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1. INTRODUCTION

In [6] we have shown how a drill-string in a typical rig may be modelled
in terms of a space curve with structure. This structure defines the relative
orientation of neighbouring cross-sections along the drill-string. Specifying a
unit vector (which may be identified with the normal to each cross-section)
at each point along the drill-string centroid enables the state of flexure to be
related to the angle between this vector and the tangent to the space-curve.
Specifying a second vector orthogonal to the first vector (thereby placing it
in the plane of the cross-section) can be used to encode the state of bending
and twist along the drill-string. Thus a field of two mutually orthogonal unit
vectors along the drill-string provides three continuous dynamical degrees of
freedom that, together with the continuous three degrees of freedom describ-
ing a space-curve relative to some arbitrary origin in space, define a simple
Cosserat rod model. The dynamical equations of motion for these continuous
six degrees of freedom are presented in section 2. Supplemented with ap-
propriate constitutive relations and boundary conditions the model can fully
accommodate the modes of vibration that are traditionally associated with the
motion of drill-strings in the engineering literature: namely axial motion along
the length of the drill-string, torsional or rotational motion and transverse or
lateral motion [3], [4]. This model is well suited to study numerical simula-
tions that offer valuable guidance on the detection and control of destructive
vibrational configurations [7]. However situations in which excessive flexural
motions become excited provide significant challenges for such simulations.
Inspired by [2] we have begun a study of the dynamics of large amplitude
flexural motion in the context of extensible and shearable drill-strings under
gravity, with a view to controlling the onset of “snap-buckling”.
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Antman et al [2] have provided general conditions on initial data that per-
mit a certain approximation scheme for a simple Cosserat system to generate
a solution that can move irregularly through a family of equilibrium states
parametrised by time. In this paper we explicitly construct such families for
a class of constituitive relations appropriate for drill-strings.

A series of approximations is discussed leading to an intuitive understand-
ing of such motions and analytic expressions that permit one to estimate the
effects of critical dimensionless parameters on the phenomena involved are
derived. Such formulae also provide useful benchmarks that can be used to
evaluate the efficiency of numerical code designed to simulate more complex
vibrational scenarios involving drill-strings.

2. EQUATIONS OF MOTION

The general mathematical theory of non-linear elasticity is well established.
The general theory of one-dimensional Cosserat continua derived as limits of
three-dimensional continua can be consulted in Antman [1]. The theory is fun-
damentally formulated in the Lagrangian picture in which material elements
are labelled by the variable s. The dynamical evolution of a drill-string with
mass density, s € [0, L] — p(s), and cross-sectional area, s € [0, L] — A(s),
is governed by Newton’s dynamical laws:

pAdir =dn+F
O(pI(w)) =0;m+ dsr xn+ L
applied to a triad of orthonormal vectors:
s €10, Lo] — {d1(s,t),d2(s,t),ds(s,t)}
over the space-curve:
s € [0, Lo] — r(s,t)

at time £ where F and L denote external force and torque densities respectively
and s € [0, Lg] — pI is a drill-string moment of inertia tensor. In these field
equations the contact forces n and contact torques m are related to the strains
u, v, w by constitutive relations. The strains are themselves defined in terms
of the configuration variables r and d; for £ = 1,2,3 by the relations:

Osr = v
8sdk:u>< dk (1)
Btdk =W X dk.



NONLINEAR FLEXURAL EXCITATIONS 219

The latter ensures that the triad remains orthonormal under evolution. The
last equation identifies

3
1
w:§kzldkxatdk

with the local angular velocity vector of the director triad.

In view of the comments above about the relative spatial dimensions of the
drill-string, the bottom-hole-assembly (BHA) and rotary may be regarded as
heavy mass points with rotary inertia attached to the ends of the drill-string.
The effects of the BHA stabilisers can be modelled by boundary conditions [6]
which constrain the direction of the tangent to the drill-string at the drill-bit.
The general model accommodates drill-strings whose characteristics (density,
cross-sectional area, rotary inertia) vary with s. If the characteristics change
discontinuously at some point (e.g. where the drill-bit interacts with the rock
base or drill-strings with different characteristics are joined) conditions on the
contact forces and torques on either side, 4, of the point must be satisfied. If a
rigid body of mass My and rotary inertia tensor I is also attached to the point
then discontinuous contact forces and torques contribute to the equations of
motion of such an attachment. In general at a drill-string junction s = sq
the contact forces and couples are subject to the discontinuity conditions:

n+(80,t) — l’l_(S(),t) + F(](S(),t) = M(] r (So,t) (2)
m+(50,t) — m_(s(],t) + GO(SU,t) = I(](W(S(],t)). (3)

In these equations Fg(sg,t) and Gg(sg,t) denote the external forces and
torques acting at s = sg.

To close the above equations of motion constitutive relations appropriate
to the active drill-string must be specified:

n(s,t) = n(u(s,t),v(s,t),u(s,t),vi(s,t),...,s)
m(s,t) = m(u(s,t),v(s,t),us(s,t), ve(s,t),...,s).

These relations specify a “natural” reference configuration (say at ¢ = 0) with
strains U(s), V(s) such that

n(U(s), V(s),...,s) =0
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A standard reference configuration has dsr = dg, i.e.
V(s) = ds(s,0).

If this standard configuration is such that r(s) is a space-curve with Frenet
curvature kg(s) and torsion 79(s) and the standard directors are oriented so
that dj(s) is the unit normal to the space-curve and ds the associated unit
binormal then

U(s) = ko(s) da(s) + 1o(s) ds(s).

This follows immediately from the definition (1) of u and the Frenet-Serret
equations for the space-curve:

85 d3 = K d1
85 d1 = —Hodg +7‘0d2
83 d2 = —T0 d1.

The use of a curved standard configuration has immediate application to the
dynamics of drill-strings in curved bore-holes. In vertical bore-holes a space-
curve with zero curvature and torsion defines the natural unstressed configur-
ation of the drill-string. Thus the reference state of the drill-string in the ab-
sence of gravity is {r(s,t) = —sk, di(s,t) =1, da(s,t) = —j, ds(s,t) = —k}
where s € [0, Lg] and i,j,k form a global Cartesian orthonormal frame at-
tached to an origin at the top (s = 0) of the drill-string. The value of Lg is
the physical length of the unstressed drill-string in the absence of gravity.

The simplest constitutive model to consider is based on Kirchhoff con-
stitutive relations with shear deformation. One may exploit the full versatil-
ity of the Cosserat model by generalising the Kirchhoff constitutive relations
to include viscoelasticity, curved reference states and effects to prohibit total
compression. Such a model exhibits a rich dynamical behaviour that accom-
modates much observed phenomena. However the presence of arbitrary rota-
tions relating the local director frame to the global Cartesian frame renders
the equations of motion inherently non-linear.

The dynamical equations of motion for the drill-string are given in dimen-
sionless form [6] as !

!The symbols n, m, u, v, w and pI are henceforth dimensionless
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R=n'—-gk+f (4)
((pT)(w))y = m’ + k(R x ) +1
d; =ux d;
dk =w X dg
R,=v (5)

where 0 = s/Lg, O,R = R,9,R = R’ etc., k is the dimensionless constant
EAL2po/(G(I11 + I32)) in terms of Young’s modulus E for the string, A its
cross-sectional area, pg its uniform density and G its shear modulus. The
weight of the drill-string (extracted from the body force density f) is encoded
into the dimensionless parameter g = GpgLo/E where § is the acceleration
due to gravity and the evolution of the system is given in terms of time ¢ by
the dimensionless variable n = ¢t/ Ly where ¢ = \/E/py.
With

n=n;d; +nsds +nszds

m=m;d; + mods +msds

v =v1d; +vods + v3ds

u=wud; +uzds +uzds

w:w1d1 +w2d2+w3d3

the classical Kirchoff constitutive relations may be written in dimensionless
form as:

np = Xxv1

N2 = Xv2

ng = vz — 1

my = Inuy + Ligug

mg = Iiouy + Ipus

ms3 = ug
where the dimensionless parameter x = G/ E is expressed in terms of the ratio
of torsional to (Young’s) elastic modulus of elasticity and I;; = I;; E/(G (111 +
I59)) is a set of reduced (dimensionless) inertia components of the drill-string.

In the above I;; are the components of the rod “inertia tensor”, (pi), with
respect to the local director frame { d;}. For a cylindrical rod with an annular
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cross section, outer radius ro and inner radius r; the non zero components of

I;; are

fu = f22 = Wﬂo(ré - 7"}1)/4

Iy = mpo(ry — 71)/2-

The generalisation of these relations to include viscoelasticity and an ini-
tially curved drill-string requires the introduction of the dimensionless posit-
ive viscoelasticity parameters {a,1, 2, n3, Am1, @m2, Ams } and the functions
{0 = Uz(0),0 — Us(o)} defining the curvature and torsion of the reference
space-curve:

n1 = x(v1 + an1 v1y) (6)
ng = x(ve + anz v2y)
n3 = (v3 + a3 vsz,) — 1
my = Iy (ur + ami uryy) + Ti2(ug — Uz + aumg uay)
mo = I (uy + a1 ury) + Ioo(ug — Uz + aupo ugy)
m3 = (u3 — Uz + am3 uzy)- (7)

3. BOUNDARY CONDITIONS

We assume that the drill-string is connected to effective masses p0p and
tyiv modelling the top drive and BHA respectively and point rigid bodies
with rotary inertia tensors J'7 and J%* modelling the rotary and drill-bit
respectively. The top-drive connection to the drill-string is located at o = 0
and the drill-bit is located at ¢ = 1. At these points forces F*°P (1) and F%(n)
and torques L'°P(n) and L"(n) act. The nature of these forces depends on the
way the boundary conditions are implemented. In some circumstances certain
of their components may be prescribed (e.g by the frictional forces or drive
torques in evidence) while other components may be determined dynamically
by the constraints in evidence (e.g. the way the stabilisers interact with the
bore-hole in the BHA). The basic boundary conditions that follow from the
discontinuity relations (2), (3) are then:

,UtOPR(Oa n) = n(0,7) — pop gk + FtOp(”)
3y (J*P(w))(0,7) = m(0,7) + L'(n)
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at 0 =0 and

i R(1,m) = —n(1,7m) — pyir gk + F(n)
Op(I"(w))(1,m) = —m(1,n) + L (n)

at 0 = 1. The implementation of these boundary conditions can be a matter
of some expediency in order to match the model as closely as possible with
the way in which an actual drilling process is executed. This is because the
process is essentially controlled by varying the magnitude of the tension in the
cable attached to the drill-string at the top, the voltage and current in the
electric motor that delivers the torque to the drill-string and the manner in
which the drill-string itself is lowered through the rotary to accommodate the
penetration of the bit into the rock. If the motion of the latter is prescribed
so that

R(0,7) = A"(n)k

then the top constraining force is determined from:

Ft””(n) = p1opR(0,7) — n(0,7) + p1op gk

in terms of the contact force n(0,7n). The electric motor is designed to deliver
torque that drives the entire drill-string towards a uniform (target) angular
speed . It also responds to signals from various control feedback devices that
are designed to expedite a smooth as possible evolution towards this target
state [7]. If one assumes that the rotary is rotationally unconstrained and
that the transmission of the torque to the rotary is similarly unconstrained
then the torque boundary condition to be satisfied at o = 0 is

(3% (w))(0,n) = m(0,7) + L' (n) (8)

for some control torque L*P(n).

In practice the rotary is constrained by bearings to rotate in a fixed ho-
rizontal plane. In vertical drilling this is orthogonal to the tangent to the
drill-string as it passes through the rotary. In these circumstances only the k
component of (8) is imposed. The constraint on the rotary can be modelled by
R'(0,n7)-i=0, R/(0,n)-j = 0. These constraints imply the existence of con-
straining torques in L'?(n) in the i and j directions which may be determined
from the projection of (8) in these directions.

The implementation of realistic boundary conditions at ¢ = 1 is consider-
ably more involved and we refer to [6] for details. For the discussion below
simplified boundary conditions at both ¢ = 0 and ¢ = 1 will be employed.
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4. THE EQUATIONS FOR SMALL FLEXURAL EXCITATIONS OF DRILL-STRINGS

Under certain conditions the drill-string in the above model exhibits in-
stabilities in torsional, axial and lateral modes of excitation [6]. Small amp-
litude lateral excitations arise as perturbations (about a vertical static config-
uration) of the form

52
R(o,n) = eX(o,n) i+ (gT —o+eZ(o,n) k

dy =i+eO(o,n)k
ds =—j
d; = —k + €O(0o,n)i.

Substituting these into (4)-(5), (6)-(7) with € < 1 yields equations for axial,
lateral and flexural waves:

0? 0? 03
6—7’22(0,71) - WZ(Oa n) —

P
O(0,n) (0g — 1)k (x + g — x0g) — kX an1 (0g — 1) a_nG(U’”)

2 83

—ap1k X (0g —1) 87760X(U’n) + I am2W@(Uﬂl) (9)
02 02 0
+139 @@(Uﬂ?) — Iy 8—7726(0’ n)+ & (x +0g9—x09) 8_UX(U’ n) =0

0? 0
0(0:1)g (x — 1)+ x 5z X0v0) + xam (5-6(0)) g
2

0
+ap1x (g —1) anaa@(m n) —(x +o0g9—x09) 8—09(0, n) (10)

2 83
—8—772X(0ﬂ7) +Xan1WX(U,"7) =0

If the viscoelastic damping and gravitational weight terms proportional to
g are neglected equations (9) and (10) may be decoupled resulting in the
traditional Euler-Bernoulli-Kelvin beam equation for small lateral deflections
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[5]:

84 2
122X@X(0a77) +xk 6—172X(0377)
ot ot
— Iy (1+x) WX(U’ n) + I 6—174X(Ua n) = 0.

These equations have been extensively analysed in the literature and their
solutions are applicable to a wide range of systems that can exhibit perturb-
ative instabilities. They arise naturally from the general theory based on the
equations in section (2) and when supplemented with (linear or static) bound-
ary conditions enable one to study the spectra of the linear flexural modes of
the system. However we are mainly interested here in the non-perturbative,
non-linear modes associated with non-static boundary conditions such as those
that occur at the ends of a realistic drill-string in operation [6]. In the next
section we seek an approximation scheme which permits an analytic determ-
ination of such non-perturbative flexural modes.

5. THE EQUATIONS FOR LARGE AMPLITUDE MOTION OF LIGHT ELASTIC
DRILL-STRINGS WITH HEAVY ATTACHMENTS

For the configuration R(o,n),dx(o,n), with strain variables v,u and an-
gular velocity w defined by

R' =v, © =u X dg, (11)

dk:WXdk,

the equations of motion of the drill-string under gravity are given by

R=n"—gk+f (12)

Oplpl-w)=m'+ kR xn+1, (13)

in terms of external body forces f and torques 1. At o = 0, the variables R, w
satisfy the equation of motion of a rigid body with heavy effective reduced
mass o and effective reduced inertia Jo(n),

poRo(n) = no(n) — pogk + fo(n),

’ (14)
Ay Jo(n) - wo(n)] = mo(n) + Lo(n),
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where RO(”) = R(Oan)7n0(n) = n(oan)amo(n) = m(oan)’wo(n) = W(Oan)
Similarly at ¢ = 1, these variables satisfy the equation of motion of a rigid
body with heavy effective reduced mass u; and effective reduced inertia Jq(n):

mR1(n) = —ni(n) — pgk + fi(n),

15
8y131(n) - w1 (n)] = —mma () + Ly () (19)
where Rl("?) = R(lan)7n1(n) = n(lan)aml(n) = m(lan)’wl(n) = W(lan)
We now choose (f=1=0, f; =0 =1;) and consider the approximation where
the left-hand sides of (12) and (13) may be neglected at all time compared
with the forces and torques on the right-hand sides. This approximation has
been discussed in [2] and effectively means that the dynamical motion at an
end of the drill-string dominates the forces and torques that drive the sys-
tem. Following [2] we refer to this approximation in terms of “light elastic
drill-strings with heavy attachments”. It is expected to be a reasonably ap-
proximation as long as the weight of the drill-string is not excessive compared
with that of the BHA.

Then (12) may readily be integrated with respect to o,

n(o,n) = g(o — Dk +n1(n) = gok + no(n), (16)

while (13) becomes
m’' = —kR' x n. (17)

To proceed further one needs to specify explicit constitutive relations for the
drill-string. For this analysis we adopt the Kirchoff relations for a uniform
cylindrically symmetric drill-string, neglect all forms of damping and refer to
[2] for an account of the role played by viscoelastic damping in the dynamics
and mathematical formulation of this approximation as the first term in an
asymptotic expansion:

n=v —ds, m = 1u + Juzds, (18)

where we have set yx = 1. Thus the drill-string can undergo extension and
shear (cf. [2]). Although x = 1 is rather special it greatly simplifies formulae
(as the analysis in section (10) demonstrates). From (18) and use of (16), (11)
we find,

R’ =n;(n) + g(oc — 1)k + ds, (19)
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and from (17) with use of (19) we find,
£'m' = —R' xn=mny(n) xds +g(c — )k x ds. (20)
From (18), u = 2m — m3ds, and since uz = mg3 equation (11) is reduced to,
5 =uxd;=2m x ds. (21)

The strategy is to solve equations (20), (21) for m(o,n) and d3(o,n) in terms
of ni(n) or ng(n) and then solve (19) for R(o,n). Next one may substitute
m(o,n) and ds(o,n) in (11) to solve

'1:u><d1:2m><d1—m3d3><d1,

'2:u><d2:2m><d2—m3d3><d2,

for d; and do. Finally the 1 dependence of the solutions is determined by
fixing the evolution of n;(n) from the boundary conditions. The imposition
of the boundary conditions means that we are dealing with a nonlinear eigen-
value problem.

It is convenient to use the Euler angles 6, ¢, to relate the director frame
to the global Cartesian frame i, j, k:

d; = (—siny sin ¢ + cos O cos ¢ cos )i + (cos 1) sin ¢ + cos 6 cos P sin1))j
— (sinf cos @)k,
ds = (—sin) cos ¢ — cos @ sin ¢ cos )i + (cos 1) cos ¢ — cos O sin psin))j
+ (sinfsin @)k,
d3 = (cos 1) sinf)i—+ (sinypsinf)j + (cos 6)k.

Then with
R=Xi+Yj+ Zk,
n; = niz(n)i + niy(n)j + n1z(n)k,
m = m,i+ myj + mk,

we have

ni(n) x dz =i[niy(n) cos § — ni,(n) sin+ sin 6]
+ j[n12(n) cos ¢ sin @ — ny,(n) cos 6]
+ k[ni,(n) sintp sin @ — ny,(n) cos 1 sin 6],
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k x d3 = —isinsinf + jcos ) sin 6
and equation (20) yields
= n) cos @ — ny,(n)sintpsinf — g(o — 1) sintpsin 6
K my, = n1,(n) cos P sin — ny,(n) cos @ 4 g(o — 1) cos 4 sin 6
L= n) sin 4 sin @ — nq,(n) cos 1 sinb.
Similarly equation (21) reduces to
¢ = —2m, + 2(my cos b + my sinp) cot 0,
6" = 2(my cosp — my sinp).
Differentiating (23) with respect to o and using (22) gives
k1" = 2(—nig(n) sin + niy(n) cos ) (sin ) ! — 14’6’ cot 0

k710" =211, (n) sin @ — 2(n12(n) cos 4 + nyy(n) sinep) cos 6
+ 9’ (my cos i + my sinep) + 2g(c — 1) sin 6.

(22)

(23)

(24)

(25)

These equations, supplemented with boundary conditions, permit an ana-
lysis of the general motion of the light drill-string as a dynamic space curve.

6. THE EQUATIONS FOR LARGE PLANAR FLEXURAL MOTION OF LIGHT

ELASTIC DRILL-STRINGS WITH HEAVY ATTACHMENTS

In order to proceed we now restrict to planar motion by seeking solutions

withyp =0, ¢ =0 and R - j = 0:

R = Xi+ Zk,
d; = cos 6i — sin 6k,
do :ja

d3 = sin#i + cos k.

Hence from equation (11), (17):

W:éj,
u=>4j,
m = 16¢'j,

ni(n) = niz(n) i+ n1z(n) k.

(26)

(27)
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We introduce new variables A(n),~v(n) in place of ni,(n),n1.(n) by writing

ny(n) = —(2x) " A(n)*(siny(n)i + cos y(n)k),

where, without loss of generality, we set A(n) > 0 and —7 < y(n) < w. For
planar motion, equation (24) is satisfied and (25) reduces to

0" =2k[n1,(n) sin@ — ny,(n) cos 0] + 2kg(c — 1) sin O

2 . : (28)
=— A(n)°sin(0 — y(n)) + 2kg(c — 1) sin 6
for 6(o,n). We may integrate equation (19) using (26) to get
R(0,n) = R(0,7) — (5B) " o A(n)*(siny(n)i + cosy(n)k) (29)
+ gk(30% — 0) + [ do’(sin@(o’, n)i + cos 6(c’, n)k).
Clearly
R(1,n) = R(0,7) — (kB) " A(n)*(siny(n)i + cos (n)k) (30)
+ (—3)gk + [ do’(sinf(a’, )i + cos B(a”, k).
From (14), (15) these must satisfy the boundary equations:
poRo(n) = no(n) — po gk + fo, (31)

R (n) = —ni(n) — p1 gk

These equations constitute a non-linear eigenvalue problem of some com-
plexity. In principle one can use Greens function techniques to express solu-
tions to (28) in terms of Airy functions. However the analytic integration of
such functions in (29) is not possible and recourse to a numerical investigation
of a two point boundary value problem becomes necessary. We seek a further
simplification in order to progress analytically.

7. PLANAR MODES FOR A DRILL-STRING WITH NEGLIGIBLE WEIGHT

The need for integrals of Airy functions can be eliminated if we set g = 0.
With this simplification we may extract non-linear modes analytically if we
adopt as boundary conditions d;(0,7) = i,d2(0,7) = j,d3(0,7) = k,J1(n) =
0. Thus the drill-string is assumed clamped at the upper end and the BHA
has zero rotary inertia. The former implies 6p(n) = 0 from (26) while the
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latter implies 0}(n) = 0 from (15) and (27). Thus (28) gives the boundary
value problem
0" + A(n)* sin(0 — v(n)) = 0, (32)

6(0,m) =0, 0'(1,m) = 0. (33)

We shall see below that given R(0,7) equations (30) and (31) enable one to
determine n;(n) and hence (via (16)) ng(n).

We choose to solve the boundary value problem (32) (33) for 6(o,7n) in
terms of A(n) and (n). Let a(o,n) = 6(o,n) — v(n), then o’ = 0", and
equation (28) becomes

"+ A(n)?*sina =0 (34)

with boundary conditions
a(0,n) =—y(n), oLy =0. (35)
By multiplying (34) with o/, we get for some M(n) a first integral for a:
5(a/)? = A(n)? cosa = M (n). (36)
Using the boundary condition at o = 1, equation (36) can be written

o =ev2A(n)\/cos a — cos a1 (1), (37)

where ¢ = +1. One can glean a qualitative picture of the eigen-modes from
the (instantaneous) phase portrait of equation (34). At o = 0, &/(0,7) =
ev/2A(n)+/cos a(0,n) — cos a;(n), therefore the sign ¢ in (37) corresponds to
the sign of o/(0,7). The stationary points o’ = 0, o” = 0 are given by

a=0,%m.

Typical solutions of the boundary-value problem (34), (35) correspond to the
trajectories o € [0,1] — AB, CD, ABCD, CDAB, ABCDAB,.. in the phase
plane (a, /) (Figure 1) depending on o/(0,7).

In order to relate the integration of (37) to standard elliptic integrals let
k(n) = |sin a1T(n)|’ (k(n) € (0,1)) and transform « to ¢ with siné(o,n) =

k(n)~"'sin @ Using the following identities
cos o — cos ag (1) = 2k(n)? cos? €,

sina = 2k(n)sinéy/1 — k(n)2sin &,
sin ada = 4k(n)? sin € cos £d¢
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equation (37) reduces to

o = ST Ee .
and the boundary conditions for ¢ become
sinéo(n) = —k(n) ™' singy(n),  &(n) =e(2j +1)F,
where j = 0,1,2.... Thus if we integrate (38) from 0 to 1,
1= [ a0 = 5o (Rl + D k) - Fleato), k) »
= 17 (2 DK (k) = F(éo(n). k()

where F' is the elliptic integral F(&, k) = foé dz(1 — k?sin? 2)~ /2 and K (k) =
F(m/2,k) is the complete elliptic integral. Hence

A5(n) = Aar(n),v(n) = (25 + 1)K (k(n)) — eF (So(n), k(n))) (40)
where a1(n) = a(l,n), k(n) = |sin 0“2(") |, sin&o(n) = —k(n) =" sin 3y(n). Thus
we have a two index (g, 7) family of solutions o5 to (34), (35) in terms of the
three dynamical parameters {A(n), a1(n),y(n)};constrained by relation (40).

Each member of this family is described by a surface (Figure 2) in a space
with coordinates [A, oy, ] or equivalently [A,6;,v]. For fixed n a point on
such a surface generates an allowed flexural mode. Once the n dependence of
the coordinates of this point is known, the evolution of this flexural mode is
generated by a curve in this surface.

The dependence of £ on o can be obtained by integrating (38) from 0 to o

PN

o / Tdo' = —© J (& k() — Fléo(n). k()
0 n (41)

Ay (K ) + F(E k) = F (6o, k()

where { € [-Z,Z], and £ = { + ejm.
Equation (41) can be written

e su(A5 ()0 + eF (o), k(n)), k(n) = sin(€) = k(n) " sin o,
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where sn is a Jacobi elliptic function. Finally, in terms of 6 for each ¢, j:

(o, n) = a(o,n) +v(n) =2arcsin(k(n)sn(A(n)o
+eF (&(n), k(n)), k(n))) +v(n).

By putting this solution in (27) we obtain expressions for di,ds, ds, w, u,
m,n,. Similarly (29) yields R. All these solutions are given in terms of

A(n),y(n) and a1 (n) satisfying (40).
8. REDUCTION TO A DYNAMICAL SYSTEM

Having obtained analytic expressions for the instantaneous flexural eigen-
modes it is of some interest to reduce the complete dynamical evolution of
the drill-string to a dynamical system. We concentrate on the evolution of
a particular mode labelled by j and ¢ (and drop these labels henceforth) and
solve for v(n) and a;q(n). From the evolution equation,

umR(Ln) = —ni(n) = (265) 7 A(n)* (siny(n)i + cos y(n)k) (42)

while equation (31) yields

Ri(1) = Ro(n) — (26) 7 A(n)* (siny(n)i + cosy(n)k)
1
/0 do'(sinf(o’, n)i + cos O(a’, n)k)
Xi(m)i+ Zi(nk.

We choose Ry(n) = 0 and evaluate the integral to get

1
cosy(n) X1 (n) — siny(n) Zu(n) = /0 do' sin (o’ 1)

_2k(n) cos&(0,n) _
=& A(n) = fl(n)a

1
siny(n) X1(n) + cosy(n) Z1(n) = —(2k) " A(n)? +/0 do’ cos a(o’,n)
)

1
2j 4+ 1)E(k) — e E(£(0,7), k)
A(n)
= —(26) " "A(n)* =1+ fa(n) = f3(n)

= —(2/{)7114(77)2 — 1—|—2(
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in terms of the abbreviations f1, fo, f3. These equations can be solved for

Xi(n) = fi1(n) cosy(n) + f3(n) siny(n), (43)

Z1(n) = —f1(n) siny(n) + f3(n) cosy(n). (44)

But the equation of motion (42) reads

X1 (n) = A(n)? siny(n)

] (45)

piZ1(n) = A(n)* cos(n)
and, from (43), (44), we note that Xi(n), Z1(n) are functions of ay(n) and
~v(n). Hence after differentiating them twice with respect to 7, the equations
(45) are reduced to two second order ordinary equations for «q(n) and ~y(n)
of the form:

7(”) :fﬁ(alﬂdla’y”‘y)
041("7) :‘7:04(0517a.1777’y)‘

These equations determine the evolution of each non-linear planar flexural
eigen-mode
{X(o,n), Z(0,n),0(c,n)} within this framework.

9. QUATERNION FORMULATION

In numerical simulations the use of Euler angle parametrisations of rotation
group elements must be done with caution in order to obviate the intrusion of
coordinate singularities in the evolution. An alternative procedure is to use a
quaternion parametrisation which shifts the location of unwanted singularities.
It is therefore not without relevance to recast the above solution into these
variables. If (q1,q2,43,q4)(0,n), (with ¢7 + ¢3 + ¢3 + ¢3 = 1), denote the
quaternions then the constraints of orthonormality among the directors can
be taken into account by writing:

di = (¢} — ¢ — g3 +43)i+2(q12 + g3q4)] + 2(q193 — q2q4)k,
dy = 2(q1g2 — q3q1)i+ (—qf + @3 — 45 + 43)i + 2(a243 + qqa)k,
d3 = 2(q1g3 + q2q1)i + 2(q2q3 — q1qu)j + (=i — & + &5 + aD)k.
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The restriction to planar motion follows with with ¢ = g3 = 0,and R -j =

R=Xi+Zk,
di = (¢ — ¢3)i — 2q2quk,
d2 :ja

d3 = 2g2q4i + (¢f — ¢3)k.

The relation to the previously used Euler angle 6 is given by

qo = sin o q4 = COS 3

Hence from equation (11), (17):

m = (¢hqs — ¢192) J,
n(n) = nix(n) i+ ni.(n) k.

As before, introduce new variables A(n),~v(n) in place of ni,(n),ni,(n) by

writing
ny(n) = —A(n)*(siny(n)i + cos y(n)k),

where, without lose of generality A(n) > 0 and —7 < y(n) < 7.
Equations (20), (21) now reduce to:

a4 = —3myge, (46)
gh = 3myq, (47)
my, = —ng(qf — ¢3) + 1.2q2q4-

It is convenient to introduce new variables (o, ()4
Q2\ [ cos3 —sin3 ¢
Qi) \ sing cosi Q4
SO

m;, = (A%sinv)(qf — ¢3) — (A® cos ) (2g2q1) = —2A4°Q2Qu,
my = 5112514 — QQQQ = QIQQ4 — QZQ2-
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From (46), (47)

n__ 1, 1 1, 2
44 = _imyq - Zmyq47

qé’ = %m;q;; - %mSQ%
and
QY = $mi Qs — tm2Qy = —A2QxQ% — (£2)%Q2 (48)

with boundary conditions

QQ(OJI) = 01 q4(0777) = 13
g5(1,m) = ¢4(1,7) =0,

Q2(0,m) = —sin@, Q4(0,m) = cos @,
Multiplying (48) by 2Q}/(A4Q3) and integrating gives
12

2 2 _ 2
m+Q2 = Q2(1,m)".

Q5 = eA(n)Q1/Q2(1,1)? — Q3

where ¢ = +1. Let k(1) = Q2(1,1) and Q(o,7) = Q2(0,n)/k(n) then

Hence

L c . .
1 2/0 do’ = oy F Q). k(n)) = F(Q(0, ), k(n))

- ﬁ[@j + VK (k(n), 1) — F (Qo(n), k(n))

where F is the elliptic integral F(z,k) = [; dz(1 — E222)"12(1 — 22)~1/2,
Qo(n) = Q(0.7)) = Q2(0,9)/k(n) = —k(n) " sing7(n). Hence for each ¢ =
+land j=0,1,2...,

A5(n) = ((2 + DE () — =F(Qo(n). k(n)) )

defines a surface in a space with coordinates {4, k,~}.



236 R.W. TUCKER, R.S. TUNG, C. WANG

10. THE CASE x # 1

In section 5 we commented that a simplification arises if one takes x =1
in the constitutive equations for the drill-string. In this section we relax this
condition.

With x # 1,

n = xvid; + xvoda + (v3 — 1)d3, (49)
m = %Uldl + %Ung + usds.

which reduces to (18) when x = 1. In the case of a planar motion, vy = u; =
uz = 0, and (16) and (49) gives

~—

+ ('03(0, n) — 1>d3(a, n)
=g(o — 1)k +ny(n) (50)
=g(o — Dk — (26) " A(n)*(siny(n)i + cosy(n)k),

n(o,n) = xvi(o,n)di(o,n

~—

where dq, d3 are given in (26). Thus
xv1cos@ + (vy — 1) sin@ = —(2x) "' A(n)? siny(n),
—xv18inf + (v3 — 1) cos @ = g(o — 1) — (2x) L A(n)? cos y(n).
Solving these equations for v; and v3
v =X —(26) 1A% sinycos + (2k) L A% cosysin — g(o — 1) sin 6],
v3=1—(2k) "1 A%sinysin@ — (2x) 1A% cosy cos 0 4 g(o — 1) cos 0

yields
R = v1dq + v3ds. (51)

where d; and dj are given by (26). From (50), (51), the torque equation (17)
is then expressed in terms of 6 as

0" = — A(n)*sin(0 — ) + 2kg(c — 1) sin
+5(1 = x H(2K) " A(n)* sin(260 — 2v) — 2g(0 — 1) A(n)* sin(260 — )
+ 2kg% (0 — 1)? sin 26).
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With g = 0 this reduces to

o = —A(n)?sina — L H(x 1 — 1)A(n)! sin2a (52)

with boundary conditions

a(0,m) = =),  a;(1,n) =0. (53)

As before the stationary points in the phase plane are given by o/ = 0 and
real roots of

o = A(n)?sina[—1 — (26) " (x7! — 1) A(n)? cos o] = 0.

For (2k) YA(n)2(x 1 —=1) > 1 (or (26) *A(n)?(x ! —1) < —1), there are real

roots at
1 —2K

(' =1)An)?
while for —1 < (2k) ' A(n)?(x ! — 1) < 1, they occur only at

a=0,m,+cos”

a=0,m.

and we recall that the parameter A(n) depends on the initial configuration
Ri(n) and Rq(n).

For x near 1, the phase portrait (figure 3) is similar to the one in figure 1.
When 2x/(x~! — 1) < A(n)? the phase portrait changes structure (see figure
4).

Equation (52) admits a first integral

(a')? —2A(n)* cosa — T H(xt — 1) A(n)* cos2a = M (n), (54)

where using the boundary condition (53), M(n) = —2A(n)? cos i () — 2k~

(x~' — 1)A(n)* cos 2a; (n). Equation (54) can be written as

o' = e[2A(n)? (cos a — cos a1 () (55)
1

)
+ 1571 (™ — 1) A(n)* (cos 2 — cos 201 (n))]2,

where ¢ = +1.
For the case A(n)? > 2k/(x~' — 1), we can transfer this equation to a
standard elliptic integral form, with

) = —4k+ (x~' = 1)A(n)?(1 — cos a1(n))
n 4k + (x 1 = 1)A(n)%(1 + cos a1 (n))
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and m(n) = I(n)~!|tan O‘IT(")|_1, sin((o,n) = l(n) tan @, then equation
(55) is reduced to

£ (56)
A(m)\/[-2+(26) =1 (x~1=1) A(n)? (1—cos a1 (n))](1—cos a1 (1))
d¢
1—m(n)?2 sin? ¢

/ do’

0

/§(Uﬂ7)
Co(n)

which is standard form.
The boundary conditions for { are

sinCo(n) = —I(n) tan 3y(n),  (i(n) = (2 +1)3,

where 7 =0,1,2....
If we integrate (56) from o = 0 to 1,

1
1:/ do’
0

e ((2j + DeK(k(n)) — F(&o(n), m(n))) ,
AmVI1=2+ (26) T = D A2 (1 = cos ar (n))](1 — cos au(n))

where F' is the elliptic integral defined previously with K(m) = foﬂ/ 2 dé(1—
m?sin? £€)71/2. This is the generalisation of (39) to the case x # 1. From the
solution (56) to (52) the equations for the displacement of the entire rod follow
along the same lines as given in section(8). The role of the initial conditions in
controlling a stable evolution through the system of quasi-stable equilibrium
configurations is critical. We show in [8] how the critical conditions arise for
small planar flexural motions in the context of the approximations discussed
here.

11. CONCLUSIONS

Analytic expressions for the shear deformation have been obtained describ-
ing a family of planar flexural modes along a light rod subject to clamped
boundary conditions at one end but with a heavy attached mass without
rotary inertia free to move at the other, in a limit in which the dynamics of
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the rod is driven by the end conditions. The dynamics of these modes can
be generated from an analysis of the phase portraits of a simple differential
equation together with the structure of birfurcation surfaces in a 3-parameter
space describing end-stress and end-shear deformation. These motions arise
as approximate solutions of a simple Cosserat model which may be used to
simulate the dynamical properties of the active components of a drilling as-
sembly and offer a useful means of gaining a broad insight into the delicate
dynamics associated with such structures.
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Y

Figure 1: Phase Portrait for planar flexural modes « of a drill-string with
x = 1. The boundary condition at o = 1 corresponds to a point with o/ =0
while the boundary condition at ¢ = 0 lies on the line (shown dotted) with
a = —v. Non-linear eigen-modes correspond to trajectories that connect such
points as o varies from 0 to 1. Thus solutions of the boundary-value problem
(34), (35) correspond to instantaneous Cosserat drill-string mode shapes given
by the trajectories o € [0,1] — AB, CD, ABCD, CDAB, ABCDAB, ...,
depending on the value of /(0,7).
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Figure 2: Segment of the bifurcation sheet (7 = 0 ) describing the first flexural
mode in the space (A4, aq,v). The variables A,y determine the instantaneous
contact force at either end of a Cosserat drill-string with x = 1 while o =
01 — v determines the corresponding degree of flexure at the end o = 1.
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Figure 3: Segment of the the bifurcation sheet (j = 1 ) describing the next
flexural mode in the space (A, a;,7). The variables A, determine the in-
stantaneous contact force at either end of a Cosserat drill-string with x =1
while o = 07 — v determines the corresponding degree of flexure at the end
o=1.
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Figure 4: Segments of bifurcation sheets j = 0,1 (distinguished by a graded
grey scale) describing the first two flexural modes in the space (A, aq,7). The
sheet with j = 1 lies above that with 7 = 0. The variables A,y determine the
instantaneous contact force at either end of a Cosserat drill-string with y =1
while o = 07 — v determines the corresponding degree of flexure at the end
o=1.
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o o N

Figure 5: An alternative view of the bifurcation sheets 7 = 0,1, (distinguished
by a graded grey scale) describing the first two flexural modes in the space
(A, a1,7) showing how they relate to the section v = 0 in Figure 6. The
sheet with j = 1 lies above that with j = 0. The variables A,y determine the
instantaneous contact force at either end of a Cosserat drill-string with y =1
while o = 07 — v determines the corresponding degree of flexure at the end
o=1.
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Figure 6: Bifurcation loci determined by the elliptic functions described in
the text. The lowest two curves correspond to the section v = 0 through
the bifurcation sheets (j = 0,1, ¢ = £1) shown in Figure 5. The variable A
determines the instantaneous contact force at either end of a Cosserat drill-
string with x = 1 while @y = 61 determines the corresponding degree of flexure
at the end o = 1.
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Figure 7: Phase Portrait for planar flexural modes « of a Cosserat drill-string
with x # 1 and A(n)? < 2k/(x~' — 1) The boundary condition at o = 1
corresponds to a point with o/ = 0 while the boundary condition at o = 0 lies
on the line (shown dotted) with & = —v. Non-linear eigen-modes correspond
to trajectories that connect such points as o varies from 0 to 1.
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Figure 8: Phase Portrait for planar flexural modes « of a Cosserat drill-
string with x # 1 and A(n)? > 2x/(x ' — 1). The boundary condition at
o = 1 corresponds to a point with ¢/ = 0 while the boundary condition at
o = 0 lies on the line (shown dotted) with a = —v. Non-linear eigen-modes
correspond to trajectories that connect such points as ¢ varies from 0 to 1.



