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1. INTRODUCTION

The fundamental laws of Mechanics and Economic Dynamics are essen-
tially the same, and they can be reduced to compute the extremals of a suit-
able functional. In the past four decades a lot of effort has been done in order
to introduce topological and geometrical techniques in Mechanics, the result
being the now so-called Geometric or Symplectic Mechanics. In particular,
the knowledge of symmetries and their associated conserved quantities has
been a useful tool to obtain information about the integrability of the equa-
tions of motion. In some cases, one can collect together all the symmetries
and obtain a Lie group for which there exists an appropiate momentum map
which provides a reduction of the dynamics (see for instance Abraham and
Marsden (1978)).

A similar effort for Economic theories is not accomplished yet. However,
important results have been obtained in this direction (see for instance Chiang
(1992), Magill (1970), Sato and Ramachandran (1990) and references therein).

In many economical models determined by a Lagrangian function and
several constraints is very difficult to solve the equations of motion. Therefore
it is useful to find conservations laws, that is, functions which are constants
along the temporal evolution of the system, in order to know relevant aspects
of the initial dynamical system. The study of economical conservation laws
is not new. For instance, the first reference to an economic conservation law
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appears in the famous paper of Ramsey (1928) where he obtained the optimal
saving rule. But, it was Samuelson (1970) who explicitely introduced the
concept of conservation law in economy. After him, this concept was used by
Weitzmann (1976), Sato (1975, 1981), Mimura and N6no (1997), Kataoka and
Hashimoto (1995) and others (see the book of Sato and Ramachadran (1990)
for a complete list of references).

The aim of the present paper is twofold. By the one hand, we present a
classification of infinitesimal symmetries for Lagrangian systems, and the cor-
responding Noether theorems. The derivation of the results is made by using
the symplectic techniques. Some of the results were previously obtained by
other authors (see Prince (1985) for instance), and an exhaustive presentation
can be found in de Ledén and Martin de Diego (1995, 1996). Let us note that
these results are true even if the Lagrangian function is singular, which is usu-
ally the case in economic models. On the other hand, we apply our methods
to derive some well-known conservation laws, in particular the income-wealth
conservation law obtained by Weitzman (1976) and the Samuelson’s first law
(see Samuelson (1970)).

An important remark is the following. In many economic models, we have a
Lagrangian function subjected to some constraint functions. The geometrical
model is just a vakonomic mechanical system. Therefore, it seems that such a
kind of dynamical systems deserves a careful study. We have recently started
a program to develop a geometrical setting for vakonomic mechanics with the
hope to obtain some applications to economic systems (see de Leén, Marrero
and Martin de Diego (1998)).

2. LAGRANGIAN MECHANICAL SYSTEMS

The configuration space of a mechanical system is an n-dimensional man-
ifold @, so that the evolution space of a dynamical system described by a
time-dependent Lagrangian system is R x T'Q), where T'Q) is the tangent bun-
dle of @ (see Abraham and Marsden (1978), de Leén and Rodrigues (1989)).

We denote by (t,q%,¢*), 1 < 4 < n the bundle coordinates on R x T'Q,
induced from local coordinates (¢') on Q. If 7 : R X TQ — R x Q is the
canonical projection then we have (¢, ¢, ¢*) = (t,q*).

Let dr be a differential operator which maps each function f : Rx@Q — R
into a function drf on R x T'Q locally defined by

of of

de:E-i_q'ia_qi.
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The geometry of the evolution space R x T'Q is characterized by two geo-

metric objects:

a (1,1)-tensor field
0

¢

S = ®dqi’

and the Liouville vector field

From both we construct a new (1, 1)-tensor field: 5= S — A ® dt.
Let X be a vector field on R x @, with local expression

0 ;. 0
X =T Z——..
Tat + X 3
Its natural lift to R x T'Q is the vector field X' defined by
0 .0 S b
1 _ 7 i i s
X' = o +X o7 + (dr(X)' — ¢'dr (7)) o5

A vector field { on Rx T'Q is said to be a second order differential equation
(SODE, for simplicity) if S(§) = A and S(¢) = 0. Therefore, a SODE € is
locally expressed as

o .0 ; 0
where & = £i(t,¢%,¢%). A curve o : R — Q is said to be a solution of a SODE
¢ if its natural prolongation to R X T'Q given by o' (t) = (¢, ¢*(¢),dq*/dt) is an
integral curve of ¢, or, equivalently, o is a solution of the following system of
non-autonomous differential equations of second order:

d2qi ' ; dqj
=¢* — <i1<n.
dt2 £ (t’q (t)1 dt ) ) 1 i 7 — n

Let L : R x TQ — R be a non-autonomous (or time-dependent) La-
grangian with energy

E]L:q aqz —-L

(Notice that Ey, can be globally defined by Ej, = A(L) — L). We construct
from L:
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(i) the Poincaré-Cartan 1-form

oL

O = §°(dL) = agt

(dqg* — ¢*dt) + 1Ldt,

where S* is the transpose operator of S,

(ii) and the Poincaré-Cartan 2-form

QL = —d @L-

Ey is a function defined on R x T'Q), and ©p, and €2, are forms on R x T'Q.
To find (SODE) solutions £ of the following intrinsic equations

iﬁﬂlL =0, dt(é‘) =1, (1)
is equivalent to solve the Euler-Lagrange equations
d (BIL) oL

— |z —%5==0, 1<i<n
dt \9¢) ~ ag =t=n

If the Lagrangian L is regular, that is, the Hessian matrix (8%IL/9¢'d¢’) is
non-singular, then the pair (Q, dt) is a cosymplectic structure, and, in such a
case, equations (1) have a unique solution &, which is automatically a SODE.
However, in many economic problems we will treat with Lagrangians which
are singular. In that case, the existence of a solution £ of equations (1) is not
guaranteed, and if any solution exists, it will not be necessarily a SODE.

Observe that, in general, for time-dependent Lagrangians the energy Ep
is not conserved. In fact, we have

dEy, oL
=, 2
dt ot @)
The above equation is an immediate consequence of the equations of the mo-

tion (1).

3. SYMMETRIES AND CONSERVATION LAWS OF TIME-
DEPENDENT LAGRANGIAN SYSTEMS

Let £ be a SODE on the evolution space R x T'Q.

DEFINITION 3.1. A differentiable function f : R x TQ — R is called a
conservation law or a constant of the motion of £ if £(f) = 0.
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Therefore, if v : R — Rx T'Q is a integral curve of &, then f o+ is a constant
function.
Next, assume that L is a Lagrangian function on R x T'Q.

DEFINITION 3.2. A vector field X on R x @ is said to be an infinitesimal
symmetry of L if
X'(L) = —dr(7)L,
where 7 = dt(X).

In coordinates, a vector field X = 79/t + X'9/8¢* is an infinitesimal
symmetry of L if and only if it satisfies the following condition:
L .
0 oL oL —dp(r)LL

TE—f‘Xaqi aqz—

+ (dr X* — g'dr(r))

ProposITION 3.3. If X is an infinitesimal symmetry of L, then O (X*')
is a constant of the motion of any solution £ of equations (1).

Proof. From the local expression of the Poincaré-Cartan 1-form ©p, we
have

£X1®L = )\i(dqi - qldt),
for some \; € C®°(R x T'Q). Here £ denotes the Lie derivative (see Abraham
and Marsden (1978)). Therefore, for a solution ¢ of equations (1) we obtain
ieLx10OL = \i(dg* — ¢'dt)(¢) =0,
since ¢ is a SODE. Thus, we finally have

¢(OL(Xh)) =0.
1

In coordinates, the constant of the motion obtained from an infinitesimal
symmetry X is:

@L(Xl) = EII(XZ - cji'r) + L.

There is a more general class of symmetries which permit to obtain addi-
tional conservation laws.
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DEFINITION 3.4. (i) A vector field X on R x @ is called a Noether sym-
metry if

LXI G')]L = df,

for some function f on R x T'Q). .
(ii) A vector field X on R x T'Q is called a Cartan symmetry if

L0 = df,
for some function f on R x T'Q.

In coordinates, a vector field X = 79/0t+ X*0/9q" is a Noether symmetry
if it verifies the following condition:

L - OLL
T6—+X’a

e ¢ = —dr(7)L +dr(f).

+ (dr(X) - ()

A Cartan symmetry is also characterized as follows:
iz = d(OL(X) - f).
Indeed, we have
df = L3O = i3dO + dizOp = —izQ + d(OL(X)),
and the result follows.

PRroPOSITION 3.5. If X is a Noether symmetry of L, then f — Op(X!) is
a constant of the motion of any solution ¢ of equations (1).

Proof. If X is a Noether symmetry, we have
df = Lx10y =ix1dOy + dix:10y,
and, therefore, we deduce that
d(f —OL(X") = —ix1 QL.
Thus, for any solution ¢ of equations (1) we obtain
E(f —Ou(XY) =d(f —OL(X")) (§) = —ix:W(é) = 0.

Hence, g = f — ©L(X") is a constant of the motion of any solution £&. |
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In coordi'nates, the conservation law obtained from a Noether symmetry

X is oL
—_ 1 — —

Next, we will obtain the relation between Cartan symmetries and conser-
vation laws.

(X' — g'r) — L.

THEOREM 3.6. (Noether theorem and its converse) If X is a Cartan sym-
metry, then F = Oy (X) — f is a constant of the motion of any solution ¢ of
equations (1). Conversely, if F' is a constant of the motion of any solution &,
then there exists a vector field Z on R x T'Q) such that

iz = dF.
Proof. Suppose that X is a Cartan symmetry. Then:
iz QL = d(0OL(X) — f) = dF.
Therefore, if £ is any solution of equations (1), we have
0= —i31QL =10 5 QL = 1dF = §{(F).
Conversely, if F is a conservation law, the equation
iyQ =dF

has a globally defined solution X, and then £(F) = 0. Therefore we deduce
that F' is a conservation law. | :

4. VAKONOMIC MECHANICS AND SINGULAR LAGRANGIAN SYSTEMS

Recently, vakonomic mechanics has received much attention (see Arnold
(1988), Lewis and Murray (1995)). In vakonomic mechanics, a motion is an
extremal of the functional

¢ / L) dt,

where c is a curve joinning two fixed points and satisfying the constraints
given by a submanifold M of T'Q, and the permitted variations also satisfy
them. Thus, using the Lagrange Multipliers Theorem in an infinite dimen-
sional context we deduce (see Arnold (1988), Lewis and Murray (1995), de
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Ledn, Marrero and Martin de Diego (1998)) that c¢ is a motion if and only if

there exist n functions A!,...,A\™ such that
d (alL) 0L _ . (i (a@A) _ a@A)
dt \ 8¢’ gt dt \ 9¢t aqt 3)
_ A" 8%, 1<i<n
dt o¢’ ~— — 7

where ®,4 are the functions defining the constraint submanifold M.

An alternative approach to vakonomic mechanics is the following. We can
prove that a curve c is a solution of the vakonomic equations if and only if
there exist local functions A!,... , A" on T'Q such that c is an extremal for the

extended Lagrangian
L=L+M,,
that is, c(t) = (¢*(¢)) satisfies the Euler-Lagrange equations
d (BL) oL _
dt \0¢i) 0O¢
(see Arnold (1988), Lewis and Murray (1995), de Leén, Marrero and Martin
de Diego (1998) for details).
A geometrical formulation for vakonomic mechanics similar to that for non-
holonomic mechanics was recently started in de Leén, Marrero and Martin de
Diego (1998). However, we can use the unconstrained formulation developed

in Sections 2 and 3 taking into account that the extended Lagrangian £ could
be singular. But the above results are still valid in this case!

0, 1<i<n.

5. A MODEL OF ECONOMIC GROWTH OF A NATION

Assume that the economic growth of a nation is determined by adequate
choices of consumption and investment.
Suppose that consumption is expressed as a function

C=F(K7K7LaL)a

where K = (K, K,, ..., K,) is the vector of capital goods and L is the labor

input (L > 0), exogenously given by I, = AL. Assume that 8>F/0K;0K. ; #0

(F is non-linear) and F is an homogeneous function of first degree.
Consumption per capita is given by

c= ¢ =F (Ki Ki'l,é) = F(ki, ki + Mei; 15 0) = f (ki ki + Mei3 ),

L L'L'L
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since

k_d(&) KL-LK, K,

- = — — Ak;.
dt \ L L2 L
The society’s objective is assumed to maximize the discounted future value

of consumption per capita; i.e.

max /0 et f ks, ks 4 Mki; \) dit.
The Lagrangian function is then

L(t, ki i) = 77 f (K, ki + Mo V),

and it is defined on R x T'Q where Q = R" with coordinates (k;).
The Euler-Lagrange equations are

dt(c”f)_ Of 97 _o 1<i<n.

ok pak, akz ’ -
By applying equation (2) we obtain that
d oL
A

which gives

G (7RO 5T = e (0, k) + M0,

Ok;
= —pe Pt f (kq(t), ki(t) + Mks(£), ).

Integrating we have

e (IO 5E = 1000, lut) + M0, ) )

+o00
==p [ e Rls),i(s) + Mils), ) ds,
or, equivalently,

—k()(f,f

(k:(t), k ()+/\k()/\)

_,,/ &) f (ki(s), ki(s) + Mi(s), ) ds.

This is precisely the income-wealth conservation law obtained by Weitzman
(1976) (see also Sato (1994)):

“Income” =p- “wealth”.
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6. A NEOCLASSICAL VON NEUMANN MODEL

Following Kataoka and Hashimoto (i:‘)95)'wé consider the following gen-
eralization of the Samuelson’s initial model (see Samuelson (1970)):

T .
max / e™"'p! (1) Ky(2) dt,
e T
subjected to the constraint
F(K(),Ki(t) =0, "

where 1 < i < n and dF/0K; > 0, dF/8K;< 0, with given initial data
K;(0) = K;, and final time T. The function F is:aC'-neoclassical transfor-
mation funtion and it is linear homogeneous. The coordinates (K;) are the
capital stocks, (K,) the capital formations, p’ the prices of the goods and r a
constant discount rate. ‘

The problem is mathematically described by a Lagrangian function:

]L(ta Ki, Kz) = e_rtpi(t)Ki

and the constraint F = 0. According to the precedent section, this constrained
problem is equivalent to the unconstrained time-dependent Lagrangian system
given by the Lagrangian function

L(t, Ki,\, Ki, \) = e7"pi(t) K, + \F,

defined on R x T(Q x R).
The Euler-Lagrange equations are

. . . OF OF . FPF oF
—rt (__ zt+'zt +)\ _ +)\ . K—I—)\.—.K_}\ :0
F(K;,K;) =0

It is not easy to solve these equations, so we will discuss the existence of
symmetries and conservation laws for explicit values of the prices p?, 1 < i < n.
As we know, the existence of such symmetries facilitates the integration of the
equations.

(i) pi(t) = C'e™, with (C,...,C™) € R".
In this case, we have
L= C'K; + \F,
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which is autonomous. Therefore, the vector field 0/0t is an infinitesimal

symmetry of L:
oL

By applying Proposition 3.3, we obtain the following conserved quantity:
o, . OF\ . /o OF
—)=—-[(C"+)\— )} K; ‘K; F)=)\K;—,

0c(z) (q +)\8Ki)K,+(CK,+>\ ) S
since F' is homogeneous.
Observe that the above formula is precisely the Samuelson’s first law

(Samuelson (1970)).

In addition, the vector field K;0/0K; is a Noether symmetry. Indeed, we

have oL oL

since £ is homogeneous and F' = 0 along the solutions. According to Propo-
sition 3.5, we derive the corresponding conservation law:

CiKi——GL(K 0 0 OF

i +K,.—.> = -A\K;—.
aKz 3Kz 8K,

K;

(ii) pi(t) = C’e™ + Dite™, with (C*,... ,C",D',... ,D") € R?",
In such a case, the Lagrangian is:

L= (C'+ Dt)K; + \F
which admits §/9t as a Noether symmetry. Indeed, we have

5 = D'Ki = dr(D'K)).

Therefore, the associated conservation law is:

(0225,

(iii) pi(t) = CiePt, with (C,...,C",B) € R+,
The Lagrangian becomes

L=Cle PK, 4+ \F
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so that the vector field -
0 0
X = E‘l"(’f‘—ﬂ)Kia—i

is an infinitesimal symmetry of £. Indeed, we have

oL oc . oL
T (r— 'B)Kic’)—Ki +(r— ,B)Kra?{—i =0,

and the conserved quantity is:

i,—(r— oF 2
(r — B)Cie~ ﬂ>tK,-+AaK (r-BK: - Ki).

i

(iv) pi(t) = Cieft + Die™, with (C*,...,C", D,... ,D", B) € R¥"+1,
In this case, the Lagrangian becomes

L= (Cle"Pt L DYK, + AF.

Thus, the vector field

0 0
X=-6-¥+(r—ﬂ)K’6K,
is a Noether symmetry. In fact, we have
oL oL . oL i
gt- + ('f' - ,B)K,g}.?z' + ('f' - ﬂ)K.l'a—I.{‘: = dT((’l" - ﬂ)D Ki),

and the associated conserved quantity is exactly the same as in the precedent
case.

7. CONCLUSION

We have shown that the well-known methods to obtain conservation laws
from infinitesimal symmetries in Geometric Mechanics can be applied to op-
timal economic growth problems. We have considered different types of in-
finitesinal symmetries: Lagrangian, Noether and Cartan symmetries, and all
of them have been related with conservation laws via Noether theorems. To
our knowledge the study of Cartan symmetries (also called hidden symmetries)
is a new concept in the economics literature, and it would be interesting in
further research. Finally, we have applied the results to two models: a model
of economic growth of a nation, and a neoclassical von Neumann model.
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The so-called vakonomic mechanics has proved to be the appropiate ge-
ometrical setting for economic models given by a Lagrangian subjected to
constraints. A further development of vakonomic mechanics would permit to
go deeply into this direction. This is one of our research interest in the next
future.
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