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1. INTRODUCTION

If ¢ is an analytic self-map of the unit disc D, then as a consequence of Lit-
tlewood’s subordination theorem the composition transformation Cy defined
by Cyf = f o ¢ for f holomorphic in D turns out to be a bounded operator
on the classical Hardy space HP(D), (1 < p < oc) and is called composition
operator induced by ¢ (see Schwartz [5], Nordgren [3] for estimates of the
norms of composition operators and Shapiro and Taylor [6] and Cowen and
MacCluer [1] for other properties including compactness of these operators
on Hardy classes of complex-valued functions). In this paper we attempt to
initiate the study of composition operators on a vector-valued Hardy space.

The plan of the rest of the paper is as follows: Next section is preparat-
ory in nature. In this section we collect some known as well as unknown facts
about vector-valued Hardy spaces. We also determine generalized reproducing
kernels for these spaces and use these kernel functions in the next section as
effective tools to study composition operators on vector-valued Hardy spaces.
In section 3 we prove that if ¢: D — D is analytic, then Cy4 is a bounded
operator on H% (D). A necessary and sufficient condition for a bounded op-
erator on H% (D) to be a composition operator is given The condition on ¢
for which C’;‘; is also a composition operator is presented in section 4. In this
section we also present characterizations of normal, unitary and co-isometric
composition operators on vector-valued Hardy space H%- (D).

2. BACKGROUND

Let D ={z € C: |z|] < 1} and (X, ] - ||x) be a complex Banach space. For
1 < p < oo, the vector-valued Hardy space H% (D) consists of all f: D — X
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such that e* o f is analytic in D for every e* € X* and

1 27 )
Jim —/ 1 (re)|[2d6 < oo.
0

r—1 27

H%.(D) is a Banach space with

r—1 27

) 1 27 0
191 = tim o [ () .
0
Throughout this paper we will assume that (X, <->) is a separable Hilbert
space and so the radial limit f*(e?) = lim,_,; f(re?) exists a.e. [4, Theorem

A, page 84]. In this case H%(D) becomes a Hilbert space under the inner
product <->>, defined as

1 2m ) )
Lf,g>»= —/ < f*(€"%), g* (¢) > do.
271' 0

For the sake of convenience, we shall denote f*(e?) simply by f(e??). For
more details about scalar-valued Hardy spaces we refer to Duren [2], and for
vector-valued Hardy spaces consult Rosenblum and Rovnyak [4].

The very first result, which we are listing in the form of a lemma, will be
used to find kernel functions for H% (D).

LEMMA 2.1. If f € H%(D), then

11/ 1l2
(1= JsR)17
Proof follows from the Holder’s inequality and the fact that if

If@)llx <

f(2) = ane" € HY(D),
n=0

then I fI5 = 302 [lan |-
Let N={0,1,2,...} and let {e,: n € N} be an orthonormal basis for X.
For m,n € N, we define e,, ,: D — X as
emn(z) = 2"en, Yz € D.

Then clearly {ey, ,: m,n, EN} is an orthnormal subset of H% (D). Further, if
f € H%(D), then

1 21 ) )
<fremp>=0 = 2—/ <F(€), emn(€?)> df = 0

™ Jo

1 21

— e ™m0 < f(e),e,> df =0
2T 0
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for all m,n € N. Therefore < f(e¥),e, >= 0 a.e. for all n € N, hence
f(e%) = 0 a.e. Taking into account the properties of the integral de Poisson,
we conclude that f = 0. Hence {e;, ,: m,n, € N} is a basis for H% (D).

For each z € D and j € N, we define EZ: H% (D) — C as follows: EL(f) =
< f(2),e; > for every f € H%(D). Then El € (H%(D))* and so by Riesz
representation theorem, there exists kJ € H?% (D) such that

EBif =< f,kl>>, Vf € H}(D).

We designate ks as generalized reproducing kernels or simply kernel func-
tions whenever there is no confusion. The span of the set {kl: (z,j) € D x N}
will be denoted by [kL: (z,5) € D x N]. We now evaluate these kernel func-
tions.

By Parseval’s identity,

Kw)= Y <k emn> emn(w)
m,neN

= Z <zZMey, € > emn(w)
m,neN

1—zw

and K3 = b

LEMMA 2.2. [k): (2,j) € D x N| is dense in H% (D).

Proof. Let f € [ki (z,7) € D x NI*, the orthogonal complement of
[kl: (z,5) € DxN]. Then < f,g>= 0 for all g € [kl: (z,j) € D x N.
In particular, < f,kJ > = 0 for every (z,5) € D x N and so f = 0. This
completes the proof. 1

3. COMPOSITION OPERATORS ON H% (D)

We begin this section by proving that every analytic self-map of the unit
disc induces a composition operator on H% (D).

THEOREM 3.1. Let ¢: D — D be analytic. Then Cy is a composition
operator on H% (D) and

1—1p(0)]"
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Proof. Since ¢: D — D is analytic, for any r; < 1 there exists ry < 1 such
that ¢: |z| <r; — |2| < re. By [4, Theorem C, p. 89,

1 2

Dy P((]ﬁ(rlew),rgeit) <f(r26it), ej > dt,

<f(p(rie?),e’)> =

where ‘ ]
roe't + ¢(T16Z6)]

P(ﬁé(ﬁem)ﬂ“?eit) =Re |:,r2eit — p(rie?)

is the Poisson kernel. Since z? is a convex function, by Jensen’s inequality, we
have
2w
2 < 1 P 0 it it 2d
| <f(p(rie”)),e;> P < o /. (¢(rie”), rae”)| <f(rae”), e;> [ dt.

Using Parseval’s identity, we obtain

If ((rieNIE =D | <f(d(r1e?)), > |

j€EN
< L [T Plgrie®), 1) Y| < Frse), 5> [
= 9r 0 ) ‘ »=J
JEN
1 [ 2
=5 P(p(r1e”), roe™) | f(rae™)||5 dt

Integrating with respect to 6, using Fubini’s theorem to interchange the order
of integration in the double integral and well known property of Poisson kernel
that

I i0 ity 70 _ ity ~ T2+ |9(0)]
o P(¢(r1e”),r2€")df = P(¢(0),r2e") < —TE
we get
I NP r2 +]p0)] 1 [
3 | e s < 2R [ e
If 1 — 1, then ro — 1, so that
0
ICaf1B < S 12
This implies that
1+16(0
ICal? < 55

hence the theorem. |
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We next present a necessary and sufficient condition for an operator A on
HZ (D) to be a composition operator.

THEOREM 3.2. Let A be an operator on H% (D). Then A is a composition
operator if and only if for each z € D there exists unique w € D such that
A*KkL = ki, for every j € N.

Proof. If A = Cy, a composition operator, then

L[ AR>S =< Cyf kl>=EICsf
_ _ J
= E¢(Z)C¢f =< f, k¢(z) >,
for every 57 € N.
Conversely, suppose that for each z € D there exists unique w € D such
that A*k] = ki, for every j € N. Thus, if we define ¢ as ¢(z) = w, then
$(2) = <g(2)er,e1>= By (en)
=<KLe11, A*k; > =<K Aella ]{2; >
= E; (Aen) =< (Aen)(z), er>.
This proves that ¢ is analytic and so, by [4, Theorem C, p. 76], Cysf € H% (D),
for every f € H% (D).
Now
AL K> =< [,A>=<, k;(z) >
= B),\(f) = Bl(Cyf) =< Cyf k>

for every (z,j) € D x N and every f € H% (D). Since [kl: (2,5) € D x N is
dense in H% (D), we conclude that A = Cy. 11

As an application of the above theorem, we obtain a lower bound for the
norm of a composition operator.

COROLLARY 3.3. If ¢ is an analytic self~map of the unit disc, then

1- |Z|2 2
L <oyl
cep 1— g = "7°
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Proof. By Theorem 3.2

I L) - (o3

L=16(z)1>  [I&)13 213
< ICHI7 = ICI?

for every (z,j) € D x N. This implies that

1 - |Z|2 2
sup —— < [|Cy %
cen 1= [g(z)]? =" I

4. NORMAL, UNITARY AND CO-ISOMETRIC COMPOSITION OPERATORS

In general, the adjoint of a composition operator may or may not be a
composition operator. We give a necessary and sufficient condition on ¢ for
which C’;‘; is also composition operator. The scalar-valued version of this result
was proved by H.J. Schwartz [5] by using the technique of Fourier coefficients.
Our method of proof is based on the generalized reproducing kernels.

THEOREM 4.1. C;, the adjoint of Cy is a composition operator if and only
ifp(z) = az, |a] < 1.

Proof. We first suppose that ¢(z) = az, |a] < 1. Let 9(z) = az. Then
clearly v is an analytic mapping from D into itself. We shall show that
Cj=Cy. Let (z,7) € D x N. Then

(C3) i) = Cubdw) = K ($(w))
= k(]iz (w) = kf/,(z) (w)

for every w € D, i.e., (C:;)*k% = ki(z). Hence, by Theorem 3.2, CF is a
composition operator and C; = Cy.

Conversely, suppose that Cj = Cy for some 9. Let ¢(z) = Yooy anz™ and
P(z) =D 7o bnz". Since Cj = Cy, we have for any j,

IC3R IS = ICTRaNS = Ik ll5 =1 = =1=9¢(0)=0=0a9=0

ot
1—[p(0)]

Similarly, we can show that by = 0. Hence, for any integer k, the first k
Fourier coefficients of ¢* and % are zero.
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Now for n > 1

1 27 . . 1 2 ) .
b, = 5 P(e?)e™m0gh = %/ <ip(e)er,e™e; > do
0 0
=<K Cyerr, en1 > =< e, Cpen >
1 2T ) 2T i
=5 <ée, ¢mer> d = o Pre=0dh = a16,1,
0 0

where d,,1 is the Kronecker delta. Therefore 1(z) = a;z.
But € = Cy, so by first part of the theorem, we have P(z) =arz. 1

In the next theorem we present a criterion for the normality of a compos-
ition operator on H% (D).

THEOREM 4.2. Cy is normal if and only if ¢(z) = az, |af < 1.

Proof. Let ¢(z) = > 77 janz". We first suppose that Cy is normal. Then
IC;£ll2 = I1Cs fllz, for every f € H (D).

In particular, taking f = kl, we get ¢(0) = 0. Hence for any integer k,

the first k Fourier coefficients of ¢* are zero. Since {em n: m,n € N} is an
orthonormal basis for H% (D), by Parseval’s identity, we have

ICsenlls =Y | <Clersemn> > = | e, Coemn> |*

m,n m,n
1 277 N 2
= o <ewel, P"e, > db
m,n & 0
2T _ 2
— 2— e_Z6¢m < 61, en > da
m,n TJo
1 o 2 2
= 5o | e Pgmds = |a10m|* = a1,
m 0 m
Also
) 1 2w ” 9
ICsenll3 = — €11 (p(e™))] 5 db
27'(' 0
I 07y (2
=5 | ls@)a.

Therefore we have

o0
jar]? =" Janl* = a, = 0 for n > 2,

n=1
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Hence ¢(z) = a;z.
Conversely, suppose that ¢(z) = az, |a|] < 1. Then by Theorem 4.1,
Cj = Cy, where )(z) = az. Therefore

CoCyf(2) = Co(f(4(2))) = Cy(f(@2))
= [(aaz) = f(y(az))
= Cyf(6(2)) = CyCof (2),

for every f € H%(D) and every z € D. Hence CyCy = CyCy and Cy is
normal. |

THEOREM 4.3. Cy is hermitian if and only if ¢(z) = az, where o € R and
ol < 1.

Proof. If Cy is hermitian, then it is normal and hence, by Theorem 4.2
¢(z) = az, |a| < 1. Also, by Theorem 4.1, Cj = Cy, where ¢(z) = az. But
C(’; = Cy, so ¢ = 1, which implies that o = &, i.e., « is real.

Conversely, we suppose that ¢(z) = az, a € R and |a| < 1. Then, by
Theorem 4.1, CF = Cy, where P(z) = az = az = ¢(z). Thus Cy = Cy, e,
Cy is hermitian. |

THEOREM 4.4. Cy is a unitary operator if and only if ¢(z) = az, |af = 1.

Proof. We first suppose that ¢(z) = az, |a] = 1. Then, by Theorems 4.2
and 4.1, Cy is normal and C} = Cy, where ¢(z) = &z. Therefore,

CoCyf (2) = f(P(9(2))) = f(2),

for every f € H% (D) and every z € D, which implies CyCy = I, the identity
operator. Hence, by normality of Cy4, we conclude that Cy is unitary.

Conversely, suppose that Cy is unitary. Then Cy is normal. Hence by
Theorem 4.2, ¢(z) = az, |a| < 1. By Theorem 4.1, C} = Cy, where 1(z) =
az, and C¢C;§ = [ implies that

C’¢C;§kg = kI, for every (z,j) € D x N
= kI (aow) = kI (w), for every w € D
= aaqw = w, for every w € D

= lal =1

Hence ¢(z) = az, |a| = 1. 1
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THEOREM 4.5. C7F is an isometry if and only if ¢(z) = az, |a| = 1.

Proof. 1f Cj is an isometry, then ||CFf|l2 = || f||2, for every f € H%(D). In
particular, taking f = kJ and using Theorem 3.2, we obtain || ké(z)”@ = |K2)2.

So
1 1

1—[p(2)]> 11—z
This implies that ¢(z) = az, |a| = 1.
Conversely, if ¢(z) = az, |a| = 1, then, by Theorem 4.1, C = Cy,, where
Y(z) = az. Thus, if f € H%(D) and f(z) = Y% a,2", then

IC;fI5 = ICyflI5  for every f € HY(D)
= llanlX = I£15-
n=0

Hence C(’; is an isometry. N
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