have
a common factor, suppose agss = 0 and A1 = (b12 — a11)(a12 — baa) > 0. Then
when Ay = a11(biz — a11), Az = ba(aiz — b22), and Ay = ai11baa — ai2b12
are all negative, the phase portrait is as shown in figure 26; when two of the
quantities Ay, A3 and A4 are negative and the other is positive, the global
phase portrait is as shown in figure 27; when two of them are positive and the
other is negative, the global phase portrait is as shown in figure 28.
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