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1. INTRODUCTION

The main goal of this work is to present two different problems arising in
Fluid Mechanics of perforated domains or porous media. The first problem
concerns the compressible flow of an ideal gas through a porous media and
our goal is the mathematical derivation of the Darcy’s law. This is relevant in
oil reservoirs, agriculture, soil infiltration, etc. The second problem deals with
the incompressible flow of a fluid reacting with the exterior of many packed
solid particles. This is related with absorption and adsorption phenomena
in beds or towers, of interest in Chemical Engineering (separation, chemical
industry, etc.,).

A common aspect to both problems is the nature of the spatial domain:
the porous medium. Some examples arising in different applications can be
found in the books by Bear [5], Bensoussan, Lions and Papanicolau [6], Ene
and Polisevski [12], Hornung [14], Morris [25], Norman [26], Oleinik, Shmaev
and Yosefian [27], and Sanchez-Palencia [28].

We shall assume some periodicity structure on the porous media. More
precisely, we start by considering an open bounded set Q of RV, with N = 2
or 3, of regular boundary 9€2. For any small € > 0 we consider the perforated
domain (). obtained by intersecting the e—multiple of a periodic geometry
with Q: i.e., we define Y =]0,11[x]0,lo[x - -x]0,Ix[, a bounded regular subset

0 CY with' =00 —9Y and Y* =Y — 6. Finally, we define
Q. =0QNefand I', = Q2Nel.

In the first problem the reference open set 6 = Y; will be the exterior to
the solid part Ys; and we will assume that the union of all the solid parts,
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Q —Q,, and all the fluid parts, ., are connected (i.e. the solid and fluid parts
are of one piece) which is possible when N = 3. In the second problem, by
the contrary, we shall assume that the solid part Q — €. is constituted of a
sequence of nonconnected obstacles, open subsets of ).

In both problems the main goal is the same: to determine the laws (or
system of partial differential equations) satisfied by the homogenized flow
unknowns such as the velocity

v = limv,,
e—0

the density p., the pressure p., the concentration of some chemical component
U, ete.

Usually, the homogenization method starts by the formal derivation of the
limit problem. One starts by the ansatz that the unknowns functions p., v, p.
have an asymptotic expansion, with respect to €, of the form

Vg(.’L‘,t) = vé(xayat”y:% - VO(ZB,y,t) + €V1(£,y,t) + 62V2(Zb,y,t) +.. (1)

with v;(z,y,t) y-periodic with respect to the y = Z variable. And the same for
the rest of fluid unknowns (the dependence on the two variables x,y justifies
the name of two-space method used in the engineering literature: see, e.g.
Keller [18]). The homogenized laws are obtained by using, as a first element
of the analysis, that

1
V=V.+2V,

We point out that some times it is required to assume a special time depend-
ence on v° (see Section 2).

The second part, considerably more difficult, consists in to obtain a rigor-
ous proof of the consequences obtained via formal expansions, but now without
any analytical assumption of the type (1). In other words, it must be proved
that there exists a vg such that v — vg, in some functional space, as ¢ — 0
and the same for the rest of fluid variables p. and p..

In Section 2 of this paper we shall present the formal derivation of the
Darcy’s law [10] (the flow of a liquid through a porous medium the velocity is
proportional to the gradient of the pressure)

1
vy = ;K(Pof — Vapo) (2)
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which, jointly with the homogenized density equation and a state assumption
pe = F( pe), leads to the, so called, porous media equation

5% - div(leOVmF_l(po)) + div(le%f) =0. (3)

ot 7 7

We shall see later that the derivation of the above equation requires some
special arguments: vy must be replaced by va, i.e. the asymptotic expansion
starts with the term of €2, and a different macroscopic time scale must be
introduced. These (unpublished) results were presented in a postgraduate
course by the author in 1992 (see Diaz [11]). Notice that the above formulation
include, as special case, the equation

wy — Aw™ = 0, (4)

(where usually m > 1) which is a simpler formulation very studied in the
mathematical literature since it is a degenerate equation leading to finite
speed of propagation properties (see, e.g. the survey Kalashnikov [17] and
its references).

Equation (3) is very useful for the study of the flow since instead of several
scalar unknowns (five if N = 3) we reduce the problem to the determination
of only one, pg. This fact is well known in the literature but a rigorous proof
was not derived until the work by Luc Tartar [29], in 1980, by using homogen-
ization techniques. The motivation of our interest comes from the fact that
Tartar’s proof deals merely with stationary incompressible fluids and so the
conservation of the mass is reduced to py = p. (a known constant) and

div v=0.

In that case Darcy’s law (2) leads to stationary equation
.1 !
le(;K,Och Po) + dlv(;Kpcf) =0. (5)

Notice that equation (5) is now a linear elliptic partial differential equation
on pg and so of a very different nature to the mathematically richer nonlinear
parabolic equation (3). The rigorous proof of the derivation of equation (3)
seems to be far to be a mere modification of the Tartar result once that
the derivation of a priori estimates, for compressible fluids, is a very delicate
question (see P.-L. Lions [21]).

Section 3 is devoted to a short presentation of some of the results con-
tained in the unpublished manuscript Conca, Diaz and Linan [8]. It concerns
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the, already mentioned, second problem in which a stationary reactive fluid
confined in €2, of concentration u., reacts on the boundary of a porous me-
dium, © — €., constituted by a collection of nonconnected open subsets of €.
A very simplified version of the problem is the following

_Aug = f n QE,
0

_ Ote _ o |u[P" ue  on T, (6)
on

ue =0 on 01},

where a > 0 and the exponent p (called as the order of the reaction) verifies
that p € (0,1). In that case it is possible to give a rigorous proof of the result
obtained via formal expansions and so we shall prove the following

THEOREM 1. Assume p € (0,1), f € L%(Q) and let V. := {w € H' () :
w =0 on 0N} and P. € L(V. : H}(Q)) be a family of extension operators (i.e.
such that (P.w)(z) = w(z) a.e. x € ). Then P.u. converges, (weakly) in
H} (), as e — 0, to a function ug characterized as the unique solution of the
problem

J 6,@18% (7)
ug =0 on 05},

0? _
_Z(Ii 0 adlugl tug=f  inQ,
(2%

where

5— measy_1 00
~ meas(Y*)
and q; ; are suitable constants depending of 6.

2. A MATHEMATICAL DERIVATION OF THE DARCY’S LAW.

Let v. be the velocity, p. the density and p. the pressure of a compressible
fluid occupying the region ).. The correspondent Navier-Stokes system is
formed by the mass conservation equation

dpe
ot

+ div(peve) = 0, (8)
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and the momentum conservation equation

ove i
pe( a‘; + (Ve - V)ve) = =Vpe + pAve + AV(div ve) + p.f. )

We assume a constitutive law of the form

pe = F(pe), (10)

where F': R — R is a strictly increasing function of class C'. The auxiliary
conditions are formed by a boundary condition

v. =0, on dQ. x (0,T)
and the initial conditions

pg(.’L‘,O) :p](ZE), on QEa

v.(z,0) =v(z), on L,

where pr and v are functions defined on the whole domain €2, p; > 0, pr # 0.
As mentioned at the introduction we assume a formal expansion in terms of
powers of . In our case we introduce the variables

y== and T =c"t
€

and assume the ansatz
pe(z,t) = po(z,y,7) + ep1(z, ¥, 7) + % pa(z, y, 7) + -+ - ly=2 r=eht
vE(mﬂ t) = 6n (VO(ma Y, T) +evy (.’L‘, Y, T) + 62V2(ZE, Y, T) + - |y:%77—:5kt
pe(ma t) = pU(ma Y, T) + Ep1 (IE, Y, T) + 82p2($7 Y, T) + - |y:%77':5kt

with k& and n to be determined later (see Remark 2 for a justification of such
type of expansion). We have

9 _ a0
ot ot
1

V=V,+ gvy,

1
div = div, +—div,,
€

82
0z;0y; )

2 1 al
A=Apt gy + 58y (Agy = ;
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By choosing
k=n=2 (11)

(see Remark 2 for a justification via Dimensional Analysis) the identification
of the coefficients of ! at the momentum equation leads to the condition

Vypo =0.

So, from (10), “py and py are independent of y”. The identification of the
coefficients of € at the momentum equation imply that

0=—(Vupo + Vypl) + ,uAyV() + )\Vy(div vo) + pof.
Then, using (12) the above equation reduces to
0 = —(Vapo + Vyp1) + udyvo + pof.

On the other hand, since k = n we get, through the conservation of the mass,
by identifying the coefficients of €” and €"~!, that

0 ) .
% + div,(povo) + divy(povi + p1ve) = 0, (12)

and
divy(p()VO) = 0. (13)

Since pg is independent of y and obviously we are interested in the case
po(z, 7) # 0, (14)
and as vg is Y-periodic we conclude that, for fixed z and 7,
divyvo =0 1in 0.

So, at the local level the flow is incompressible. Now, we define the mean

operator
~ 1 /
= — ody
Y1)y

and extend by zero all the functions defined on 6. The main result of this
section is the following
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THEOREM. Assume (14) and (11). Then

0 . ~
§2P0 div,(povg) = 0, (15)
or
where 9
0= % (the porosity of the medium). (16)

Moreover, there exists a constant symmetric and positively defined matrix K
such that

- 1
vo(z,7) = ;K[pQ(ZE,T)f(ZE,T) — Vapo(z, 7). (17)
Proof. 1t is clear that

po(x,7) = dpo(,T).
Now we apply the mean operator to the equation (12). We have
dﬁlzi/ divyvldy:L vi-ndo =0
Yl Jy Y| Jay
since vi = 0 on I' and vy is Y-periodic. Moreover
- 1

Vyp1ve = m/yvyplv(]dy

1 . ‘ 1
= m[/y ley(p1V0)dy - K/pl ley V(]dy] = m - AR ndo = 0

and so we get equation (15) which is the macroscopic mass conservation of
the homogenized fluid. In order to show (17) we point out that v solves the
Stokes problem

—pAyvo = —=Vyp1 +f*  in 6 x (0, 00),
divyvg =0 in 6 x (0, 00),
vop=0 on I" x (0, 00),

vy is Y-periodic,

where £* = pof —V,pg. So, vq coincides with the unique weak solution in the
sense of Leray (see, for instance [30]), i.e. vy € Vp and

u/ Vyvo - Vywdy = /f*-wdy
Y 0
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for any w €V where
Vp:= {w € H'() : divy, w = 0, w is Y-periodic and w = 0 on I'}.

As in [28, Proposition 2.1], if for 1 < i < N we define v* (y), v' € Vj, as the
solutions of the auxiliary problems

/ Vyvi -Vywdy = /widy
Y 0

assumed w =Y w;e;, then, by linearity, we get that

_ 1. 9Opoy i
Vo = M(p0f1 axl)v .

Thus, applying the mean operator we get that

K—(Pofi— ﬂ)-

U L
0j =
T Ox;

The fact that the permeability matrix K = (Kj;) is symmetric and positively
defined follows as Proposition 2.2 of [28]. |

COROLLARY 1. Under the assumptions of the above theorem and the state
law (10) we have that pg satisfies the quasilinear parabolic equation

5220 _ div (LK poVF 1 (0)) + div(EKp3f) =0. (18)
or 7 7

In particular, if £=0,0 =1/p and K =1 (the identity matrix) then

9po
or

where ¢ is the increasing function defined as

— Ap(po) =0, (19)

g

o(s) ::/0 7F’(F_1(O'))d0.

Remark 1. The special expansion could be replaced by a standard one (i.e.,
with terms in e and €° for the velocity and without a macroscopic time scale)
by including physical parameters suitably scaled at the microscopic equations
as, for instance

k avg

5 + e (v, - V)v.) = —Vp. + pe"Av, + Ae"V(div v,) + p.f.

pe(e
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The condition (11) means that (very small) viscosities ue? and A\e? are in
good dimensional balance with the rest of the terms of the equation. If we
do not assume the condition (11) then the Darcy’s law may become integro-
differential (see Lions [19] and Allaire [1]), nonlinear, or it may disappear
as a deterministic law (see Section 7.4 of Sanchez-Palencia [28] and Mikelic
[23]). Nonlinear Darcy’s laws appears in a natural way in the study of Non-
Newtonian flows in porous media (see Lions and Sanchez-Palencia [20] and
the survey Mikelic [24]).

Remark 2. The above special expansion and the condition (11) may be
justified by using Dimensional Analysis. In order to do that let us introduce
some characteristics units L, ., T¢, Pe, Pe,Ve; Ve for the macroscopic length,
the time in the microscopic and macroscopic flow, the pressure, the density
and the velocity in the microscopic and macroscopic flow respectively. We
also introduce the dimensionless variables
T t T D p _ Ve __ Vg

L’%:_ T=/P= " p="—",Ve=—, Vg = —.

T =
te ’ T De Pc Ve Ve

Notice that the microscopic characteristic length is then given by eL. Thus
we see that the microscopic momentum conservation equation becomes

Ve_ OV, vz o _
(chl)g)ﬁ + (Pcs—L)PE(Va -V)¥e) 20)
0P\ Ve . Ve L _
= —(S—L)Vpg + (Mﬁ)Ava + (A@)V(dlvvg) + pep.t,

where §.p denotes the characteristic pressure changes. Since the Reynolds and
Reynolds-Strouhal of the microscopic flow

L
Re = w, ReSt =
M 122

,ocfuce2 L?

are very small (remember that ¢ << 1) the material time derivative terms of
the equation (20) can be neglected and we get that

Ve
- (/J 212

_ Ve Ly _

AV, — A V(div ) = —(CL)vp + . (21)
Making

9P _ Pe

el L
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we get, identifying the parameters of (21), that

L
Ve = Pl 2 (22)

(n+A)

and so the significant terms of the microscopic velocity are of order two in ¢
such as is implied by the special expansion and the assumption (11). On the
other hand, from (22) and the expansion for v.we deduce that necessarily V., =
= for some constant c. Then arguing as before but now for the macroscopic
mass conservation equation

5% + divy(pove) =0
or

we deduce that

Pe _ PVe
T, L
So, we get
c/L
o
€

which justifies the change of scale 7 = 2t previously assumed.

Remark 3. Notice that the macroscopic scaling 7 = €%t means, qualitat-
ively, that the homogenized equation is obtained for times asymptotically large
in the microscopic time scale (for instance, 7 = 1 corresponds to t = 1/¢2).

Remark 4. In the mathematical literature on the case of nonstationary in-
compressible flows in porous media it also used a quasilinear parabolic equa-
tion of the type (19) nevertheless its justification via homogenization theory is
not clear. In the case of two miscible fluids in a porous medium the presence of
nonlinear terms is due to capillary effects leading to jump pressure empirical
relations of the type

p' —p*=G(c)

where p' is the pressure of the i—fluid and ¢! is the concentration of one of the
fluids (see Antontsev, Kazhikhov and Monhakhov [2], Auriault and Sanchez-
Palencia [4], Gagneux and Madaune-Tort [13] and the survey Bourgat [7]). We
also point out that our point of view is different to the one considered by other
authors in which the homogenization process is applied to some microscopic
quasilinear parabolic equations (see, e.g. Artola [3] and Damlamian [9]).
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Remark 5. As already mentioned, a rigorous proof of the convergence, for
the case of stationary incompressible fluids, was given in Tartar [29] (see also
the survey Allaire [1] indicating some improvements but always for incom-
pressible fluids). The main difficulty in this treatment is that is not enough
to obtain a priori estimates for (v./e2, p.) (which are independent of ¢) since
they concerns with a functional space, H§(€2.) x L?(Q.), which varies with e.
Therefore, (v, p:) needs to be extended to the whole homogenized set 2. The
extension of v, is obvious (we take the value 0 outside €.). In the case of the
pressure p. we take the value

1
@/‘9178-

We conjecture that this type of extension and the recent results of P.L. Lions
[21] (see also P.L. Lions and Masmoudi [22]) will allow to get a rigorous proof
of the above Theorem.

3. ON THE HOMOGENIZED REACTION BETWEEN A FLUID AND A SOLID
CHEMICAL SPECIE ON THE WALLS OF A POROUS MEDIUM

Idea of the proof of Theorem 1. By multiplying by u., integrating by parts
and using the monotonicity of the function u — |ul” ~lu we get that there
exists M > 0, independent of ¢, such that

HVUEHLZ)(QE) S M, V€ > 0 (23)

By assumption the extension operators are continuous i.e.,
/ IV P.(v)]* dz < C/ V| dz, Vv € V;, Ve.
Q Qe

So, there exists a subsequence (labeled as P.iu./) such that P.u. converges,
(weakly) in H}(), as ¢ — 0, to a function uy € HE(Q) (in fact, since
problems (6) and (7) have a unique solution the above convergence holds for
the complete sequence P.u.). It remains to show that ug is a weak solution
of (7). To do that we define

g_ VUE, inQE,
o, in Q— Q..
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It is clear that &/ — &, in L?(2)-weakly, as ¢/ — 0, and that

/ & - Vdz + ae'/ lug [P ugrpds = / Xq,, fpdz,
Q Te Q

where Xq, is the characteristic function of Q... By standard homogenization
techniques, it is possible to show that

(24)

o — Irrfeaass((yy*)) in L9(2) — weakly, V1 < g < oo, as e’ =0
Xo — 71;11163;((1/;‘)) in L®() — weakly-star, as & — 0.

On the other hand, thanks to the assumption p < 1 we get that
_ meas(00)
lim / lug [P uprpds = / lug P! ugpdz.
£=0 Jr, meas(Y

So, at the limit

—divé + ad Jugl’ g

= f, in Q.
In order to obtain an expression of ¢ in terms of Vug, for ¢ = 1,.., N, we
introduce the auxiliary cellular problems
—AyX; =0 in Y*,
0X;
- = on 00,
ony

AX; Y*-periodic in y

and then the functions

bie(@) = el4(2) + i, Va € Q.

and

= V¢ZE

It is not difficult to show that if ﬁf denotes the corresponding extension by
zero to 2 — ., then

(%)] meas(Y) fY* dy + meaS(Y )6”)
_ meas(Y*)

meas(Y) 4ij in LQ(Q) - Weakly.
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Finally, using that (after some technical arguments)

Y*
—/f-V:vmd:v+%()/ q; - Vugpdr =0
Q meas(Y) Jq

the conclusion follows. [

Remark 6. After proving the above result (as consequence of the visit of
C. Conca to the Universidad Complutense de Madrid, in November of 1986),
we become aware of some related results in the literature, mainly the papers
U. Hornung and W. Jager [15], [16]. In those papers, the authors consider
a very general formulation which contain problem (6) as an special case but
under the structural assumption p > 1. The case p < 1 is left there as an
open problem and so the above theorem is not covered by their results.

Remark 7. The reaction term on the boundary of the particles

_ Ou,
on

is a simplification of a more complicated situation. In fact, each of the particles
is also a porous medium and so there is a diffusion and reaction at its interior.
In the case of a spherically symmetric isolated particle it is possible to express
Oug/On in terms of the value of u. on I'; once that one assumes that at the
interior of the particle there is a chemical reaction of the type

=aelu’ 'u. onT,,

—Au, + ae |u5|m_1 u; =0, in 0

(see Vega and Linan [31]).
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