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0. INTRODUCTION

The theory of tight closure was introduced by M. Hochster and C. Huneke
in [2] and [3]. This new theory gives others proofs of many results, in particular
the theorem of Briancon-Skoda (see [3] and [4]).

Throughout this paper, R will denote a ring that is Noetherian commuta-
tive with identity and of characteristic p > 0.

The phrase “characteristic p” always means positive and prime character-
istic. We will use “q” to denote a power of the characteristic p.

We set R° to be the set of elements of R not in any minimal prime of R.

If I is an ideal of R then I denotes the ideal generated by the ¢ powers

of all elements of I. If S generates I then {i%;i € S} generates I7.

DEFINITION. Let I be an ideal of R. An element z € R is said to be in I*,
the tight closure of I, if there exists ¢ € R° such that cz? € Il9 for all large
q. An ideal I with I* =T is said to be tightly closed.

It is clear that I* is an ideal. M. Hochster and C. Huneke showed that I*
satisfies the closure operations: I C I*, (I*)* = I* and if I C J then I* C J*
(see [2], [3] and [4]).

DEFINITION. A ring R is called weakly F-regular if every ideal of R is
tightly closed.

DEFINITION. We say that the ordered sequence (ay,as,...,a,) is an R-
sequence in R (see [5]) if:
1) {10z, an # R
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2) ay is regular.
3) a; is regular mod (a1, as, ...,a;—1), i = 2,...,n.

We set Z(R) to be the set of the zero-divisors of R.

The commun length of all maximal R-sequences in [ is called the grade of
I and written G(I) (see [5]).

In section 1, we show the tight closure I* of an ideal I, generated by a
regular element, is principal if and only if I* = TI.

In section 2, we show that I* # R and G(I*) = G(I) for all ideals I
generated by an R-sequence.

1. TIGHT CLOSURE OF AN IDEAL GENERATED BY A REGULAR ELEMENT

PROPOSITION 1.1. Let I # R be a principal ideal of a local ring R. If
G(I) =1 then I* # R.

Proof. Since I is principal and G(I) = 1 then there exists a ¢ Z(R) such
that I = (a) (see [5]).

We suppose that I* = R. There exists ¢ € R° such that ¢ € (a?) for all
q=p°>p°.

Since R is a local ring and I = (a) # R all elements of 1+ (a) are invertible
in R. Hence after Krull’s theorem (see [1]) ¢ = 0 thus a contradiction. I

COROLLARY 1.2. Let I # R be a principal ideal of R. If G(I) = 1 then
I* #R.

Proof. There exists a ¢ Z(R) such that I = (a) # R (see [5]). Since
I # R, there exists a maximal ideal m of R such that I C m. We have
Im = (1) # Bm and § ¢ Z(Rm).

Since Ry is local, it follows from Proposition 1.1 that (I;)* # Rm. Since
(Im)* = (I*)m (see [3] and [4]), I* # R. 1

PROPOSITION 1.3. Let I # R be a principal ideal of R. If G(I) = 1 then
G(I*)=1.

Proof. There exists a ¢ Z(R) such that I = (a) # R (see [5]). It follows
from Corollary 1.2 that I* # R. Since I C I*, G(I*) > 1.

We suppose that G(I*) > 1. There exists b € I* such that (a,b) is an
R-sequence in I*.

Since b € I*, there exists ¢ € R° such that cb? € (a?) for all large gq.
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Since (a,b) is an R-sequence in I*, (a?,b?) is an R-sequence in I* (see [6]),
then ¢ € (a?) for all large ¢, a contradiction. I

Remark. Let I # R be a principal ideal of R. If R is reduced then I* # R
and G(I*) = G(I): In fact, if G(I) = 0 then I C p where P is a minimal prime
ideal of R, so I* C p. Hence I* # R and G(I) = 0.

THEOREM 1.4. Let I = (a) # R be an ideal of R such that a ¢ Z(R).
I* = I if and only if I* is a principal ideal.

Proof. Since G(I) = 1, it follows from Proposition 1.3 that G(I*) = 1.
There exists b ¢ Z(R) such that I* = (b) (see [5]).

There exists a € R such that: a« = ab because I C I*. Since b € I*,
there exists ¢ € R° such that ¢b? € (a?) for all ¢ = p¢ > p¢. Hence for all
q = p° > p°, there exists 7. € R such that: ¢b? = roa? = r,a2b?, then ¢ € (a?)
for all ¢ = p® > p® because b ¢ Z(R). Hence (a)* = R.

Since o ¢ Z(R), it follows from Corollary 1.2 that (o) = R, so b € (a).

The converse is obvious. [

The counter example below, shows that we can have I* # I even if I = (a)
is an ideal of R and (a) is an R-sequence.

COUNTEREXAMPLE. Let R = K[X,Y]/(X3 + Y?3), where k is a field of
characteristic p # 3. Let z,y denote the image of X,Y in R.
It is easy to show that (z) is an R-sequence and y ¢ (x).
We show that y € (z)*:
Let ¢ = p®. Write 2¢ = 3k + i, where i is either 1 or 2, then: y37%yd =
k+1) (y3)k+1 — (_1)k+1($3)k+1.
3(k+1) = 3k+3 > 3k+i = gso: y3 'y € (x)9. Tt follows that y3y? € (z)9.
So y € (z)* because y3 ¢ Z(R).

y3(

Remarks. 1) Tt follows from Theorem 1.4 that the ideal (z)* of the above
counterexample is not principal.
2) Let R be an Artinian ring. If I is an ideal of R then I* = V.

2. THE GRADE OF I* WHEN ] IS AN IDEAL GENERATED
BY A REGULAR SEQUENCE

PROPOSITION 2.1. G(I) = G(I*) for all ideals I of R if and only if G(p) =
G(p*) for all prime ideals p of R.
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Proof. We suppose that G(p) = G(p*) for all prime ideals p of R. Let
I # R an ideal of R. There exists a prime ideal p of R such that I C p and
G(I) = G(p) (see [3]).

We have I* C p* so: G(I*) < G(p*). Then G(I*) = G(I).

The converse is obvious. 1

PROPOSITION 2.2. Let I be an ideal of a local ring R. If I is generated
by an R-sequence then I* # R.

Proof. We will use an induction on the number n of the elements of the
R-sequence.

For n = 1: See Proposition 1.1.

Since the passage from n to n+1, using the induction hypothesis, is exactly
similar to the passage from n = 1 to n = 2, it is then enough to show this for
n=2:

Let I = (a,b) be an ideal of R, where (a,b) is an R-sequence. We suppose
that I* = R, so there exists ¢ € R° such that ¢ € (a4, b?) for all ¢ = p® > e
So for alli > €' : ¢ = aja?" + B;bP" where o, 5; € R.

Hence for m > €' : apa?” + Bmb?" = am+1a7’m+1 + ﬁm+1b7’m+1.

S0 b7 (Brgr 7" P = B) = P (g — tpra?” P,

Since (a, b) is an R-sequence, (" ,b"") is an R-sequence (see [6]), 50 B, =
rmapm+ﬁm+1b”m+l_pm, where 7,,, € R. Hence (,,, € {a, Bm+1). Thus, we obtain
an increasing sequence of ideals of R:

<ﬁe’aa> C </Be’+laa> C..C </Bmaa> C <ﬁm+laa> C...

Since R is Notherian, there exists k& > €’ such that: (Og,a) = (Bk11,a). So
Br+1 = VB + pra, where v, puy € R.

S0 Brt1 = i (rka? + B 10?7k ppa. Hence: Sy (1-67"" ") € (a).

Since R is local, fx+1 € (a). Hence: ¢ € (a).

To show that ¢ € (a)?" for all s, we set z = a?’,y = b”°. We have
¢ € (x%,y9) for all ¢ = p® > p¢. Since (z,y) is an R-sequence (see [6]),
c € (x) = (a)?". Hence (a)* = R, a contradiction. [

THEOREM 2.3. If I is an ideal of R generated by an R-sequence then
I* # R.

Proof. Since I # R, there exists a maximal ideal m of R such that I C m.
We set I = (aq,...,a,) where (ay,...,a,) is an R-sequence.



TIGHT CLOSURE OF AN IDEAL 13

After localizing at m, we have: Iy = (%,..., %) and (%,..., %) is an
R-sequence in Ry (see [5]). Since Ry is local, it follows from Proposition 2.2

that (Im)* # Rm. Since (Im)* = (I*)m (see [4]), I* # R. 1

PROPOSITION 2.4. If 1 is an ideal of R generated by an R-sequence then
G(I*)=G().

Proof. Let I = (aq,...,a,) where (ai,...,a,) is an R-sequence. It follows
from Theorem 2.3 that I* # R.

We Suppose that G(I*) > n : There exists b € I* such that (aq,...,ap,b)
is an R-sequence.

Since b € I*, there exists ¢ € R° such that ¢b? € (a, ...,a?) for all large gq.
Since (a1, ...,an,b) is an R-sequence, (al,...,a,b?) is an R-sequence (see [6]).
Hence ¢ € (af, ..., al) for all large ¢, then I* = R, a contradiction. I

Remarks. 1) If p is a prime ideal of R generated by an R-sequence then
p*=p.
2) If q is a p-primary ideal of R generated by an R-sequence then /(* = .

3) By Theorem 2.3 we can show that a local regular ring is weakly F-
regular without using the fact N,;m? = 0. In fact Since M is generated by an
R-sequence, m* = m. Let I a m-primary ideal and 2 € I'*, there exists ¢ € R°
such that cz9 € Il9 for all ¢. Since R is regular, ¢ € (I : )19, If we suppose
that (I : z) # R then ¢ € ml9. Hence m* = R, a contradiction.

LEMMA. If J is an ideal and x an element of R then:
[J: z]ld ¢ [Jl9 : 29) for all ¢ = p°.

Proof. We set [J : 2] = (r1,...,m,) where r; € R.
We have [J : 2]l = (#{,...,7%). For alli = 1,...,n : 7z € J. So riz? =

(riz)? € J9. Hence r{ € [J19: 29]. 1

PROPOSITION 2.5. Let I be an ideal of R containing a maximal R-sequence
(a1, ...,an) in I such that (ai,...,an)* = (a1, ..., ay).
If I* # R then G(I*) = G(I).

Proof. We set J = (ay,...,a,). We have: J* = J C I. Since (aq,...,ay) is
a maximal R-sequence in I, I C Z(R/J). So there exists a prime ideal p such
that I C p = (J : z), where z ¢ J. Since I* # R and I C I*, G(I*) > n.

We suppose that G(I*) > n. There exists b € I* such that b ¢ Z(R/J).
Since b € I*, there exists ¢ € R° such that ¢b? € 119 C [J : 2]l7 for all large
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q. It follows from the Lemma that: cbiz? e Jl = (af,...,al) for all large q.
Since (a1, ...,an,b) is an R-sequence, (al,...,al,b?) is an R-sequence (see [6]).

ey Uy

So cz? € J for all large g. Hence z € J* = J, a contradiction. I
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