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1. INTRODUCTION

The purpose of this paper is to present certain facts and results showing
a way through which simplicial homotopy theory can be used in the study
of Auslander-Goldman-Brauer groups of Azumaya algebras over commutative
rings.

We observe here that any Galois extension S D R, with finite Galois
group G, has associated a monoidal group-like groupoid, whose nerve defines
a simplicial Kan-complex Pic(S,G). This complex, which we will call the
Picard complex, allows us to give a “geometric” description of Pic(S), the
Picard G-module of isomorphism classes of invertible S-modules, and also of
U(S), the G-module of units of S, since the semidirect product Pic(S) x G
and U(S) respectively, arise as the first (and only) two non-trivial homotopy
groups of the complex Pic(S, G).

Furthermore, we show that there exists a (Kan) fibration p : Pic(S,G)
— K (G, 1), with the Eilenberg-MacLane complex K (G, 1) as base complex.
Then, we observe that simplicial cross-sections for g are in agreement with
Kanzaki factor sets [11, 8], and therefore with generalized crossed product
algebras. At this point, taking into account the Hattori theorem [8, 9], we
prove that there exists an isomorphism

Br(S/R) =T (P59 /e qy))

between the Brauer group of equivalence classes of Azumaya R-algebras split
by S, and the group of fiber homotopy classes of cross-sections of g.
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It is remarkable that, from this homotopy representation of the relative
Brauer groups, one can recover several well-known exact sequences linking the
groups Br(S/R), Pic(S), Pic(R), U(S) and G as instances of exact sequences
of groups obtained in simplicial homotopy theory.

2. THE PICARD CATEGORICAL GROUP

Monoidal categories and, in particular, categorical groups have been stud-
ied extensively in the literature and we refer to , [10], [12], [15] or [16] for
the background. Let us recall that a monoidal category G = (G, ®,a, I,1,7)
consists of a category G, a functor ® : G x G — G, an object I and natural
isomorphisms

a=axyz: (XQY)®Z X (Y ®Z)

(1)
I=Ix:I1®X =X , r=rx:XQI 5 X

(called the associativity, left unit, right unit constraints, respectively), such
that, for all objects X,Y, Z,T € G the following two coherence conditions
hold:

ax,y,zeT © AX®Y,Z,T = (1x ® aX,Y,Z) ° ax,yezT © (aY,Z,T ®1z) and

(1X ® ly) cax,y =1x ® 1y.

A categorical group is a monoidal category in which every arrow is invert-
ible and, for each object X, there is an object X* with an arrow X* @ X — [.

Any group G operating on a commutative ring R by ring automorphisms
gives rise to a categorical group Pic(S, G), which we call the Picard categorical
group of (S,G), defined as follows. The objects are pairs (P, o), where 0 € G
and P is an invertible (.S, .S)-bimodule such that o(s)z = zs forz € P, s € S.
The set of morphisms from (P, o) to (Q, ) is empty is 0 # 7 and, in the other
case, a morphism f : (P,0) — (Q,0) is an (S, S)-isomorphism f : P — Q.
The tensor product is given the tensor product of (S, .S)-bimodules

/ ] f! / . ] Ief /

((P, o) — (Q,U))@((P ,T) — (@ ,7')) = ((P®5P ,oT) — (Q®sQ ,O’T)) ,
the unit object is the pair (S,1), and the associativity and unit constraints
are as usual for the tensor product of bimodules.

Let us recall that that the Picard group Pic(S) of isomorphism classes of
invertible S-modules is a G-module, by “[A] = [7 A], where for an invertible
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S-module A and each o € G, ? A means A as abelian group with the action of
S given by s oz = o (s)z. Let Pic(S) x G be the corresponding semidirect
product group.

Any object of Pic(S, G) can be uniquely written in the form (A,, o), where
o € G and A, means the (5, 5)-bimodule defined by an invertible S-module
A, with the given left action of S and the right action by zs = o(s)z. Since
A, ®sB; = (A®sB)yr, for any invertible S-modules A and B, we have that
Pic(S)x @ is identified as the group of connected componets of the categorical
group Pic(S,G).

Furthermore, the group of automorphisms in the unit object (S, 1) is just
the group of S-linear isomorphisms of S with itself, or equivalently, the group
U(S) of the units of S.

3. THE PICARD COMPLEX

In this paper we use a few well-known basic facts about simplicial sets (see
references [7, 14]).

Let G = (G,®,a,1,l,7) be a categorical group. We define the sim-
plicial set nerve of G, denoted by Ner(G,®), as follows. An n-simplex
(f,X) € Ner,(G,®) consists of a family of objects X;;, 0 <4 <j <mn, and
morphisms f;;1 @ Xi; @ Xjp — X, 0 <0 < j <k < n, satisfying the following
conditions:

1) Xii=1,
2) fiik=1:1® X = Xy and fij; =7: X;; @ I — X5,
3) for any i < j <k <m,
fijm o (1xy; ® fikm) = fikm © (fijk ® 1xy,,) © 0X,; X0 Xpm - (2)
If & : [n] — [m] is a non-decreasing map, the induced map
Nerp(G,®) — Nerp (G, ®),
is given by o*(f, X) = (o f,a*X), where
(" fijk = fa@agiar) and (@7 X)i = XoGijagj)-

Let us note that if z = (f, X) is an n-simplex of Ner(G, ®), n > 3, then x
is completely determined by any three of its faces d,,,(z) = (5, f, 07, X), where
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dm @ [n] = [n + 1] is the injective non-decreasing map that does not take the
value m € [n], since a face dy,(x) includes all the morphisms f;;, such that
m & {i,7,k}. Then, if one knows d,,(z), d,(z) and ds(z), 0 < m <r < s <mn,
one also knows all f;; except Tp,s; but taking any i ¢ {m,r,s} (such an
integer exists because n > 3) and the corresponding diagram (2) for i, m, r
and s (in the corresponding order ), we can see that f,,s is also determined
by the others.

An immediate consequence of the above observation is that the canonical
simplicial map Ner(G,®) — Cosk3(Ner(G,®)) is an isomorphism, where
Cosk?3(—) is the third Verdier’s coskeleton functor [17], and then the simplicial
set Ner(G, ®) is isomorphic to the nerve of the categorical group G as defined
in [3] (there denoted by Nery(G)).

The classifying space of a categorical group G, B(G, ®), is the geometrical
realization of the simplicial set Ner(G,®). The next proposition describes
the homotopy type of B(G, ®) and was proved in [3].

PROPOSITION 3.1. Let G = (G, ®,a,1,l,r) be a categorical group. Then:
i) The homotopy groups of B(G, ®) are

0 i 42
mi(B(G,®)) =< [G] (the group of connected components of G) i=1
Autg(I) (the group of automorphisms in I) i=2

ii) There exists a canonical homotopy equivalence B(G) ~ QB(G,®).
Thus, the classifying space of category G (forgetting the tensor structure)
is a loop space of the classifying B(G, ®).

iii) Any path-connected CW-complex with trivial homotopy groups in di-
mensions other than 1 and 2 is homotopy equivalent to the classifying space
of a categorical group. Specifically, if X is such a space and * € X is a base
point, then X ~ B(Po(X,*)) where Po(X, ) is the categorical group of loops
based on *, that is, the fundamental groupoid of the loop space (X, x), with
the tensor structure given by concatenation of loops. Furthemore, if X is ho-
motopy equivalent to B(G, ®) for some G, then Py(X,*) and G are monoidal
equivalent.

The above results show that categorical groups provide algebraic models
for homotopy 2-types of connected spaces. This fact is not new (see [16]),
although the better-known references consider the strict case, where White-
head’s crossed modules provide the algebraic models [13].
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For any group G we can consider the discrete groupoid dis(G) with only
identities. The multiplication in G determines a strict categorical group struc-
ture on dis(G), c®7 = o1, and Ner(dis(G), ®) is just the minimal Eilenberg-
Mac Lane complex K (G, 1), whose n-simplices o consist of a family of elements
o;j € G, 0 <1 < j <n,such that o;j05, = oy for i < j < k.

Analogously, if A is an abelian group regarded as a category with one ob-
ject, then the multiplication in A defines a structure of categorical group whose
nerve is isomorphic to the minimal Eilenberg-Mac Lane complex K (A4, 2).

Now, let G be a group operating on a commutative ring S by ring auto-
morphisms.

We define the Picard complex, also denoted by Pic(S, G), as the nerve of
the Picard categorical group Pic(S, G).

Then, an n-simplex (f, P,o) € Pic, (S, G) consists of a family of elements
0y € G, 0 <i < j<mn, invertible (S,S)-bimodules P;;, 0 <14 < j <mn, such
that 0;;(s)z = xs for € P;;, s € S and (S, S)-isomorphisms f;;i, : P;j ®s Pjy,
= Py, 0 <1 <3 <k <n, satisfying the following conditions:

1) 0ij0jk = Oik for 4 S] S k,

2) ;=5

3) fiij(s®@x) = sz, fiji(r®s)=zsfori<j,s€Sandz € Py,
)

4) for any ¢+ < j < k < m the diagram

1®fjkm
Pi; ®s Pj, ®s Prpy —— Pj @5 Pj
fijk®1l lfijm (3)
fi m
F)ik Qs Pkm d sz

is commutative.

If «: [n] — [m] is a non-decreasing map, the induced map Pic,, (S, G) —
Picy (S, G) is given by o*(f, P,o) = (a*P,a* P,a*c), where

(@ fijk = faGyatatk)s (@ P)ij = Pagiya(j)
and analogously
(@*0)ij = Taija(s):

In particular, let us note that a 1-simplex of Pic(S, G) is just a pair (P, o),
where 0 € G and P is an invertible (S, S)-bimodule such that o(s)z = zs
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for z € P, s € S, with 0-face and 1-face the ring S. Furthermore, giving
a 2-simplex z € PiC(S, G) with faces do(Z) = (P12,012), dQ(Z) = (P01,001)
and d; (z) = (Po2, 002 = 001012) is equivalent to giving an (S, S)-isomorphism

foi2 : Po1 ®s P12 — Py
2
y = (%2#{%01&12,012) (4)
0—1
( )

Po1,001

For our purpose, what is most interesting about this complex is sumarized
below.

PROPOSITION 3.2. For any group G operating on a commutative ring S
by ring automorphisms, the simplicial complex Pic(S,G) has the following
properties:

a) Pic(S,G) is a reduced (and hence connected) Kan-complex;

b) it has at most two non-trivial homotopy groups,viz.:
m1(Pic(S,G)) = Pic(S) x G, and
mo(Pic(S,G)) = U(S);

c) it is a 2-dimensional hypergroupoid, that is, for n > 3 to give an n-simplex
of Pic(S, G) is equivalent to knowing any three of its faces.

4. THE REPRESENTATION THEOREM
Let G be a group operating on a commutative ring S by ring automor-
phisms. From the definition of the complex Pic(S, G), it is immediate that
there is a (Kan) fibration

o Pic(S, G) — K(G,1) (5)

given by o(f,J,0) = o for any simplex (f, J, o) € Pic(S, Q).
Our main result here is
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THEOREM 4.1. Let S O R be a Galois extension of commutative rings,
with finite Galois group G C Aut(S). Then there is a bijection (really a group
isomorphism)

Br(S/R) =T (P9 /1)) (6)

between the Brauer group of Azumaya R-algebras split by S and the set of
fiber homotopy classes of cross-sections of g, that is, of fiber homotopy classes
of simplicial maps ¢ : K(G,1) — Pic(S, G) such that pf is the identity map
on K(G,1).

Proof. We begin with a brief review of the fundamental facts concerning
generalized crossed products. A Kanzaki factor set [11, 8] (f, P) consists of
a family of invertible (S, S)-bimodules P,, o € G, such that o(s)x = zs for
z € Py, s € § and (S, S)-isomorphisms f,; : Pp s Pr = Pyr, 0,7 € G,
satisfying the conditions: 1) Py = S; 2) fi,(s®z) = sz and fr1(z ® s) = zs
foro € G, x € P,, s € S; 3) for every o, 7,7 € G the following diagrams are
commutative

1® fr,y

P0'®SPT®SP’Y P0'®SPT’Y
fa',‘r®ll lfl]'r (7)
Jor,
Psr ®s P’y - Pm'fy

A factor set (f, P) gives rise to the generalized crossed product algebra,
of S and G, A(f,P) = @, Jo» where the multiplication is defined by z o
y = for(z ®y) for ¢ € P,, y € Pr, which is an Azumaya R-algebra (i.e.,
central separable) with a maximal commutative subalgebra S [11, Prop.2].
Any Azumaya R-algebra containing S as a maximal commutative subalgebra
is S-isomorphic to a generalized crossed product A(f, P) for some factor set
(f,P) [8, 9, Prop. 3, Th. EJ.

Since an Azumaya R-algebra is split by S if, and only if, there exists
an Azumaya R-algebra equivalent to it which contains a maximal commu-
tative subalgebra isomorphic to S ([5, Th. 5.5], any element of Br(S/R)
can be represented by a generalized crossed product A(f,P). Thus, the
map (f, P) — A(f, P) is a surjection from the set of Kanzaki factor sets to
Br(S/R). Moreover [8, 9, Th. I, Th. 3], two factor sets, (f, P) and (f’, P'),
define the same element of Br(S/R) if, and only if, there exist an invertible
S-module A and a family of (5, S)-isomorphisms g, : A ®¢s P, = P. Qg A,
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o€ G, with g1(z®s) =s®x for z € A, s € S and making the following
diagrams commutative

1® fo,r 9o1

AR®s P, ®s P A®g Py, P _®s A

\ / (8)
9o ®1 for®1

1®
P, ®s A®g P;

—gT>P[I,®5PT'®5A

for every o, 7 € G.

Now, let £ be a cross-section of p. Since both complexes are reduced, £ is
the constant map. Then, by the proposition 3.2, ¢) and the simplicial iden-
tities, we see that ¢ is determined by the maps ¢, : K,(G,1) — Picy, (S/R)
for m = 1,2. Now, ¢; has the form ¢;(0) = (P,,0), where P, is an invertible
(S, S)-bimodule such that o(s)z = zs for z € P,, s € S; and therefore /5 has

the form
S
to(o,7) = <PM"’70,¥””
S 4>( : S

Ps,0

where f, - : P,®gPr = P,; is an (S, S)-isomorphism. Since, for each 0,7,y €
G, the faces of the 3-simplex ¢3(o, 7,7) € Pic(S, G) are

d0£3(0—1 T, 7) = (fT,’ya PTa P’yaPT’yaTa’Ya 7—’7)7
d1€3(g, T, '7) = (fm','ya Py, P’ya PUT'ya oT,7%, UT"}/),
d2£3(07 T, ')’) = (fo',T’y; P(ra P’wa Pa'wa g, T, UT'Y)

and
d3£3(077a7) = (fU,TapﬁapTapUTaUa 7—707—)7

the commutativity of the diagrams (3) gives the corresponding commutativity
of (7). Thus, we see that (f, P) is actually a Kanzaki factor set, which clearly
determines ¢ and /5, and therefore /.

Moreover, any Kanzaki factor set (f, P) arises from a cross-section £ de-
fined as follows: if o = (0ij)o<i<j<n is an n-simplex of K(G,1), then £(0) =
(f; P,o) € Picy(S,G), where P;j = Py, for 0 <i < j <nand fijr = fo;;.0;
for0<i<j<k<n.

Thus, £ — (f, P) establishes a bijection between the set of cross-sections
of p and the set of Kanzaki factor sets.
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Now, let £, ¢ be two cross-sections of g, associated respectively to Kan-
zaki factor sets (f,P) and (f',P') by the above bijection, and let h = (h!" :
K,(G,1) — Picy(S, G))0<i<n be a homotopy of ¢ to ¢ which is stationary
over K(G, 1), that is, such that gh is the identity homotopy.

From the homotopy simplicial identities, we see that hg, h(l) and hi take
the form

Wy =s 2y
s s
hy(o) = (QU’VWU\O’U) hl(o) = (Qo,a/@bg‘w,u
ST NG

for an invertible S-module A, an invertible (S,S)-bimodule @, such that
o(s)r =xs, z € Q, s € S, and (S, S)-isomorphisms ¢, : A ®s P, — @ and
Yy + PL ®s A — Q. By computing the faces of the 3-simplices h?(o,7) €
Pics(S,G), i = 0,1,2, we obtain, for each 0,7 € G, the following diagram of
(S, S)-isomorphisms

1®fo’,‘r

AQ®s P, ®s Pr A®g Py
o ®1 (0) Yor
Qo ®s Pr Qor Lo P, ®s A
Po®1 (1) (2) £ .®1

P, ®s A®s P, —2" > Pl ®5 Q, ~—— " P, @5 P ®s A

where each square (i), i = 0,1,2, is commutative since h?(o,7) € Pic3(S, Q)
(note the homotopy simplicial identities dlh% = d1h? and doh? = dyh3 ).

Then, considering the composition g, = ¢, 1oy, : AQs P, — P.®g A for
each o € G, the diagrams (8) are commutative for every o, 7 € G; which turns
out to be that the factor sets (f, P) and (f', P') define equivalent Azumaya
R-algebras, that is, the same element in Br(S/R).

Conversely, if there exists an invertible S-module A and a family of (S, S)-
isomorphisms g, =: A®Q P, - P. ® A, 0 € G, with g1(z ® s) = s ® z for
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z € A, s € S and making the diagrams (8) commutative, we find a fiber
truncated homotopy (h9, hi, h1) of £ to ¢’ defined by

S
h(ll(a) = (P(',®5A’(T/ga&ma) h% (0') _ (PlosAo) id (A1)
S—an 7

S————>S

(Py.0)

which, by [2, Lemma 2.8], extends to a full fiber homotopy h : £ — ¢', and so
the theorem is established. 1

To conclude, we shall remark on the existence of a fibration (of fibered
complexes over K (G, 1)),

q: Pic(S,G) — K(Pic(S) x G, 1),

where K (Pic(S) x G,1) is the Eilenberg-MacLane complex associated to the
semidirect product group Pic(S) x G, which is given by q(f, P,o) = ([P],0).
The homotopy exact sequence, linking the groups of fiber homotopy classes
of cross-sections, induced by the fibration q is precisely the Chase-Harrison-
Rosenberg six-term exact sequence [4].
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