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1. INTRODUCTION

Let X be a topological space, and let C(X,Z) be the group of all continu-
ous (equivalently, locally constant) integer-valued functions on X. For every
function f on X let Ran f = f(X) be the range of f. Denote by d(f) the
diameter of Ran f.

Let ¢ : C(X,Z) — C(X,Z) be a homomorphism of additive groups. We
say that 1) does not increase range if Ran(f) C Ran f for every f € C(X,Z).
We say that 1 does not increase diameter if d(i(f)) < d(f) for every f €
C(X,Z). By a map between topological spaces we always mean a continuous
map. For every map h : X — X the dual endomorphism h* : C(X,Z) —
C(X,Z) defined by h*(f)(z) = f(h(z)) (f € C(X,Z), z € X) does not
increase range. If ¢ : C(X,Z) — Z is any homomorphism and 7 = £1, the
endomorphism f — 7h*(f) + t(f) - 1 of C(X,Z) does not increase diameter.
The aim of the paper is to prove that for N-compact spaces X the converse is
true: every homomorphism 1 : C(X,Z) — C(X,Z) which does not increase
range or diameter is of the form described above. Recall that a space is
N-compact if it is homeomorphic to a closed subspace of a power of a countable
discrete space.

Let A be a finite set of integers. Call the interval [min A, max A] the convez
hull of A and denote it by Conv A. A homomorphism 1 : C(X,Z) — C(Y,Z)
is disjointness preserving if f-g = 0 implies ¥(f) - ¥(g9) = 0 (see [1] for
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a discussion of disjointness preserving homomorphisms of groups of integer-
valued functions). A Hausdorff topological space X is 0-dimensional if closed-
and-open sets form a base of X. H.Ohta posed the following question (we are
grateful to M.Sanchis for communicating this question to us). Let X and Y be
zero-dimensional spaces, and let ¢ : C(X,Z) — C(Y,Z) be a homomorphism
of additive groups such that Rant(f) is contained in Conv Ran f for every
bounded f € C(X,Z). Does it follow that v is disjointness preserving? It
follows from Theorem 1.1 that the answer is positive (Corollary 1.2).

Let Cy(X,Z) be the subgroup of C(X,Z) consisting of all bounded func-
tions.

THEOREM 1.1. Let X andY be topological spaces, and let 1) : C(X,Z) —
C(Y,Z) be a homomorphism of additive groups. Suppose that X is N-
compact.

(1) If Ran(f) C ConvRan f for every f € Cy(X,Z), then there exists a
map h : Y — X such that ¢(f) = f o h for every f € C(X,Z).

(2) If diamRan(f) < diamRan f for every f € Cy(X,Z), then there exist
amap h:Y — X, a homomorphism t : C(X,Z) — 7Z and 7 = £1 such
that ¥(f)(y) = 7f(h(y)) + t(f) for every f € C(X,Z) andy € Y.

COROLLARY 1.2. Let X and Y be zero-dimensional spaces, and let 1) :
C(X,Z) = C(Y,Z) be a homomorphism of additive groups. If Ran(f) C
Conv Ran f for every f € Cy(X,Z), then 1 is disjointness-preserving.

Theorem 1.1 follows from Theorem 1.3 which describes homomorphisms
C(X,Z) — Z satistfying some boundedness conditions.

THEOREM 1.3. Let X be an N-compact space, and let t : C(X,Z) — 7
be a non-zero homomorphism of additive groups.

(1) If |t(f)] < |Ifl| = max{|f(z)| : = € X} for every f € Cy(X,Z), then
there exist x € X and 7 = +1 such that t(f) = 7f(x) for every f €
C(X,Z).

(2) If |t(f)| < diamRan f for every f € Cy(X,Z), then there exist z,y € X
such that t(f) = f(z) — f(y) for every f € C(X,Z).

For a compact space X denote by C(X) the complex Banach space of
all complex continuous functions on X. The following theorem was proved
in [3]: if X is a first-countable compact space and 9 : C(X) — C(X) is a
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linear bijection such that diam Rant(f) = diam Ran f for every f € C(X),
then there exist a self-homeomorphism A : X — X, a complex number 7 with
|7| =1 and a linear functional ¢ : C'(X) — C such that ¢(f)(z) = 7f(h(z)) +
t(f) for every f € C(X) and z € X. We prove that the assumption that X be
first-countable is superfluous (Theorem 5.1). In Section 2 we discuss the notion
of N-compactness and explain how to deduce Corollary 1.2 from Theorem 1.1.
Theorems 1.1 and 1.3 are proved in Sections 4 and 3, respectively.

2. N-COMPACT SPACES

There are several equivalent characterizations of N-compact spaces, (see
[4]). For the reader’s convenience we prove some of them in this section.

If X is a O-dimensional space, we denote by SpX the 0-dimensional com-
pactification of X characterized by the property that every bounded continu-
ous function f : X — Z extends uniquely over SpX. For every 0-dimensional
compactification bX of X there exist a map fpX — bX which is identical
on X. We call fpX the maximal 0-dimensional compactification of X. If
Y is another 0-dimensional space, every map f : X — Y extends uniquely
toamap Bpf : fpX — BpY. If Y is zero-dimensional in the sense of the
covering dimension dim, then Y is zero-dimensional, whence Y = SpY. In
particular, if Y is discrete, then SpY = GY.

IfX CY and z € Y\ X, we say that z is G5-separated from X if there is
a Gy subset A of Y such that z € A C Y \ X.

THEOREM 2.1. Let X be a 0-dimensional space. The following conditions
are equivalent:

(1) X is N-compact, that is homeomorphic to a closed subspace of a power
of a countable discrete space;

(2) there exists a O-dimensional compactification bX of X such that every
point x € bX \ X is G-separated from X;

(3) every point z € fpX \ X is Gs-separated from X in the space fpX;

(4) for every x € fpX\ X there exists a map f : X — Z such that fpf(z) €
BZ\ Z.

Proof. (1) = (2). Let P be the class of all spaces X for which the prop-
erty (2) holds. It is clear that: (a) countable discrete spaces are in P; (b) P
is closed under arbitrary (infinite) products; (¢) if X € P and Y is a closed
subspace of X, then Y € P. It follows that all N-compact spaces are in P.
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(2) = (3). Note that the natural map fpX — bX sends the remainder
BpX \ X onto the remainder bX \ X.

(3) = (4). Let z € fpX \ X. There exists a decreasing sequence V1, Vs, ...
of clopen neighbourhoods of z such that V; C fpX \ X. Let Z U {w}
be a one-point compactification of Z. Set Vy = fpX and define the map
9:P8pX = ZU{w} by: gy) =nify €V, \Vyp and g(y) = wify € NV
We have g(X) C Z, let f be the restriction of g onto X. Let h : fZ — ZU{w}
be the natural map. We have ¢ = ho pf. Since g(z) = w, it follows that
Bof(z) € PZ\ Z.

(4) = (1). Let F = C(X,Z). The diagonal product of the family {8pf :
f € F} is an imbedding ¢ : BpX — (BZ)”. The condition (4) implies that
g(X) = g(BpX) NZ7. Thus X is homeomorphic to a closed subspace of a
power of Z. 1

Given a zero-dimensional space X, let vX be the N-compactification of X.
This space is characterized by the following properties: v X is N-compact, X
is dense in v X, and the restriction homomorphism rx : C(vX,Z) — C(X,7Z)
is bijective. We can take for v X the space of all y € fpX which are not
Gs-separated from X. The notion of N-compactification can be used to de-
duce Corollary 1.2 from Theorem 1.1. Let ¢ : C(X,Z) — C(Y,Z) be a homo-
morphism satisfying the condition of Corollary 1.2. In virtue of Theorem 1.1,
the homomorphism ¢rx : C(vX,Z) — C(Y,Z) has the form f — foh for
some h : Y — vX. It follows that iry is disjointness preserving, and hence
so is .

3. PROOF OF THEOREM 1.3

We first prove Theorem 1.3 for compact spaces. Let X be compact and
0-dimensional, and let ¢ : C(X,Z) — 7Z be a homomorphism such that
[t <|If]l (respectively, [t(f)| <d(f)) for every f € C(X,Z). Let E be the
linear space over Q of all locally constant functions on X with rational values.
We have £ = Q ® C(X,Z), hence the homomorpism ¢ can be extended to a
Q-linear functional ¢; : E — Q. Clearly the inequality |¢1(f)] < ||f|| (respect-
ively, [t1(f)| < d(f) < 2||f]) holds true for every f € E. Since dim X = 0,
E is dense in the Banach space C(X,R), and the functional ¢; extends to
an R-linear functional to on C(X,R). The norm of t5 is < 1 (respectively,
< 2), so we can identify t9 with a regular Borel measure on X. Denote
by (-,-) the canonical pairing between functions and measures on X. For
every integer-valued continuous function f on X we have (f,t0) = t(f) € Z.
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According to Lemma 3.1 below, the measure ¢35 can be written as a linear
combination Y  n;z; of points of X with integer coefficients. Here we iden-
tify each point x € X with a measure of mass 1 concentrated at x. Since
S n| =1 D2 nizs|| = |[t2]] < 2, it follows that to = +x or t9 = +x +y for some
z,y € X. In the second case the signs of z and y must be different, since from
the inequality [t(f)] < d(f) it follows that ¢(f) = 0 whenever f is constant.

To complete the proof of Theorem 1.3 for compact spaces, it remains to
establish the following lemma:

LeEMmMA 3.1. Let X be a 0-dimensional compact space, and let u be a
regular Borel measure on X such that (f,u) € Z for every f € C(X,Z). Then
| can be written as a finite linear combination of points of X with integer
coeflicients.

Proof. ItV is clopen in X, then u(V') = (xv,u) € Z, where yy is the char-
acteristic function of V. It follows that for every z € X we have u({z}) € Z,
since p({z}) = limu(V), where V runs over the collection of clopen neigh-
bourhoods of z. Call a point z € X an atom if u({z}) # 0. There are finitely
many atoms, and if we subtract from p a linear combination of atoms with
integer coefficients, we obtain an atomless measure satisfying the condition of
the lemma. Thus we may assume that p is atomless. Then for every z € X
there exists an open neighbourhood U of = such that for every clopen neigh-
bourhood V' of z contained in U we have |u(V)| < 1 and hence pu(V) = 0.
It follows that the restriction of u onto U is zero. Thus p is locally zero and
hence zero. |

For every abelian group A let A* denote the group Hom(A,Z). If f: A —
B is a homomorphism, the dual homomorphism f* : B* — A* is defined by
f*(g) = gof. Let Az(X) be the subgroup of C'(X,Z)" generated by the image
of the natural embedding X — C(X,Z)". It is easy to see that Az(X) can be
identified with the free abelian group on X.

PrROPOSITION 3.2. Let X be a (O—dimensional space, and let 1
C(PpX,Z) — C(X,Z) be the restriction homomorphism. Then the homo-
morphism i* : C(X,7Z)" — C(BpX,Z)* is injective. If X is N-compact, then
(i*)"(Az(Bp X)) = Az(X).

Proof. Consider first the case when X is a discrete countable space. Then
C(X,Z) is a countable power of the group Z, and it is known that in this case
C(X,Z)" = Ayz(X) [2, Corollary 94.6]. It follows that the proposition holds
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true in this case. Let us reduce the general case to the case of a countable
discrete space. Let f : X — Y be a map of X to a countable discrete space
Y. Consider the commutative diagram

C(X,2) —— C(BpX,7)*

f**l l(ﬁuf)**

by

where iy : C(BY,Z) — C(Y,Z) is the restriction homomorphism. We saw
that the lower horizontal arrow is injective. A routine verification shows that
in order to deduce that the upper horizontal arrow is also injective, it suffices
to prove that for every non-zero element ¢t € C(X,Z)" there exists a map f of
X to a countable discrete space Y such that f**(¢) # 0. Put Y = Z, and pick
f € C(X,Z) so that t(f) # 0. Then f**(t) is a non-zero element of C(Z,Z)*,
since f**(t)(idz) = t(f*(idz)) = t(f) # 0. Assume that X is N-compact.
Since i*(Az(X)) C Az(BpX), we have Az(X) C (i*) '(Az(BpX)). Suppose
that the last inclusion is proper. Then there exists s € C(X,Z)" such that
s ¢ Az(X) and i*(s) € Az(BpX). We can write i*(s) as a sum ¢t+t', where ¢ is a
linear combination of points of Sp X \ X and ¢ is a linear combination of points
of X. Since ¢* is injective, as we have proved in the preceding paragraph, and
s ¢ Az(X), it follows that ¢ # 0. Since ¢’ is in the range of i*, so is t = i*(s)—t'.
Thus in order to prove that (i*) '(Az(BpX)) = Az(X), it suffices to show
that the range of ¢* contains no non-zero linear combination ¢ = 7" | k;p;
(ki € Z, p; € BpX \ X) of points of the remainder fpX \ X. According
to Theorem 2.1, there exist maps f; : X — Z such that Spfi(pi) € BZ\ Z,
1 <4 < n. For every pair of distinct indices ¢ and j pick a function g;; : X — Z
such that 8pgij(pi) # Bpgij(p;). Let F be the finite set of all the functions f;
and g;;. The diagonal product f of F is a map of X to a countable discrete
space Y such that the points ¢; = Bpf(pi), 1 < i < n, are pairwise distinct
and belong to fY \ Y. It follows that (8pf)**(t) = >.;_, ki¢; is a non-zero
linear combination of points of 5Y \ Y. We have observed that the proposition
is true for Y. Considering the same commutative diagram as above, we see
that (Bpf)**(t) does not belong to the range of the lower arrow. It follows
that ¢ does not belong to the range of the upper arrow. |

We now prove Theorem 1.3 in full generality, reducing the general case
to the compact case considered above. Let X be an N-compact space, and
let t : C(X,Z) — Z be a homomorphism satisfying one of the conditions
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of Theorem 1.3. Let i : C(BpX,Z) — C(X,Z) be, as above, the restriction
homomorphism, and let ¢’ = toi € C(8pX,Z)*. Applying the compact case of
Theorem 1.3 to t’, we see that the functional ¢’ on C(SpX,Z) is represented,
up to a sign, by a point x € SpX or, respectively, by a formal difference
x —y, where z,y € fpX. In any case we have i*(t) = ' € Az(SpX), and
Proposition 3.2 implies that ¢t € Az(X). It follows that x € X or, respectively,
that z,y € X. This completes the proof of Theorem 1.3.

4. PROOF OF THEOREM 1.1

Let X and Y be topological spaces such that X is N-compact, and let
P : C(X,Z) — C(Y,Z) be a homomorphism such that Ran(f) C Conv Ran f
for every f € C(X,Z). We must show that there exists a map h : ¥ — X
such that ¢(f) = f oh for every f € C(X,Z). Fix y € Y, and consider
the functional ¢ : C(X,Z) — 7Z defined by t(f) = ¥(f)(y). Since ¥(f)(y) €
Ran(f) C ConvRan f, we have |t(f)| < ||f|| for every f € C(X,Z). The-
orem 1.3 implies that there exist x € X and 7 = £1 such that ¢(f) = 7f(z)
for all f € C(X,Z). Since ¥ maps the constant 1 to the constant 1, it follows
that 7 = 1. Put h(y) = z. We have ¢(f)(y) = f(h(y)) for every f € C(X,Z)
and y € Y. Since for every f € C(X,Z) the function y — f(h(y)), being
equal to 1(f), is continuous on Y, it follows that A : Y — X is continuous.
This proves the first part of Theorem 1.1.

To prove the second part of Theorem 1.1, we use the following lemma:

LEMMA 4.1. Let G1 and G be abelian groups, X; be a free subset of
G, andT; = {z—y:z,y € X;} C Gy, i =1,2. Let f: G — Gy bea
homomorphism such that f(Ty) C T,. Then there exists a map h : X1 — Xy
and T = +1 such that f(z —y) = 7(h(z) — h(y)) for all x,y € X.

We say that a subset X of an abelian group G is free if no non-trivial linear
combination of elements of X with integer coefficients is zero.

Proof. Fix a € X; and put g(z) = f(z — a) for every z € X;. Then g is a
map from X; to Go such that f(x —y) = g(z) — g(y) for all z,y € X;. Put
Y =¢g(X1). Wehave 0 € Y C Y —Y = f(T1) C Tb. For every ¢ € Xy let
Se={x—c:x € Xo} CTy. It is easy to see that every subset A of T such
that A — A C Ty is contained in S, or —S, for some ¢ € X5. In particular,
there exists ¢ € Xy such that Y C S,or Y C —S.. If Y C 5., put 7 =1 and
h(z) =g(z)+c. Y C =S, put 7 = —1 and h(z) = ¢ — g(z). In any case
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we have h(X;) C ¢+ S, C Xy and f(z —y) = g(z) — g(y) = 7(h(z) — h(y))
forall z,y € X. 1

We now prove the second part of Theorem 1.1. Let X and Y be topolo-
gical spaces such that X is N-compact, and let ¢ : C(X,Z) — C(Y,Z) be a
homomorphism of additive groups such that diam Ran(f) < diamRan f for
every f € C(X,Z). We must show that there exist a map h : Y — X, a homo-
morphism ¢ : C(X,Z) — Z and 7 = £1 such that ¥ (f)(y) = 7f(h(y)) + t(f)
for every f € C(X,Z) and y € Y. Let G; = C(Y,Z)" and Gy = C(X,Z)".
Identify X with its image under the natural embedding ¢+ : X — G3, and
similarly for Y and G;. As above, let ¥* : G — G5 be the homomorphism
defined by ¢*(t) =totp. Let 1 ={z—y:z,y €Y} CGrand Ty ={z —y:
z,y € X} C Gy. We claim that ¢*(T1) C T». To see this, fix z,y € Y, and
let t;, = *(z —y). The homomorphism t,, : C(X,Z) — Z is defined by
too(f) = () (@) —6(F)(y). We have|t,,,(f)] < diam Ran g(f) < diam Ran f
for every f € C(X,Z). In virtue of Theorem 1.3 there exist a,b € X such
that t,,(f) = f(a) — f(b) for every f. This means that ¢, , =a—b & Tp. We
have verified that *(7T1) C Tb.

Lemma 4.1 implies that there exist amap h : Y — X and 7 = =£1 such that
tzy = T(h(z) —h(y)) for every z,y € Y. This means that ¢ (f)(z) —4(f)(y) =
7(f(h(z)) — f(h(y))) for every f € C(X,Z) and z,y € Y. It follows that the
number 9 (f)(z) — 7f(h(x)) does not depend on x € Y. Denote this number
by t(f). It is clear that the map ¢ : C(X,Z) — Z is a homomorphism. We
have ¥(f)(z) = 7f(h(z)) + t(f) (f € C(X,Z), z € Y), as required.

5. DIAMETER-PRESERVING LINEAR BIJECTIONS OF C(X)

For a compact space X we denote by M(X) the Banach dual of C(X).
Elements of M(X) can be identified with regular complex Borel meas-
ures on X. Let X and Y be compact, and let ¢ : C(X) — C(Y) be a
norm-preserving linear bijection. Then there exists a homeomorphism
h Y — X and a function & : Y — C such that |a(z)] = 1 for every
z € X and ¢¥(f)(y) = aly)f(h(y)). This easily follows from the following
two facts: (1) the dual map 1* establishes a linear bijection between the unit
balls in the spaces M(X) and M(Y); (2) the extreme points of the unit ball
in M(X) are of the form az, where o € C, |a] =1 and z € X. We prove a
similar result for linear bijections which preserve the diameter of the range.
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THEOREM 5.1. Let X andY be compact spaces, and let ) : C(X) = C(Y)
be a linear bijection (not necessarily continuous) such that diam Ran(f) =
diam Ran f for every f € C(X). Then there exist a homeomorphism h : Y —
X, a complex number o with |a| = 1 and a linear functional t : C(X) — C
such that ¥(f)(y) = af(h(y)) + t(f) for every f € C(X) andy € Y. If 1) is
continuous, then so is t, hence there exist a complex measure p on X such

that t(f) = [y fu for every f € C(X).

If F is complex locally convex space and A C E, the polar of A is the
set A° = {y € E* : Re(z,y) <1 for all z € A}, where (-,-) is the canonical
pairing between E and E*. The polar A° C F of a subset A C E* is defined
similarly. If A C E* and 0 € A, the closed convex hull of A with respect to
the weak* topology on E* is equal to A°° [5, Ch. 4,Theorem 1.5].

For a compact space X let My(X) = {p € M(X) : u(X) = 0}. We
consider X as a subspace of M(X), identifying each point z € X with the
atomic measure of mass 1 concentrated at x.

LEMMA 5.2. Let X be a compact space containing more than one point,
and let T = {a(z —y) :z,y € X, a € C, |a] =1} C My(X). Let T°° be the
closed convex hull of T with respect to the weak* topology on My(X). Then
the set of extreme points of T°° is equal to T\ {0}.

Proof. The sets T and T°° are compact. According to the Milman theorem
[5, Ch. 2, Theorem 10.5], all extreme points of 7°° belong to 7. Plainly 0
is not an extreme point of T°°. We must prove that every non-zero element
a(z —y) of T'is an extreme point of 7°°. Since T and T"°° are invariant under
multiplication by complex numbers of absolute value 1, we may assume that
a=1. Let B={u € My(X) : ||p]l = |p|(X) < 2} be the ball of radius 2
in My(X); here |p| stands for the variation of p. Since T°° C B, it suffices
to prove that z — y is an extreme point of B. Suppose that A € My(X) and
r—y+ X € B. We must show that A = 0. Write X in the form A\ = Sz +~yy+v,
where v € M(X) is such that v({z}) = v({y}) = 0. We have

2> lz—y+ A =0 +B)z—(1—=7)y+v

1
@ 114 B+ 1=+ ]

22 |lz—y =AM =1 =Bz = (1 +7y)y—v
=[1 =8I+ 1+ + v
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Adding these inequalities, we get
AZ 4P+ 1 =pl+ 1=+ 1+ +2[].

Since [1+ 0] +|1 =] > 2 and |1 +v|+ |1 — 4] > 2, it follows that ||v| = 0.
Hence v = 0 and A = Sz + yy. Since A € My(X), we must have g = —~.
From the inequalities (1) and (2) it follows that |1 4+ 3] <1 and |1 — 3| < 1.
Hence f=0,y=0and A=0. 1

Proof of Theorem 5.1. Let E (respectively F') be the Banach quotient
of C(X) (respectively C(Y)) by the one-dimensional subspace of constants.
Since 1) maps constants to constants, there exist a map A : £ — F such

that A(f) = ¢ (f) for every f € C(X), where the wave denotes the class of
a function modulo constants. We claim that A is continuous. Let u € E
be such that ||u] < 1. Pick f € C(X) so that f = w and ||f|| < 1. Then
Ran f is contained in the unit disc, hence diam Ran(f) = diamRan f < 2.
Pick ¢ € Ran#(f) and put ¢ = 9(f) —c € C(Y). Then |g]|] < 2 and

§ = $() = A(f) = A(w), hence [A(w)]| < [lgl] < 2. Thus [|A] < 2. The
Banach dual E* of E can be identified with the hyperplane My(X) in M(X)
of measures of full mass 0. Let T} = {a(z —y) : z,y € X, a € C, |o] =
1} C E* = My(X), and define T, C F* = My(Y) similarly, replacing X by
Y. The polar TP C E of Ty is equal to {f € E : f € C(X), d(f) < 1}.
Similarly, s = {f € F : f € C(Y), d(f) < 1}. Since 1 is diameter-
preserving, A establishes a bijection between T} and T3. It follows that the
map A* : My(Y) — My(X) dual to A establishes a bijection between T5° and
T7°. Lemma 5.2 implies that A*(Ty) = T}.

Fix a € Y and put g(y) = A*(y—a) for every y € Y. Then g is a map from
Y to Ty such that A*(z —y) = g(z) — g(y) for all z,y € Y. Put P = g(Y).
We have P C T} and P — P C A*(Ty) = Ty. For every ¢ € X and a € C
with |a| =1 let aS, = {a(z —¢) : € X} C T;. It is easy to see that every
subset A of T} such that A — A C T3 is contained in S, for some ¢ € X and
a € C, |a] = 1. Indeed, pick a point p; = az — ay € A. Every other point
po € A must be of the form ax — az or az — ay, since p; — ps € T}. Suppose,
for example, that ps = ax — az. Then any point p3 € A must be of the form
azx — au, since both p; — p3 and py — p3 are in Ty. It follows that A C —aS,.

Thus there exist ¢ € X and a € C, |a| = 1, such that P C aS.. This
means that for every z € Y there exists h(z) € X such that g(z) = ah(z)—ac.
The function h : Y — X is continuous, since h(z) = o 'g(z) + c. We have
AN (z—y) = g(z)—g(y) = a(h(x)—h(y)). Since A* is a bijection between T» and
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Ty, it follows that h : Y — X also is bijective. Hence h is a homeomorphism
between Y and X.

Let h* : E — F be the isometry induced by h. Consider the map A** :
F* — E*. The maps A* and ah™ coincide on the set Ty, since A*(B(z—vy)) =
Ba(h(x) — h(y)) for all z,y € Y, g € C, || = 1. Since the polar Ty of T3 is
bounded in F' (it is easy to see that Ty is contained in the ball of radius two
in F'), the linear subspace spanned by T is weakly* dense in F* = My(Y). It
follows that A* = ah** and A = ah*. This means that for every f € C(X) the
functions 1 (f) and af o h represent the same element of F'. In other words,
the difference 9(f) — af o h is constant. Denote this constant by ¢(f). We
have ¥(f)(y) = af(h(y)) + t(f) for every f € C(X) and y € Y. Tt is clear
that ¢ : C(X) — C is linear and that it is continuous whenever 1 is so. 1
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