Tight Closure of an Ideal Generated by an R-Sequence

AZZOUZ CHERRABI AND ABDERRAHIM MIRI

Département de Mathématiques et Informatique, Faculté des Sciences, B.P. 1014-Rabat, Morocco

(Research paper presented by Juan Antonio Navarro)

AMS Subject Class. (1991): 13B, 13C

Received May 30, 1998

0. Introduction

The theory of tight closure was introduced by M. Hochster and C. Huneke in [2] and [3]. This new theory gives others proofs of many results, in particular the theorem of Briançon-Skoda (see [3] and [4]).

Throughout this paper, R will denote a ring that is Noetherian commutative with identity and of characteristic p > 0.

The phrase "characteristic p" always means positive and prime characteristic. We will use "q" to denote a power of the characteristic p.

We set R° to be the set of elements of R not in any minimal prime of R. If I is an ideal of R then $I^{[q]}$ denotes the ideal generated by the q^{th} powers of all elements of I. If S generates I then $\{i^q; i \in S\}$ generates $I^{[q]}$.

DEFINITION. Let I be an ideal of R. An element $x \in R$ is said to be in I^* , the tight closure of I, if there exists $c \in R^{\circ}$ such that $cx^q \in I^{[q]}$ for all large q. An ideal I with $I^* = I$ is said to be tightly closed.

It is clear that I^* is an ideal. M. Hochster and C. Huneke showed that I^* satisfies the closure operations: $I \subset I^*$, $(I^*)^* = I^*$ and if $I \subset J$ then $I^* \subset J^*$ (see [2], [3] and [4]).

DEFINITION. A ring R is called weakly F-regular if every ideal of R is tightly closed.

DEFINITION. We say that the ordered sequence $(a_1, a_2, ..., a_n)$ is an R-sequence in R (see [5]) if:

1) $\langle a_1, a_2, ..., a_n \neq R$.

- 2) a_1 is regular.
- 3) a_i is regular mod $(a_1, a_2, ..., a_{i-1}), i = 2, ..., n$.

We set Z(R) to be the set of the zero-divisors of R.

The commun length of all maximal R-sequences in I is called the grade of I and written G(I) (see [5]).

In section 1, we show the tight closure I^* of an ideal I, generated by a regular element, is principal if and only if $I^* = I$.

In section 2, we show that $I^* \neq R$ and $G(I^*) = G(I)$ for all ideals I generated by an R-sequence.

1. Tight closure of an ideal generated by a regular element

PROPOSITION 1.1. Let $I \neq R$ be a principal ideal of a local ring R. If G(I) = 1 then $I^* \neq R$.

Proof. Since I is principal and G(I) = 1 then there exists $a \notin Z(R)$ such that $I = \langle a \rangle$ (see [5]).

We suppose that $I^* = R$. There exists $c \in R^\circ$ such that $c \in \langle a^q \rangle$ for all $q = p^e \ge p^{e'}$.

Since R is a local ring and $I = \langle a \rangle \neq R$ all elements of $1 + \langle a \rangle$ are invertible in R. Hence after Krull's theorem (see [1]) c = 0 thus a contradiction.

COROLLARY 1.2. Let $I \neq R$ be a principal ideal of R. If G(I) = 1 then $I^* \neq R$.

Proof. There exists $a \notin Z(R)$ such that $I = \langle a \rangle \neq R$ (see [5]). Since $I \neq R$, there exists a maximal ideal \mathfrak{m} of R such that $I \subset \mathfrak{m}$. We have $I_{\mathfrak{m}} = \langle \frac{a}{1} \rangle \neq R_{\mathfrak{m}}$ and $\frac{a}{1} \notin Z(R_{\mathfrak{m}})$.

Since $R_{\mathfrak{m}}$ is local, it follows from Proposition 1.1 that $(I_{\mathfrak{m}})^* \neq R_{\mathfrak{m}}$. Since $(I_{\mathfrak{m}})^* = (I^*)_{\mathfrak{m}}$ (see [3] and [4]), $I^* \neq R$.

PROPOSITION 1.3. Let $I \neq R$ be a principal ideal of R. If G(I) = 1 then $G(I^*) = 1$.

Proof. There exists $a \notin Z(R)$ such that $I = \langle a \rangle \neq R$ (see [5]). It follows from Corollary 1.2 that $I^* \neq R$. Since $I \subset I^*$, $G(I^*) \geq 1$.

We suppose that $G(I^*) > 1$. There exists $b \in I^*$ such that (a, b) is an R-sequence in I^* .

Since $b \in I^*$, there exists $c \in R^\circ$ such that $cb^q \in \langle a^q \rangle$ for all large q.

Since (a, b) is an R-sequence in I^* , (a^q, b^q) is an R-sequence in I^* (see [6]), then $c \in \langle a^q \rangle$ for all large q, a contradiction.

Remark. Let $I \neq R$ be a principal ideal of R. If R is reduced then $I^* \neq R$ and $G(I^*) = G(I)$: In fact, if G(I) = 0 then $I \subset \mathfrak{p}$ where \mathfrak{p} is a minimal prime ideal of R, so $I^* \subset \mathfrak{p}$. Hence $I^* \neq R$ and G(I) = 0.

THEOREM 1.4. Let $I = \langle a \rangle \neq R$ be an ideal of R such that $a \notin Z(R)$. $I^* = I$ if and only if I^* is a principal ideal.

Proof. Since G(I) = 1, it follows from Proposition 1.3 that $G(I^*) = 1$. There exists $b \notin Z(R)$ such that $I^* = \langle b \rangle$ (see [5]).

There exists $\alpha \in R$ such that: $a = \alpha b$ because $I \subset I^*$. Since $b \in I^*$, there exists $c \in R^\circ$ such that $cb^q \in \langle a^q \rangle$ for all $q = p^e \geq p^{e'}$. Hence for all $q = p^e \geq p^{e'}$, there exists $r_e \in R$ such that: $cb^q = r_e a^q = r_e \alpha^q b^q$, then $c \in \langle \alpha^q \rangle$ for all $q = p^e \geq p^{e'}$ because $b \notin Z(R)$. Hence $\langle \alpha \rangle^* = R$.

Since $\alpha \notin Z(R)$, it follows from Corollary 1.2 that $\langle \alpha \rangle = R$, so $b \in \langle a \rangle$. The converse is obvious.

The counter example below, shows that we can have $I^* \neq I$ even if $I = \langle a \rangle$ is an ideal of R and (a) is an R-sequence.

Counterexample. Let $R = K[X,Y]/\langle X^3 + Y^3 \rangle$, where k is a field of characteristic $p \neq 3$. Let x, y denote the image of X, Y in R.

It is easy to show that (x) is an R-sequence and $y \notin \langle x \rangle$.

We show that $y \in \langle x \rangle^*$:

Let $q = p^e$. Write 2q = 3k + i, where *i* is either 1 or 2, then: $y^{3-i}y^q = y^{3(k+1)} = (y^3)^{k+1} = (-1)^{k+1}(x^3)^{k+1}$.

3(k+1) = 3k+3 > 3k+i = q so: $y^{3-i}y^q \in \langle x \rangle^q$. It follows that $y^3y^q \in \langle x \rangle^q$. So $y \in \langle x \rangle^*$ because $y^3 \notin Z(R)$.

Remarks. 1) It follows from Theorem 1.4 that the ideal $\langle x \rangle^*$ of the above counterexample is not principal.

- 2) Let R be an Artinian ring. If I is an ideal of R then $I^* = \sqrt{I}$.
 - 2. The grade of I^* when I is an ideal generated by a regular sequence

PROPOSITION 2.1. $G(I) = G(I^*)$ for all ideals I of R if and only if $G(\mathfrak{p}) = G(\mathfrak{p}^*)$ for all prime ideals \mathfrak{p} of R.

Proof. We suppose that $G(\mathfrak{p}) = G(\mathfrak{p}^*)$ for all prime ideals \mathfrak{p} of R. Let $I \neq R$ an ideal of R. There exists a prime ideal \mathfrak{p} of R such that $I \subset \mathfrak{p}$ and $G(I) = G(\mathfrak{p})$ (see [5]).

We have $I^* \subset \mathfrak{p}^*$ so: $G(I^*) \leq G(\mathfrak{p}^*)$. Then $G(I^*) = G(I)$.

The converse is obvious.

PROPOSITION 2.2. Let I be an ideal of a local ring R. If I is generated by an R-sequence then $I^* \neq R$.

Proof. We will use an induction on the number n of the elements of the R-sequence.

For n = 1: See Proposition 1.1.

Since the passage from n to n+1, using the induction hypothesis, is exactly similar to the passage from n=1 to n=2, it is then enough to show this for n=2:

Let $I = \langle a, b \rangle$ be an ideal of R, where (a, b) is an R-sequence. We suppose that $I^* = R$, so there exists $c \in R^{\circ}$ such that $c \in \langle a^q, b^q \rangle$ for all $q = p^e \geq p^{e'}$. So for all $i \geq e'$: $c = \alpha_i a^{p^i} + \beta_i b^{p^i}$ where $\alpha_i, \beta_i \in R$.

So for all $i \geq e' : c = \alpha_i a^{p^i} + \beta_i b^{p^i}$ where $\alpha_i, \beta_i \in R$. Hence for $m \geq e' : \alpha_m a^{p^m} + \beta_m b^{p^m} = \alpha_{m+1} a^{p^{m+1}} + \beta_{m+1} b^{p^{m+1}}$. So $b^{p^m}(\beta_{m+1}b^{p^{m+1}-p^m} - \beta_m) = a^{p^m}(\alpha_m - \alpha_{m+1}a^{p^{m+1}-p^m})$. Since (a, b) is an R-sequence, (a^{p^m}, b^{p^m}) is an R-sequence (see [6]), so $\beta_m = a^{p^m}(\alpha_m - \alpha_{m+1}a^{p^{m+1}-p^m})$.

Since (a, b) is an R-sequence, (a^{p^m}, b^{p^m}) is an R-sequence (see [6]), so $\beta_m = r_m a^{p^m} + \beta_{m+1} b^{p^{m+1}-p^m}$, where $r_m \in R$. Hence $\beta_m \in \langle a, \beta_{m+1} \rangle$. Thus, we obtain an increasing sequence of ideals of R:

$$\langle \beta_{e'}, a \rangle \subset \langle \beta_{e'+1}, a \rangle \subset \ldots \subset \langle \beta_m, a \rangle \subset \langle \beta_{m+1}, a \rangle \subset \ldots$$

Since R is Notherian, there exists $k \geq e'$ such that: $\langle \beta_k, a \rangle = \langle \beta_{k+1}, a \rangle$. So $\beta_{k+1} = \gamma_k \beta_k + \mu_k a$, where $\gamma_k, \mu_k \in R$.

 $\beta_{k+1} = \gamma_k \beta_k + \mu_k a, \text{ where } \gamma_k, \mu_k \in R.$ $\text{So } \beta_{k+1} = \gamma_k (r_k a^{p^k} + \beta_{k+1} b^{p^{k+1} - p^k}) + \mu_k a. \text{ Hence: } \beta_{k+1} (1 - b^{p^{k+1} - p^k}) \in \langle a \rangle.$ $\text{Since } R \text{ is local, } \beta_{k+1} \in \langle a \rangle. \text{ Hence: } c \in \langle a \rangle.$

To show that $c \in \langle a \rangle^{p^s}$ for all s, we set $x = a^{p^s}, y = b^{p^s}$. We have $c \in \langle x^q, y^q \rangle$ for all $q = p^e \ge p^{e'}$. Since (x, y) is an R-sequence (see [6]), $c \in \langle x \rangle = \langle a \rangle^{p^s}$. Hence $\langle a \rangle^* = R$, a contradiction.

THEOREM 2.3. If I is an ideal of R generated by an R-sequence then $I^* \neq R$.

Proof. Since $I \neq R$, there exists a maximal ideal \mathfrak{m} of R such that $I \subset \mathfrak{m}$. We set $I = \langle a_1, ..., a_n \rangle$ where $(a_1, ..., a_n)$ is an R-sequence.

After localizing at \mathfrak{m} , we have: $I_{\mathfrak{m}} = \langle \frac{a_1}{1}, ..., \frac{a_n}{1} \rangle$ and $(\frac{a_1}{1}, ..., \frac{a_n}{1})$ is an R-sequence in $R_{\mathfrak{m}}$ (see [5]). Since $R_{\mathfrak{m}}$ is local, it follows from Proposition 2.2 that $(I_{\mathfrak{m}})^* \neq R_{\mathfrak{m}}$. Since $(I_{\mathfrak{m}})^* = (I^*)_{\mathfrak{m}}$ (see [4]), $I^* \neq R$.

PROPOSITION 2.4. If I is an ideal of R generated by an R-sequence then $G(I^*) = G(I)$.

Proof. Let $I = \langle a_1, ..., a_n \rangle$ where $(a_1, ..., a_n)$ is an R-sequence. It follows from Theorem 2.3 that $I^* \neq R$.

We Suppose that $G(I^*) > n$: There exists $b \in I^*$ such that $(a_1, ..., a_n, b)$ is an R-sequence.

Since $b \in I^*$, there exists $c \in R^\circ$ such that $cb^q \in (a_1^q, ..., a_n^q)$ for all large q. Since $(a_1, ..., a_n, b)$ is an R-sequence, $(a_1^q, ..., a_n^q, b^q)$ is an R-sequence (see [6]). Hence $c \in (a_1^q, ..., a_n^q)$ for all large q, then $I^* = R$, a contradiction.

Remarks. 1) If \mathfrak{p} is a prime ideal of R generated by an R-sequence then $\mathfrak{p}^* = \mathfrak{p}$.

- 2) If \mathfrak{q} is a \mathfrak{p} -primary ideal of R generated by an R-sequence then $\sqrt{\mathfrak{q}^*} = \mathfrak{p}$.
- 3) By Theorem 2.3 we can show that a local regular ring is weakly F-regular without using the fact $\cap_q \mathfrak{m}^q = 0$. In fact Since \mathfrak{m} is generated by an R-sequence, $\mathfrak{m}^* = \mathfrak{m}$. Let I a \mathfrak{m} -primary ideal and $x \in I^*$, there exists $c \in R^\circ$ such that $cx^q \in I^{[q]}$ for all q. Since R is regular, $c \in (I:x)^{[q]}$. If we suppose that $(I:x) \neq R$ then $c \in \mathfrak{m}^{[q]}$. Hence $\mathfrak{m}^* = R$, a contradiction.

LEMMA. If J is an ideal and x an element of R then: $[J:x]^{[q]}\subset [J^{[q]}:x^q]$ for all $q=p^e$.

Proof. We set $[J:x] = \langle r_1,...,r_n \rangle$ where $r_i \in R$. We have $[J:x]^{[q]} = \langle r_1^q,...,r_n^q \rangle$. For all $i=1,...,n:r_ix \in J$. So $r_i^q x^q = (r_i x)^q \in J^{[q]}$. Hence $r_i^q \in [J^{[q]}:x^q]$.

PROPOSITION 2.5. Let I be an ideal of R containing a maximal R-sequence $(a_1,...,a_n)$ in I such that $\langle a_1,...,a_n\rangle^* = \langle a_1,...,a_n\rangle$. If $I^* \neq R$ then $G(I^*) = G(I)$.

Proof. We set $J = \langle a_1, ..., a_n \rangle$. We have: $J^* = J \subset I$. Since $(a_1, ..., a_n)$ is a maximal R-sequence in $I, I \subset Z(R/J)$. So there exists a prime ideal \mathfrak{p} such that $I \subset \mathfrak{p} = (J : x)$, where $x \notin J$. Since $I^* \neq R$ and $I \subset I^*$, $G(I^*) \geq n$.

We suppose that $G(I^*) > n$. There exists $b \in I^*$ such that $b \notin Z(R/J)$. Since $b \in I^*$, there exists $c \in R^\circ$ such that $cb^q \in I^{[q]} \subset [J:x]^{[q]}$ for all large

q. It follows from the Lemma that: $cb^qx^q \in J^{[q]} = \langle a_1^q,...,a_n^q \rangle$ for all large q. Since $(a_1,...,a_n,b)$ is an R-sequence, $(a_1^q,...,a_n^q,b^q)$ is an R-sequence (see [6]). So $cx^q \in J^{[q]}$ for all large q. Hence $x \in J^* = J$, a contradiction.

REFERENCES

- [1] ATIYAH, M.F., MACDONALD, I.G., "Introduction to Commutative Algebra", Addison-Wesley, 1969.
- [2] HOCHSTER, M., HUNEKE, C., Tightly closed ideals, Bull. Amer. Math. Soc., 18 (1988), 45-48.
- [3] HOCHSTER, M., HUNEKE, C., Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc., 3 (1990), 31-116.
- [4] HUNEKE, C., Lectures on tight closure, in "Summer School on Commutative Algebra", Vol. II, Bellaterra, July 16-26, 1996, 87-139.
- [5] Kaplansky, I., "Commutative Rings", Allyn and Bacon, Boston, 1970.
- [6] MATSUMURA, H., "Commutative Ring Theory", Cambridge University Press, 1986