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1. INTRODUCTION

The classic Korovkin-Bohman’s theorem (1950), [13], [14], [7], states that
for a sequence (L,), n € N, of linear positive operators from C([a,b]) into
C([a,b]) the following statements are equivalent:

(i) Lnf converges uniformly to f in [a,b] for all f € C([a, b]);
(i) L,f; converges uniformly to f; in [a,b] for fi(z) = z* and i =0,1,2;

(iii) L,1 converges uniformly to 1 in [a,b]; H, converges uniformly to 0 in
[a,b], where H,(t) = (L,®;)(t) and ®;(z) = (z — t)%.

(i) « (ii) and (i) < (iii) are the results of Korovkin [13, 14] and Bohman
[7]. Korovkin result is based in Bersntein’s proof of the Weierstrass theorem.
Now, the proof of the Weierstrass theorem is an elegant consequence of the
Korovkin-Bohman theorem, using the sequence of linear positive operators
(Bn)nen, Bn : C([0,1]) = C([0, 1]), such that for all f € C([a,b]) B.(f) is the
Bernstein polynomial of order n.

An abstract formulation of the results of Korovkin is as follows:

Let E, F be two real or complex normed spaces. Let S be a fixed operator
from E to F. Let M be a fixed subclass of operators, usually linear, from FE
‘to F', and let H be a subset of E.
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The Korovkin closure, or shadow, of H with respect to M and S is the set
of all z € F satisfying the following condition:

For every net of operators (L;) in M such that lim L;h = Sh holds for all
h € H then lim L;z = Sz.

The Korovkin Closure of H with respect to M and S is denoted by
Kor M,S (H ) .

Some classic examples:

(1) CrLAssic KOROVKIN THEOREM.

In the classic Korovkin Theorem E = F = Cgla, b] are the real continuos
functions in [a,b], M is the set of positive and linear operators in Cgla, b],
S is the identity operator and H the subspace generated by {1,z,z?}. Then
Kory (H) = Cr(X).

(2) Y.A. SHASKIN. -

In the work of Shaskin [16],[17],[18] E = F = Cg(X) are the spaces of
real and continuous functions on the compact metric space X. M is the set
of positive and linear operators in Cr(X), S is the identity operator and H a
subsbspace of Cr(X), containing the constants, that separates the points of
X. Then Kory (H) = Cg(X) if and only if the Choquet boundary of H (see
[16]) coincide with X .

(3) H. BERENTS AND G.G. LORENTZ.

The paper [5] is concerned with the geometric aproach to Korovkin’s the-
orems and has its origin in the paper [17] of Shaskin. In this case £ = F =
Cr(X), S is the identity operator and M is one of the following sets: either
the set T't: positive and linear operators in Cr(X); or the set T} of linear
contractions in Cg(X); or else their union. H = lin M, is the linear hull of
M in Cr(X). Then Korg(G) = Cg(X) if and only if the unique representing
measure is the evaluation in z.

(4) H. BAUER.

In [2] H. Bauer shows that Korovkin type theorems can be obtained on
arbitrary topological spaces without any use of measure theory.

He shows that the methods developed in a previous paper [4] lead in a
natural way to generalizations of Korovkin’s theorems for increasing, possibly
non-linear maps L; : Cgr(X) — Br(X), (the space of real bounded functions
on X). He shows that all those generalizations can be obtained for locally
compact Hausdorff spaces.
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In other paper of H. Bauer and K. Donner, [3] they work in Co(X) the
space of real continuous functions vanishing at infinity on a locally compact
topological space X. Here the definition of the Korovkin closure has to be
modified by admitting only equicontinuous nets.

Our work begins with the paper of G.I. Kudriasev [15]. In that paper it
is proved the classic Korovkin theorem for sequences of linear almost-positive
operators. ‘

In [9] X is a topological compact Hausdorff space and F(X), (respectively
Bc(X), Co(X)) the linear spaces of complex functions on X (respectively
bounded, continuous). Analogously F/(X), B(X) and C(X) denote the linear
subspaces of real functions.

In [9], the results of [15] are expanded to the space of continuous complex
functions defined in a compact topological space, working with sequences of
almost positive linear operators and using uniform convergence. Subsequently,
in [10], [11], [12], other results with other sorts of convergence were obtained.

In this work we extend some of these results to Riesz’s lattices.

Let (E, <) be a Riesz’s lattice. We write (u,) J 0 to denote a net (uqy)aen
in E decreasing to zero; we write o-limu, = u to indicate order convergence
of (Ug)aca to u. Given u € E, (the set of positive elements of FE) we set
E, = {z € E: |z|] < Au for some A > 0}. An element u € E, is called a
strong unit if B, = E.

2. BAsIC RESULTS

DEFINITION 2.1. Let E be a Riesz’s lattice, with u as strong unit and let
(La)aea be a family of linear operators from F into E. We shall say that
the family (Ly)qep Is of class R, if for every z € E with z > 0, there exists
(uq) 4 0 such that Loz > —uq, a € A.

THEOREM 2.2. Let E be a Riesz’s lattice with u as strong unit and (Lg)aen,
a family of linear operators from E into E. Then o-limL,z =0, forallz € E
if and only if (Ly)aen, Is of class R and o-lim L,u = 0.

Proof. If z € E with > 0, then | L, z |< w,, for some net (w,) } 0; thus
L,z V —Lyz < w,, and then L,z > —w, and (Ly)qep is of class R.

On the other hand if x € E, there exists A > 0 such that | z |< Au. Let’s
define p; = Au — z; and p, = Au + z.

We have that p; > 0 and p, > 0. Since (Lg)aea is of class ﬁ, there exists
We 4 0 and v, | 0 such that L,p; > —w, and L,p, > —v, for all o € A.
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If « € A, we define h, = w,Vv, then h, > w, and h, > v,; by the linearity
of L, we have that AL,u— L,z > —wy, > —hy and AL u+ Loz > —v > —hg;
then, |Loz| < A|Lau| + hq- '

Since o-lim L,u = 0, there exists 7, | 0 such that |L,u| < r,; therefore

|Loz| < AT + hg = to, where t, )0,
so that o-lim L,z = 0. 1

THEOREM 2.3. Let E be a Riesz’s lattice with u as strong unit and (Ly) qen
a family of linear operators from E into E. Let (84)aca be a family of lin-
ear operators from E in E such that o-limfB,z = z for all x € E. Then
o-lim L,z = z, for all z € E, if and only if (L, — B4)aen is of class R and
o-lim L,u = u.

Proof. If x € E with z > 0, and o-lim L,z = z since o-lim 8,z = z, then
o-lim(L, — B,)(z) = 0, and then (Ly — Ba)aca is of class R, and the necessity
is proved. .

On the other hand if o-lim(L, — B,)u = (o-lim Lyu) — (o-lim B,u) = u —
u = 0, then by Theorem 2.2, if x € FE then o-lim(L, — B,)z = 0 and since
o-lim B,z = z, then o-limbL,z = z. The sufficiency is proved. |

Remark 2.4. If there is a net of operators (8,)aea such that (L, — Ba)aca
is of class ﬁ’, then for every net (Hgy)qea such that o-limH,t = ¢, t € E, we
have that (L, — Hy)aea is of class R In effect, there are w, 4 0 and v, | 0
such that (L, — 85)(z) > —wq, and |By(z) — Ha(z)| < v, t >0, @ € A. Then
(ﬁa - Ha)(x) > —Vq-

Therefore,

(Lo — Hp)(z) 2 —wq — Vg

and (L, — H,) is of class R.

3. MAIN RESULTS

DEFINITION 3.1. Let E and F be Riesz’s lattices. A functionT : E — F
is o-continuous in v € F, if for every net (v,)qea O-convergent to v € E, then
(T'(va))aen is o-convergent to T'(v) € F.

From now on X shall denote a compact Hausdorff topological space, and
C(X) the Riesz lattice of real continuous functions on X with pointwise order
and 1 as strong unit. K shall denote a subspace of C(X) containing the
constant functions.
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DEFINITION 3.2. We shall say that {f;}.cx, is a test family of functions
in K, if the following conditions hold:

a) For every z € X, f, € K and the function (z,t) ~ f,(t) is continuous
in X xX.

b) For every z € X, f,(z) =0.
c) Forevery t € X, z #t, f,(t) > 0.

THEOREM 3.3. Let {f,}.ex be a test family of functions in K. Let
(Ly)aca be a family of operators from K in C(X). Then o-limL,f = f
for all f € K, if and only if:

1.- (Lg)aen, of class R;
9- olim L 1 = 1;
3- o-limL,f, = f.,, z € X.

Proof. The necessity is immediate. For the sufficiency, let f € K, f > 0,
and let (€4)aca, be a net of real numbers decreasing to zero. We define the
auxiliary function X — R given by ®% = f — f(z) + €4 + hfs-

We are going to prove first that there exists A > 0 that only depends on «
and f, such that ®2(¢) > 0 for all (z,¢) € X x X.

The function (z,t) ~ F(z,t) = ®2(¢) is continuous in the compact topo-
logical space X x X and F(z,z) = ®,(z) = €, > 0; thus there exists an open
neighborhood V,, of (z,z) such that F(z,t) > 0 for all (z,t) € V,.

The set A = U,exV;, is open. If B = (X x X) \ A, then B is compact.

If B # () then the continuous function (z,t) ~ f,(t) satisfies that f,(¢) > 0,
for all (z,t) € B. Hence there exist m > 0 such that f,(t) > m for all
(z,t) € B. Thus

[@) = f(8) —ea _ f@) = 10) _ 200
t

fa(t) T ) T om
Take h € R such that h > %n{u; then
flz) = f(t)
fa;—(t) <h= f(z) — f(t) < hfz(t),

and then f(z) — f(t) — € < hfa(t); that is ®2(t) > 0 for all (z,t) € X x X.
Now let z € X be fixed; since (Lq)aca, is of class R there exists w? | 0
such that L,®S > —w?. By the linearity of the operator L, one has
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Laf - f(m)Lau + EaLau + hLaf:z; Z —wz,
and then

L.f > f(z)Lou — €, Lou — hLy fr — w
(1) = f(2)[Lov — u] — €a[Lau — u] = h[Lafo — fo] +
+f(z)u — €qu — hf, — wE
Since o-lim Lou = u and o-lim L, f, = f,, there exists r, | 0 and % | 0
such that |Lou—u| < 7o and |Lq fz— fz| < t%; that is: (Lou—u)V(—Lau+u) <

Taj (Lafz - fz) \% (_Laf:c + .f:c) S tz-
Therefore

Lou—u>—ry;
(2) —Lou+u> —1g;
_Lafz + f:c Z _tz,

substituting (2) in (1) and simplifying
Laf - f(:c)u Z —f(.’B)Ta, —€aTo — htz — €U — h’fz - ’U)z.

Evaluating in z one obtain L,(f,z) — f(z)u > —f(z)ra(z) — €xra(z) —
htZ(z) — €au — Wo(T)® = —pgo(z); finally writting p, = fra + €47 + ht% +
€U + w%, one obtain

Laf - f Z i 2% where DPa ~lf 0,

and thus (L, — Id),en is of class R. Applying now the theorem 2.3 the proof
is complete. 1

THEOREM 3.4. Let {f,}.cx be a test family of functions in K and (Ly)aen
a net of linear operators from K into C(X). Then o-limL,f = f, for all
f € H, if and only if:
(i) o-lim L, 1 = 1;
(ii) o-lim L, f, = f., z € X;
(iii) o-lim,sup|L.f| < |f|, (f € K).



RIESZ’S LATTICES AND ALMOST. POSITIVE OPERATORS 309

Proof. For the sufficiency we just have to prove that (Lg)sea is of class R
in K, and then apply theorem 3.3.

Otherwise, there exists f, € K, fo > 0, such that for every net (ws)aca,
we 4 0, and a € A, there exists § > «, such that

(3) Lgsfo is not greater than — w,.

If M =V, fo(z), then

(4) La(M_fO) :MLall _LafO-

Applying the hypothesis (i), there exists (v )aea, Vo | 0, such that
(5) |Lol — 1] S vy, (@ €A).

Taking the net (Mv,).ea and by (3), for every a € A there exists 8 > «
and z3 € X such that

(6) Ls(fo,z5) < —Mupg(zp),

from (5) we obtain:

(7) Lyl >1—v5 (B€A).

Evaluating in (4) , for 8 > a,

(8) Lg((M — fo),zp) = MLg(1,25) — Lg(fo, zp)-
Substituting (6) and (7) in (8):

9) Ls((M = fo),z5) > M — Mug(zp) + Mug(zs) = M.
On the other hand,

(10) |M — fol = (M = fo) V (fo— M) = M — fo < M.
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From (9) and (10) we have that

Ls((M — fo),z5) > |M — fol,

then limsup,cp |Lo((M — fo),z5)| > |M — fo|, which contradicts (iii).

On the other hand if o-lim L, f = f, then o-lim, sup L,f = o-lim, inf L, f =
f and by the continuity of limit regarding the sup, we have that o-lim, sup | L, f|
<|fl- 1

COROLLARY 3.5. Let {fi, f2y---,fn,...} be a countable family of real
functions in K such that for every i € N, f; and f? belongs to K. Assume
that the set {fi}ien separates the points of X. Let {L,}.cn, be a sequence
of linear operators H — C(X) that are continuous with the uniform norm.
Then, o-lim L, f = f for every f € K if and only if:

(i) o-limL,1 = 1;

(i) o-limf; = fi, i € N;
(iii) o-limf? = f}, i €N;
(iv) {Ln}nen is of class R.

Proof. The necessity is immediate. For the sufficiency we build a test
family of functions in K defining

foi= iai(fi - fi(fﬂ))z,

where o; = # and M; = || fi]|. The function f, is continuous, because every
fi i1s continuous and since

1
M7

M =

T 9i-2?

los(fi — fi(@))?] < udM? =

then the series converges uniformly on X.
Now, we check that (f;)zex is a test family of functions in K:
Conditions (a) and (b) are immediate; and so is (c) since the family (f;)
separates the points of X. Given m € N, let

i = iai(fi @)
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We have that (f™)men is uniformly convergente to f,, and thus lim,, L,,(f]")
= L,(f,)- Hence,

Lo(£2) = 3o el (s ~ fi@))?)

Since o-lim L, ((f; — fi(z))?) = (fi— fi(z))? we have that o-lim L,,(f,) = f.
The hypothesis of the theorem 3.4 are fulfilled, and therefore the proof of the
corollary is complete. [}
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