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1. Motivations

1.1. Homogenization and Second Grade Media. The aim of ho-
mogenization methods is to replace a heterogenous material by a homogenous
equivalent one endowed with effective properties. The now well-established
results of classical homogenization theory [15] are generally based on the as-
sumption of constant mean fields [1]. It means that the typical size of the
heterogeneities is much smaller than the wave-length Lw of the applied load-
ing conditions. If this hypothesis is dropped or, equivalently, when the het-
erogenous material is subjected to strong overall deformation gradients, ho-
mogeneous substitution media can also be constructed but they usually are
generalized continua [6, 5, 14]. In particular, it can be adequately described
by a second grade medium as proposed in [8, 16], which requires the use of
the first and second gradients of the displacement field u [12, 7]. Strong over-
all deformation gradients can also be induced by strongly non-homogeneous
temperature fields. Let us consider for instance a periodically perforated ther-
moelastic plate under plane strain conditions subjected to a prescribed bilin-
ear temperature field (figure 1) and to stringent boundary conditions at the
bottom.

The variation of the mean deformation from cell to cell can be seen on
figure 1. However figure 3a shows that the perforated plate under such con-
ditions can be successfully replaced by a homogeneous thermoelastic medium
endowed with the effective thermoelastic properties according to classical pe-
riodic homogenization. If the wave length of the temperature variation is not
much bigger than the cell size (like for the sinusoidal temperature field of fig-
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ure 2), the solution predicted by the classical homogeneous medium is seen to
depart from the actual response (figure 3b).

 1 

 2 

 3 

Figure 1. Bilinear temperature field T (x) = |x/L|.200 ◦C
where the size of one cell is L = 200.

Figure 2. Sinusoidal temperature field T (x) = 600 + [sin2x
L

+ cos2y
L

].200 ◦C
spatial period of T = 3L with L the cell size.

If the wave length of the temperature loading is not much bigger than
the characteristic size of the material structure, i.e. here the cell size, then
the temperature within a representative element can no more be taken as
constant in principle. But this means that strain-energy is stored within the
homogeneous substitution continuum due to the temperature gradient. This
pleads for the use of a thermoelastic homogeneous substitution medium of
grade two.
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1.2. Tentative Form of the Constitutive Equations. Let us
consider a rectangular homogeneous Cauchy material element subjected to
a linear temperature gradient ε∼

th = α∆T
L

x1∼ = αθx1∼. If the element can de-
form without hindrance (boundary free of forces), no stress arises since ε∼

th is
a compatible field (figure 4a).

The displacement field associated with this linear temperature gradient is
(in the 3D case):

u1 =
1
2

α θ (x2
1 − x2

2 − x2
3) ; u2 = α θ x1x2 ; u3 = α θ x1x3 (1)

up to a translation term.
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Figure 3. Comparison between the deformation of the heterogenous
and the homogenous material under a bilinear temperature

field (a) and a sinusoidal temperature field (b).

For an appropriate choice of the reference state, the following average
quantities are computed:

< ε∼ >= 0 , < σ∼ >= 0 , < ε∼ ⊗∇ >= α θ , < σ∼ ⊗ x >= 0 (2)

using the same notation as in [5]. If no displacement is possible at the upper
and lower boundaries in direction 2, internal stresses develop in the element.
For an isotropic elastic element, they are such that:

u1 =
3λ + 2µ

2(λ + 2µ)
α θ x2

1 ; u2 = 0 ; u3 = 0 (3)
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and
< ε∼ >= 0 , < σ∼ >= 0 , < ε∼ ⊗∇ >= 0, < σ∼

{⊗}x >6= 0 (4)

except ε11,1 if the element is free in direction 1 (figure 4(b)). More precisely

< σ22 x1 >=< σ33 x1 >= −1
6

3λµ + 2µ2

λ + 2µ
αθ L2

The previous material element may be regarded as the homogeneous element
replacing the (heterogeneous) representative volume element of the homoge-
nization theory. As a result of (2) and (4) it appears that the situations 1
and 2 can not be distinguished from the sole point of view of classical ho-
mogenization theory. The reason is that the classical homogenization theory
exclusively accounts for the first moment of stress and strain. In contrast, if
the homogeneous substitution medium is taken as a second grade medium,
the second moment (or derived quantities) are accounted for as shown in [5].
According to the scheme presented in [5], the situations 1 and 2 would be
respectively represented at the macroscopic level by:

E∼ = 0 , Σ∼ = 0 , K∼ = α∼ ⊗∇T , S∼ = 0 (5)

and
E∼ = 0 , Σ∼ = 0 , K∼ = 0, S∼ 6= 0 (6)

where E∼ , Σ∼ , K∼ and S∼ respectively are the strain, stress, second gradient
(K∼ = ε∼ ⊗∇) and hyperstress tensors.

Figure 4. Boundary conditions.

The previous situations are compatible with overall constitutive equations
of the form:

σ∼ = C∼∼
: (ε∼ − ε∼

th) with ε∼
th = ∆Tα∼ (7)
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and
S
∼

= A∼∼∼
:̇ (K∼ − K∼

th) with K∼
th = α∼ ⊗ (T∇) (8)

where C∼∼
and A∼∼∼

are the classical and generalized elastic moduli for a material

of grade 2. The thermal strain ε∼
th and the gradient of the thermal strain K∼

th

respectively represent the parts of the total strain and strain gradient that
develop without associated stress nor hyperstress as a result of homogeneous
or inhomogeneous temperature changes. They can be seen as an eigenstrain
and an eigenstrain gradient.

Since the formulation of such constitutive equations does not seem to have
been presented hitherto, the sequel of this work deals with the derivation of
thermoelastic constitutive equation for second grade media from the usual
principles of mechanics and thermodynamics.

2. Mechanics and Thermodynamics of Thermoelastic Second
Grade Media

We successively apply the method of virtual power, the energy and entropy
principles of continuum thermodynamics to thermoelastic solids in the fully
non isothermal case. For the sake of brievety, we stick to the small deformation
framework.

2.1. Principle of Virtual Power. The method of virtual power has
proved to be a powerful tool to derive the fields equations and the associated
boundary conditions that the unknown fields must fulfill on a body Ω [9]. Ω
denotes the open body and ∂Ω its closure. For the sake of simplicity, the
surface ∂Ω is considered twice continuously differentiable, so that it possesses
at each point a normal n and a mean curvature R. The presence of edges and
vertices must be treated as shown in [7]. The degrees of freedom of a ther-
moelastic body of grade 2 are the displacement u(x, t) and the temperature
T (x, t), from which we deduce the set of generalized virtual motions

V◦ = {u̇, Ṫ} (9)

The rate of temperature Ṫ has been added to the usual velocity variable for
the sake of generality and because we want to grant the transient variable Ṫ
its full status of a degree of freedom [11]. Then, according to [11], the energy
flux has to be modified. The enlarged set of relevant variables for the order
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of the considered theory then is

V = {u̇ , u̇⊗∇ , u̇⊗∇⊗∇ , Ṫ , Ṫ∇} (10)

where the virtual velocity is supposed to be at least continuous and twice
continously differentiable, and the temperature rate Ṫ is continuous and con-
tinuously differentiable. The set of virtual motions in [7] has therefore been
complemented by the pair {Ṫ , Ṫ∇}.

Virtual power of generalized internal forces: The density of
virtual power of internal forces is taken as a linear form in all the arguments
in V:

p(i) = σ∼ : ε̇∼ : + S
∼

:̇ K̇
∼

+ a(i) Ṫ + b(i).(Ṫ∇) (11)

The expression of the virtual power of internal forces in the domain D ⊂ Ω
reads:

P(i) =
∫

D
p(i) dV (12)

ε̇∼ the symmetric part of the velocity gradient and

K∼ = ε∼ ⊗∇ (Kijk =
1
2
(ui,jk + uj,ik)) (13)

The axiom of the virtual power of internal forces states that P(i) vanishes for
any isothermal rigid-body motion. It has already been applied to expression
(11) in which only objective quantities intervene. The quantities dual to the
strain rate and strain rate gradient are the symmetric stress tensor σ∼ and
the hyperstress tensor S∼ (Sijk = Sjik). Two additional dual quantities a(i)

and b(i) have been introduced. The purely mechanical part of the density of
virtual power of internal forces has therefore been complemented by thermal
contributions that represent the thermal part of the power of work, which is
the convectively performed power (in opposite to the caloric power). The use
of Gauss’ theorem in (11) leads to the alternative expression

P(i)(u̇, Ṫ ) =
∫

D

(
−

(
(σ∼ − S

∼
.∇).∇

)
.u̇ + (a(i) − b(i).∇)Ṫ

)
dV (14)

+
∫

∂D

((
(σ∼ − S

∼
.∇).n

)
.u̇ + (S

∼
.n) : (u̇⊗∇) + b(i).n Ṫ

)
dS

The application of the divergence theorem for surfaces to the last term gives
the final expression [7]:

P(i)(u̇, Ṫ ) =
∫

D

(
−

(
(σ∼ − S

∼
.∇).∇

)
.u̇ + (a(i) − b(i).∇).Ṫ

)
dV
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+
∫

∂D

((
(σ∼ − S

∼
.∇).n + 2RS∼ : (n⊗ n) − Dt(S∼ .n)

)
.u̇

+
(
S∼ : (n⊗ n)

)
.Dnu̇ + b(i).nṪ

)
dS (15)

where Dn and Dt respectively denote the normal and tangent gradient oper-
ator

u⊗∇ = Dnu + Dtu with Dnu = (u⊗∇).n (16)

Virtual power of external forces: The usual distinction is made
between distance and contact applied forces. In its most general form, the
virtual power of external forces is a linear form on V:

P(e) =
∫

D

(
f.u̇ + C∼ : ω̇∼ + F∼ : ε̇∼ + P

∼
:̇ K̇
∼

+ a(e) Ṫ + b(e).Ṫ∇
)

dV (17)

where ω̇∼ is the skew-symmetric part of the velocity gradient. The introduced
dual quantities are the volume forces f , the volume couples C∼ and the vol-
ume double forces F∼ , that can exist within the classical framework. Volume
triple forces P

∼
can be added for a medium of grade 2. For completeness, the

quantities a(e) and b(e) must be introduced. The expression of P(e) can then
be transformed into volume and surface parts as in (15).

Virtual power of contact forces: The appropriate form of the
virtual power of contact forces is dictated by the observation of the surface
term in (15):

P(c) =
∫

∂D

(
T .u̇ + M.(Dnu̇) + a(c) Ṫ

)
dV (18)

where T is the traction vector, M a normal surface double force and a(c) the
dual quantity of Ṫ .

Application of the principle of virtual power: According to the
principle of virtual power, in the static case [7]

∀D ∀{u̇, Ṫ} ∈ V◦ P(i) = P(e) + P(c) (19)

from which the following balance equations are deduced:

τ∼.∇+ f = 0 with τ∼ = σ∼ − F∼ −C∼ − S
∼
.∇+ P

∼
.∇ (20)

b.∇− a = 0 with a = a(i) − a(e) and b = b(i) − b(e) (21)
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The associated boundary conditions are also obtained:

T = τ∼.n + 2RS∼ : (n⊗ n) − Dt (S
∼
.n)

M = S∼ : (n⊗ n)

a(c) = b.n (22)

Note that in the classical case, S∼ and b(i) are not introduced in (11). The
term a(i)Ṫ can still be introduced in principle but, since the external forces
a(e) and b(e) are usually not introduced in the classical case, a(i), as it turns out,
remains without counterpart. The classical framework therefore is retrieved.
This advocates for the plausible introduction of Ṫ as a generalized virtual
motion even in the classical case, at least for the sake of generality and for
the general fully anisothermal expression of the principle of virtual power.

2.2. Energy Principle. The adopted global form of the energy bal-
ance on system Ω reads:

Ė + K̇ = P(e) + P(c) + Q (23)

where E is the internal energy of the system, K =
∫
Ω

1
2
ρu̇.u̇ dV its kinetic

energy and Q the total heat supply. The application of the kinetic energy
theorem easily derived from the principle of virtual power yields:

Ė = P(i) + Q (24)

Introducing the specific internal energy e and the heat flux vector q, and an
inner heat production rate r,

Ė =
∫

Ω

ρė dV ; Q = −
∫

∂Ω

q.n dS +
∫

Ω

r dV (25)

a local form of the energy balance is obtained:

ρė = p(i) − q.∇ + r (26)

and, taking (11) into account,

ρ ė = σ∼ : ε̇∼ + S
∼

:̇ K̇
∼

+ a(i) Ṫ + b(i).Ṫ∇ − q.∇ + r (27)
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2.3. Entropy Principle. The second principle is formulated as fol-
lows: Ṡ ≥ N , where S is the global entropy of the system and N is the total
flux of entropy. Introducing the local specific entropy η (ε∼, K∼ , T, T∇), we
will assume that:

S =
∫

Ω

ρη dV and N = −
∫

∂Ω

Φ.n dS +
∫

Ω

r

T
dV (28)

The entropy flux vector Φ is taken as: Φ =
q

T
. The local form of the entropy

inequality follows:
ρη̇ + (

q

T
).∇ − r

T
≥ 0 (29)

Combining (27) and (29), we get the Clausius-Duhem inegality

ρ(T η̇ − ė) + σ∼ : ε̇∼ + S∼ :̇ K̇∼ + a(i) Ṫ + b(i).(Ṫ∇)− (
q

T
).(T∇) ≥ 0 (30)

The Helmholtz free energy ψ = e− Tη is now introduced and is a fonction of
(ε∼, K∼ , T, T∇). The Clausius-Duhem inequality can then be written:

(σ∼ − ρ
∂ψ

∂ε∼
) : ε̇∼ + (S

∼
− ρ

∂ψ

∂K
∼

):̇K̇
∼

+ (a(i) − ρ η − ρ
∂ψ

∂T
) Ṫ

+ (b(i) − ρ
∂ψ

∂T∇).(Ṫ∇) − q

T
.(T∇) ≥ 0 (31)

The variables ε∼, K∼ , T and T∇ being independent and assuming sufficient
regularity of the introduced quantities, Coleman’s argument applies and we
get the laws of state:

σ∼ = ρ
∂ψ

∂ε∼
, S

∼
= ρ

∂ψ

∂K
∼

, b(i) = ρ
∂ψ

∂(T∇)
, ρη = −ρ

∂ψ

∂T
+ a(i) (32)

This ends the construction of the proposed thermodynamical framework that
is required for the development of constitutive equations for a thermoelastic
medium of grade 2. It can be compared to the classical formulation of the
theory of second grade media by Mindlin [12] and Germain [7]: the variable
T∇ has been added to develop a general framework for anisothermal consti-
tutive modelling. The classical expression of the entropy (32) is modified by
the term a(i) which, according to the balance equation (21), is nothing but
the divergence of the generalized thermodynamical force b associated with the
temperature gradient. As a result dissipation is reduced to its thermal part:

D = − q

T
.(T∇) (33)
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2.4. Heat Equation. The purpose of this section is to show that the
type and order of the partial differential equation in T, so-called heat equation,
is not altered by the previous results. Taking the laws of state (32) into
account, the energy balance (27) can be written:

− q.∇ + r = ρ T η̇ (34)

in which we can substitute the relation

η = − ∂ψ

∂T
+

1
ρ

a(i) (35)

The expanded expression of the heat equation then reads:

− q.∇ + r = ρ (−T
∂2ψ

∂T 2
+

T

ρ

∂a(i)

∂T
)Ṫ + (−T

∂b(i)

∂T
+ T

∂a(i)

∂(T∇)
).Ṫ∇

+ T (−∂σ∼
∂T

+
∂a(i)

∂ε∼
) : ε̇∼ + T (−∂S

∼

∂T
+

∂a(i)

∂K
∼

) :̇ K̇
∼

(36)

where a generalized specific heat

C = −T
∂2ψ

∂T 2
+

T

ρ

∂a(i)

∂T
(37)

can be defined. Fourier’s law q = −κ∼ .T∇ can still be applied, thus identi-
cally satisfying the dissipation inequality. This leads to a partial differential
equation of order 2, with a new term in Ṫ∇.

3. Alternative Formulations

Several non-classical thermodynamical frameworks are liable to incorpo-
rate the dependence on T∇. Three of them are now briefly described.

3.1. A Concept akin to “Interstitial Working”. The non-
classical thermodynamics, proposed in [3], has been primarily invoked to in-
troduce higher order strain gradients into the constitutive framework, with no
reference to Mindlin’s nor Germain’s derivation. These authors [3] modify the
energy balance only formally. The weakness of this method when compared
to Mindlin, Germain or Trostel’s foregoing [17], is that it does not explicitely
provide the adequate additional boundary condition. In fact, the aim of this
method is to leave the classical boundary value problem unchanged, and some
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modern work follows this track [4]. From our point of view, such an approach
is not adequate in the case of second grade materials in the isothermal case.
That is why we stick to Mindlin and Germain’s derivation [12, 7] (see also
[2]). However we can try to apply this technique for the introduction of T∇,
which has not been done in [3]. The power density of internal forces is taken
as:

p(i) = σ∼ : ε̇∼ + S∼ :̇ K̇∼ (38)

Like in [3], an additional contribution w is introduced in the energy balance:

ρ ė = p(i) − q.∇ + w.∇ + r (39)

Taking w = Ṫ b, we get

ρ ė = p(i) − q.∇ + Ṫ b.∇ + b.Ṫ∇ + r (40)

which is exactly the expression (27) where it is recalled that a(i) = b.∇. The
associated boundary condition b n = a(c) can be introduced. Accordingly,
this method provides the same final form as ours. Three differences must
be noted: the form w = Ṫ b is not well motivated, the additional boundary
conditions are not explicitely derived and the power of internal forces remains
unchanged.

3.2. T , Degree of Freedom or Internal Variable ? Maugin [10]
proposed a general formalism for the introduction of internal variables and
their gradients into the constitutive framework. We demonstrate in this sub-
section the strict treatment of T as an “internal variable” according to that
scheme. Within this framework, the relation between the entropy flux and
the heat flux vectors is regarded as a constitutive relation [13] of the form

Φ =
q

T
+ k (41)

where k is an extra entropy flux density to be determined. Here the entropy
is introduced axiomatically, and thus without a clear characterisation by an
already known flux (as q/T is but k not). The local form of the entropy
inequality then reads:

ρ η̇ + Φ.∇ ≥ 0 (42)

The energy balance remaining unchanged with a free energy defined now by
a not clearly characterized entropy, the inequality becomes

− ρ (ψ̇ + ηṪ ) + σ∼ : ε̇∼ + S∼ :̇ K̇∼ + (kT ).∇ − Φ.(T∇) ≥ 0 (43)
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Assuming that the free energy is a fonction of (ε∼, K∼ , T, T∇), its time deriva-
tive can be written

ψ̇ =
∂ψ

∂ε∼
: ε̇∼ +

∂ψ

∂K∼
:̇K̇∼ +

∂ψ

∂T
Ṫ − (

∂ψ

∂(T∇)
.∇)Ṫ + (Ṫ

∂ψ

∂(T∇)
).∇ (44)

so that

(σ∼ − ρ
∂ψ

∂ε∼
) : ε̇∼ + (S∼ − ρ

∂ψ

∂K∼
):̇K̇∼ + (b.∇ − ρη − ρ

∂ψ

∂T
)Ṫ

+ (kT − Ṫ b).∇ − Φ.(T∇) ≥ 0 (45)

where b = ρ∂ψ/∂(T∇). At this point, we chose the extra entropy flux

k =
Ṫ

T
b (46)

so that the laws of state are:

σ∼ = ρ
∂ψ

∂ε∼
, S∼ = ρ

∂ψ

∂K∼
, ρη = − ρ

∂ψ

∂T
+ b.∇ (47)

which are identical to (32). The heat equation then takes the form

− q.∇ = (Ṫ b).∇ + ρ T η̇ i.e. − (T Φ).∇ = ρ T η̇ (48)

In order to identically fulfill the non-classical heat conduction inequality, the
generalized Fourier’s law takes the form:

Φ = − 1
T

κ∼ . (T∇) (49)

which leaves the classical heat equation unchanged: (κ∼ .T∇).∇ = ρ T η̇.

3.3. Final Remarks. No special extension of the original form (29) of
the entropy principle seems to be justified when the independent variable T∇
is introduced. The local entropy density η is simply regarded as a function of
(ε∼, T, K∼ , T∇). This relies on Caratheodory’s argument and its “rational”
out-of-equilibrium version by Trostel [18] which involves only so-called contact
variables like T but excludes T∇ in the (Carnot) function for the integrating
factor. In all formulations, the direct physical meaning of the necessary ad-
ditional terms associated with Ṫ and T∇ remains unclear. In particular, it is
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difficult to assess the pertinence of the introduction of an extra entropy term
k in (46).

In the case of classical thermoelasticity, the constitutive relation Φ = q/T
can be explicitely derived using a formulation of the entropy principle with
Lagrange multipliers [13]. This procedure, which requires a tremendous com-
putational effort, must be carried out for each set of specific constitutive
equations. This therefore is a strongly different strategy from the rational one
used here which aims at providing a framework for the further development
of constitutive equations. However this method remains to be applied to the
introduction of T∇ in the thermodynamical setting.

Extended thermodynamics [13] may provide an adequate framework for
the construction of a theory of second grade thermoelasticity. But it was
the purpose of this work to show that the more classical thermodynamics of
irreversible thermodynamics can account for it, with only slight extensions.
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