Matched Pairs and Extensions of Lie Bialgebras

MILOUD BENAYED

Université des Sciences et Technologies de Lille, UFR de Mathématiques-URA au CNRS D751, 59655 Villeneuve d'Ascq Cedex, France; e-mail: benayed@gat.univ-lille1.fr

(Research paper presented by Antonio M. Cegarra)

AMS Subject Class. (1991): 16W30, 17B56

Received February 27, 1998

1. Introduction

A Lie bialgebra is a Lie algebra also equipped with a Lie coalgebra compatible structure ([2], [3]). A Lie bialgebra morphism is a Lie algebra morphism which is also a Lie coalgebra morphism. Let \mathfrak{g} and A be finite dimensional Lie bialgebras over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . A Lie bialgebra $\widehat{\mathfrak{g}}$ is called an extension of \mathfrak{g} by A if there exists an exact sequence $0 \to A \xrightarrow{i} \widehat{\mathfrak{g}} \xrightarrow{\pi} \mathfrak{g} \to 0$ where i and π are Lie bialgebra morphisms. Two extensions $\widehat{\mathfrak{g}}_1$ and $\widehat{\mathfrak{g}}_2$ of \mathfrak{g} by A are called equivalent if there exists a Lie bialgebra morphism $\rho: \widehat{\mathfrak{g}}_1 \to \widehat{\mathfrak{g}}_2$ such that the following diagram commutes:

We denote by $\operatorname{Ext}_{\operatorname{big}}(\mathfrak{g},A)$ the set of all inequivalent Lie bialgebra extensions of \mathfrak{g} by A.

For an arbitrary commutative Lie bialgebra A and a general Lie bialgebra \mathfrak{g} an explicit description of $\operatorname{Ext}_{\operatorname{big}}(\mathfrak{g},A)$ can be found in ([1]). If $A \neq \mathbb{K}$ then the set $\operatorname{Ext}_{\operatorname{big}}(\mathfrak{g},A)$ is not in general a group: it is described by a non-abelian cohomology of Lie bialgebras.

In this work we suppose that \mathfrak{g} is a co-commutative Lie bialgebra to avoid non-abelian cohomology. The set $\operatorname{Ext}_{\operatorname{big}}(\mathfrak{g},A)$ naturally admits an abelian group structure and it is isomorphic to the second cohomology group of a

differential complex constructed out of \mathfrak{g} and A. More precisely, the data of an element of $\operatorname{Ext}_{\operatorname{big}}(\mathfrak{g},A)$ induces a matched structure on the pair (\mathfrak{g},A) . For such a fixed structure we give an explicit description of $\operatorname{Ext}_{\operatorname{big}}(\mathfrak{g},A)$ and define a cohomology of the matched pair (\mathfrak{g},A) such that its second group is isomorphic to $\operatorname{Ext}_{\operatorname{big}}(\mathfrak{g},A)$.

For a particular matched structure on $(\mathfrak{g}, \mathfrak{g}^*)$ we realize the double $\mathfrak{D} = \mathfrak{g} \bowtie \mathfrak{g}^*$ of \mathfrak{g} as the co-central trivial extension of \mathfrak{g} by \mathfrak{g}^* .

In the entire sequel (\mathfrak{g},A) denote an abelian pair of Lie bialgebras i.e. \mathfrak{g} is a co-commutative Lie bialgebra and A is a commutative Lie bialgebra. All vector spaces over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} considered here are finite dimensional.

2. Description of $\operatorname{Ext}_{\operatorname{big}}(\mathfrak{g},A)$ for a Fixed Matched Pair

Let (E): $0 \to A \xrightarrow{i} \widehat{\mathfrak{g}} \xrightarrow{\pi} \mathfrak{g} \to 0$ be an extension of Lie bialgebras. By definition we obtain the following two Lie algebra extensions:

$$\begin{aligned} &(\mathrm{E}_1):0\to A\stackrel{i}{\to}\widehat{\mathfrak{g}}\stackrel{\pi}{\to}\mathfrak{g}\to 0\,,\\ &(\mathrm{E}_2):0\to\mathfrak{g}^*\stackrel{\pi^*}{\to}\widehat{\mathfrak{g}}^*\stackrel{i^*}{\to}A^*\to 0\,, \end{aligned}$$

where \mathfrak{g}^* (resp. A^*) is the dual Lie algebra of \mathfrak{g} (resp. A) and i^* (resp. π^*) denotes the transpose of i (resp. π).

Extension (E₁) induces a (left) g-module structure $\varphi : \mathfrak{g} \to \operatorname{End}(A)$ and similarly extension (E₂) determines an A^* -module structure $F : A^* \to \operatorname{End}(\mathring{\mathfrak{g}}^*)$ on \mathfrak{g}^* . Using the fact that $\widehat{\mathfrak{g}}$ is a Lie bialgebra we obtain the following compatibilities between φ and F (see ([1]): $\forall \alpha, \beta \in A^*, \forall x, y \in \mathfrak{g}$,

$$F(\alpha)^*([x,y]) = [F(\alpha)^*(x), y] + [x, F(\alpha)^*(y)]$$

$$+ F(\alpha \circ \varphi(x))^*(y) - F(\alpha \circ \varphi(y))^*(x), \qquad (2.1)$$

$$[\alpha, \beta] \circ \varphi(x) = [\alpha \circ \varphi(x), \beta] + [\alpha, \beta \circ \varphi(x)]$$

$$+ \beta \circ \varphi(F(\alpha)^*x) - \alpha \circ \varphi(F(\alpha)^*y). \qquad (2.2)$$

DEFINITION. ([3]) A matched pair structure on (\mathfrak{g}, A) is the data of a \mathfrak{g} -module structure φ on A and an A^* -module structure F on \mathfrak{g}^* satisfying the identities (2.1) and (2.2).

If (E)' is a Lie bialgebra extension equivalent to the given extension (E), then the induced Lie algebra extensions (E₁)' and (E₂)' are equivalent to (E₁) and (E₂) respectively. As a consequence, extension (E)' induces the same matched structure (φ, F) on (\mathfrak{g}, A) . Therefore, we can conclude the following:

PROPOSITION. The data of an equivalence class of Lie bialgebra extensions induces a matched pair structure on the pair (\mathfrak{g}, A) .

Let (φ, F) be a fixed (but arbitrary) matched pair structure on (\mathfrak{g}, A) . Our aim is to describe the set $\operatorname{Ext}_{\operatorname{big}}(\mathfrak{g}, A)$ of Lie bialgebra inequivalent extensions of \mathfrak{g} by A inducing the given matched structure on the pair (\mathfrak{g}, A) .

Let $0 \to A \xrightarrow{i} \widehat{\mathfrak{g}} \xrightarrow{\pi} \mathfrak{g} \to 0$ be an extension of \mathfrak{g} by A. By choosing a linear section s of π we identify the vector spaces $\widehat{\mathfrak{g}}$ and $\mathfrak{g} \times A$; $(x,a) \equiv s(x) + i(a)$, where $x \in \mathfrak{g}$ and $a \in A$. The Lie bracket on $\widehat{\mathfrak{g}} = \mathfrak{g} \times A$ is given by: $\forall x, y \in \mathfrak{g}$, $\forall a, b \in A$,

$$[(x,a),(y,b)] = ([x,y],\varphi(x)(b) - \varphi(y)(a) + \gamma(x,y)), \qquad (2.3)$$

where $\gamma: \mathfrak{g} \times \mathfrak{g} \to A$, $\gamma(x,y) = [s(x),s(y)] - s([x,y])$, is a 2-cocycle, $\gamma \in \mathcal{Z}^2_{alg}(\mathfrak{g},A)$, of the Lie algebra \mathfrak{g} with values in the \mathfrak{g} -module A. The fact that i and π are Lie bialgebra morphisms implies that the Lie bracket on $\widehat{\mathfrak{g}}^* \cong \mathfrak{g}^* \times A^*$ is necessarily of the following form: $\forall \xi, \eta \in \mathfrak{g}^*, \forall \alpha, \beta \in A^*$,

$$[(\xi, \alpha), (\eta, \beta)] = (F(\alpha)(\eta) - F(\beta)(\xi) + \Omega(\alpha, \beta), [\alpha, \beta]), \qquad (2.4)$$

where $\Omega: A^* \times A^* \to \mathfrak{g}^*$ is a 2-cocycle, $\Omega \in \mathcal{Z}^2_{alg}(A^*, \mathfrak{g}^*)$, of the Lie algebra A^* with values in the A^* -module \mathfrak{g}^* . The compatibility between these two brackets on the Lie bialgebra $\widehat{\mathfrak{g}}$ implies the following condition ([1]): $\forall \alpha, \beta \in A^*, \forall x, y \in \mathfrak{g}$,

$$\langle \Omega(\alpha, \beta), [x, y] \rangle + \langle \gamma(x, y), [\alpha, \beta] \rangle \rangle =$$

$$\langle F(\alpha)(\beta \circ \widetilde{\gamma}(x)) - F(\beta)(\alpha \circ \widetilde{\gamma}(x)) + \Omega(\alpha, \beta \circ \varphi(x)) - \Omega(\beta, \alpha \circ \varphi(x), y)$$

$$- \langle F(\alpha)(\beta \circ \widetilde{\gamma}(y)) - F(\beta)(\alpha \circ \widetilde{\gamma}(y)) + \Omega(\alpha, \beta \circ \varphi(y)) - \Omega(\beta, \alpha \circ \varphi(y), x)$$
(2.5)

 $\widetilde{\gamma}: \mathfrak{g} \to L(\mathfrak{g}, A)$ is given by $\langle \widetilde{\gamma}(x), y \rangle = \gamma(x, y)$, where $L(\mathfrak{g}, A)$ is the vector space of linear maps of \mathfrak{g} in A.

DEFINITION. We say that $\gamma \in \mathcal{Z}^2_{\mathrm{alg}}(\mathfrak{g},A)$ and $\Omega \in \mathcal{Z}^2_{\mathrm{alg}}(A^*,\mathfrak{g}^*)$ are compatible if the identity (2.5) is satisfied. We denote by $\mathcal{Z}^2_{\mathrm{alg}}(\mathfrak{g},A) \times_c \mathcal{Z}^2_{\mathrm{alg}}(A^*,\mathfrak{g}^*)$ the subspace of $\mathcal{Z}^2_{\mathrm{alg}}(\mathfrak{g},A) \times \mathcal{Z}^2_{\mathrm{alg}}(A^*,\mathfrak{g}^*)$ consisting of all compatible cocycles.

So we have established that to any extension $\widehat{\mathfrak{g}}$ of \mathfrak{g} by A we can associate an element (γ,Ω) of $\mathcal{Z}^2_{\rm alg}(\mathfrak{g},A)\times_c\mathcal{Z}^2_{\rm alg}(A^*,\mathfrak{g}^*)$. Conversely, the data of such a pair gives an extension $\mathfrak{g}\times A$ of \mathfrak{g} by A defined by the formulae (2.3) and (2.4).

A change of the chosen section s to another section $s' = s + i \circ \theta$ of π with $\theta \in L(\mathfrak{g},A)$ transforms the pair (γ,Ω) to $(\gamma + \delta\theta,\Omega - \partial\theta^*)$. Here $\delta\theta$ denotes the coboundary operator of the 1-cochain $\theta:\mathfrak{g}\to A$ of the Lie algebra \mathfrak{g} with values in the \mathfrak{g} -module A and $\partial\theta^*$ is the coboundary of the 1-cochain $\theta^*:A^*\to\mathfrak{g}^*$ of the Lie algebra A^* with values in the A^* -module \mathfrak{g}^* .

The map $(\mathfrak{g} \times A, s) \to (\mathfrak{g} \times A, s'), (x, a) \mapsto (x, a + \theta(x))$ between trivializations of $\widehat{\mathfrak{g}}$ defined by s and s' respectively is an equivalence of extensions. An isomorphism ρ defining an extension equivalence between $\widehat{\mathfrak{g}}_1$ and $\widehat{\mathfrak{g}}_2$ of \mathfrak{g} by A trivialized by $(\mathfrak{g} \times A, \gamma, \Omega)$ and $(\mathfrak{g} \times A, \gamma', \Omega')$ respectively is always of the above form. We deduce that $\widehat{\mathfrak{g}}_1$ and $\widehat{\mathfrak{g}}_2$ are equivalent if and only if there exists $\theta \in L(\mathfrak{g}, A)$ such that $\gamma' = \gamma + \delta\theta$ and $\Omega' = \Omega - \partial\theta^*$.

So we have established the following result:

THEOREM. There is a bijective correspondence between $\operatorname{Ext}_{\operatorname{big}}(\mathfrak{g},A)$ and the quotient $\mathcal{B}(\mathfrak{g},A)$ of $\mathcal{Z}_{\operatorname{alg}}^2(\mathfrak{g},A)\times_c\mathcal{Z}_{\operatorname{alg}}^2(A^*,\mathfrak{g}^*)$ by $\{(\delta\varphi,-\partial\varphi^*)\mid \varphi\in \operatorname{L}(\mathfrak{g},A)\}$.

The set $\mathcal{B}(\mathfrak{g}, A)$ is an abelian group for the natural addition:

$$((\gamma, \Omega)) + ((\gamma', \Omega')) = ((\gamma + \gamma', \Omega + \Omega')),$$

where double parentheses denote equivalent classes in $\mathcal{B}(\mathfrak{g},A)$.

3.
$$\mathcal{B}(\mathfrak{g},A)$$
 is a Second Cohomology Group

Let (φ, F) be a fixed matched pair structure on (\mathfrak{g}, A) . The \mathfrak{g} -module structure φ on A naturally induces a \mathfrak{g} -module structure, which we also denote by φ , on $\wedge^q A$ for every integer $q \geq 2$:

$$\varphi(x)(a_1 \wedge a_2 \wedge \ldots a_q) = \sum_{k=1}^q a_1 \wedge a_2 \wedge \ldots a_{k-1} \wedge \varphi(x)(a_k) \wedge a_{k+1} \wedge \cdots \wedge a_q.$$

Similarly, $\wedge^p \mathfrak{g}^*$ is endowed via F with A^* -module structure for every integer $p \geq 2$. We denote by ∂ (resp. δ) the coboundary operator of the Lie algebra A^* (resp. \mathfrak{g}) with values in the A^* (resp. \mathfrak{g}) module $\wedge^q A$ (resp. $\wedge^p \mathfrak{g}^*$). An element ω of $\wedge^p \mathfrak{g}^* \otimes \wedge^q A$ is a p-cochain of the Lie algebra \mathfrak{g} with values in the \mathfrak{g} -module $\wedge^q A$. This element ω is also regarded (via its transpose) as a q-cochain of the Lie algebra A^* with values in the A^* -module $\wedge^p \mathfrak{g}^*$. In this identification, the following result is an immediate fact by definition of δ and ∂ .

Lemma.
$$\begin{split} \mathcal{Z}^2_{\mathrm{alg}}(\mathfrak{g},A) \times_c \mathcal{Z}^2_{\mathrm{alg}}(A^*,\mathfrak{g}^*) = \\ \{(\gamma,\Omega) \in \mathcal{Z}^2_{\mathrm{alg}}(\mathfrak{g},A) \times \mathcal{Z}^2_{\mathrm{alg}}(A^*,\mathfrak{g}^*) \mid \delta\Omega + \partial\gamma = 0\} \,. \end{split}$$

As (g, A) is a matched pair of Lie bialgebras we obtain the following differential double complex:

A. Masuoka ([4]) obtained this double complex from a double complex constructed on universal enveloping algebras of \mathfrak{g} and A which also form a matched pair of Hopf algebras.

Let us denote by (T,D) the total differential complex associated to our double complex: $T^n = \bigoplus_{p,q \geq 1}^{p+q=n+1} \wedge^p \mathfrak{g}^* \otimes \wedge^q A$ and $D \mid_{\wedge^p \mathfrak{g}^* \otimes \wedge^q A} = \delta + (-1)^p \partial$.

DEFINITION. The cohomology $H_{\text{big}}^{(*)}(\mathfrak{g},A)$ of a matched pair (\mathfrak{g},A) is the cohomology of the total complex (T,D) restricted to the intersection of the kernels of all vertical and horizontal operators.

As a consequence of the preceding lemma and theorem, we conclude the following:

THEOREM. Set $\mathcal{B}(\mathfrak{g}, A)$ is the second cohomology group $H^2_{\text{big}}(\mathfrak{g}, A)$ of the matched pair (\mathfrak{g}, A) .

This result is analogous to the work of W. M. Singer ([5]) on Hopf algebras. Let H_1 be a commutative Hopf algebra and H_2 a co-commutative Hopf algebra and let $\operatorname{Ext}(H_2, H_1)$ denote the set of all inequivalent Hopf algebra extensions of H_2 by H_1 . An element of $\operatorname{Ext}(H_2, H_1)$ determines a matched structure on the pair (H_2, H_1) . For such a fixed structure on the pair (H_2, H_1) , the set $\operatorname{Ext}(H_2, H_1)$ is an abelian group isomorphic to the second cohomology group of a differential complex constructed out of the given matched pair (H_2, H_1) , similarly as for Lie bialgebras.

4. The Double of a Co-commutative Lie bialgebra.

The double $\mathfrak{D} = \mathfrak{h} \bowtie \mathfrak{h}^*$ of a Lie bialgebra \mathfrak{h} is the vector space $\mathfrak{D} = \mathfrak{h} \oplus \mathfrak{h}^*$ endowed with the following Lie bracket and Lie co-bracket:

$$[(x,\xi),(y,\eta)]_{\mathfrak{h}\oplus\mathfrak{h}^*} = ([x,y]_{\mathfrak{h}} + \operatorname{coad}_{\xi} y - \operatorname{coad}_{\eta} x, [\xi,\eta]_{\mathfrak{h}^*} + \operatorname{coad}_{x} \eta - \operatorname{coad}_{y} \xi),$$
$$[(\xi,x),(\eta,y)]_{\mathfrak{h}^*\oplus\mathfrak{h}} = ([\xi,\eta]_{\mathfrak{h}^*}, -[x,y]_{\mathfrak{h}}).$$

In the following $\operatorname{coad}_{\eta} x$ denotes the coadjoint action of $\eta \in \mathfrak{h}^*$ on $x \in \mathfrak{h} \cong (\mathfrak{h}^*)^*$ (\mathfrak{h} is finite dimensional) and $\operatorname{coad}_x \eta$ is the coadjoint action of $x \in \mathfrak{h}$ on $\eta \in \mathfrak{h}^*$. Endowed with the preceding structures the double $\mathfrak{D} = \mathfrak{h} \bowtie \mathfrak{h}^*$ is in fact a Lie bialgebra.

Let \mathfrak{g} be a co-commutative Lie bialgebra. The commutative (not co-commutative) Lie bialgebra $A=\mathfrak{g}^*$ is a \mathfrak{g} -module for the coadjoint action $(\theta=\operatorname{coad})$ and \mathfrak{g}^* is considered as a trivial $A^*=\mathfrak{g}$ -module i.e. F=0. With these data the pair $(\mathfrak{g},\mathfrak{g}^*)$ is a matched pair of Lie bialgebras; condition (2.1) is trivially verified and condition (2.2) is reduced to a Jacobi identity in \mathfrak{g} . The brackets (2.3) and (2.4) of an extension $\mathfrak{g} \oplus \mathfrak{g}^*$ of \mathfrak{g} by \mathfrak{g}^* described by the zero class $((0,0)) \in H^2_{\operatorname{big}}(\mathfrak{g},\mathfrak{g}^*)$ are given by:

$$[(x,\xi),(y,\eta)]_{\mathfrak{g}\oplus\mathfrak{g}^*} = ([x,y],\operatorname{coad}_x(\eta-\varphi(y))-\operatorname{coad}_y(\xi-\varphi(x))+\varphi([x,y])),$$
$$[(\xi,x),(\eta,y)]_{\mathfrak{g}^*\oplus\mathfrak{g}} = (-\varphi^*([x,y]),[x,y]),$$

where φ is an element of $L(\mathfrak{g}, \mathfrak{g}^*)$. If $\varphi = 0$ then we obtain the double $\mathfrak{g} \bowtie \mathfrak{g}^*$ with the opposite bracket on its dual $\mathfrak{g}^* \oplus \mathfrak{g}$.

A co-central extension $\widehat{\mathfrak{g}}$ of \mathfrak{g} by A is an extension of \mathfrak{g} by A such that the dual extension $\widehat{\mathfrak{g}}^*$ is a central extension of A^* by \mathfrak{g}^* . This holds since here F=0.

PROPOSITION. The double $\mathfrak{g} \bowtie \mathfrak{g}^*$ of a co-commutative Lie bialgebra is the trivial co-central extension of \mathfrak{g} by the \mathfrak{g} -module \mathfrak{g}^* for the coadjoint action, except for one sign.

Remark. The double $\mathfrak{h} \bowtie \mathfrak{h}^*$ of an arbitrary Lie bialgebra \mathfrak{h} is not an extension of \mathfrak{h} by \mathfrak{h}^* ; the natural projection $\mathfrak{h} \bowtie \mathfrak{h}^* \to \mathfrak{h}$ is not a Lie algebra morphism.

REFERENCES

- [1] Benayed, M., Extensions abéliennes des bigèbres de Lie, Journal of Lie Theory 8 (1998), 173-182.
- [2] DRINFELD, V.G., Quantum groups, in "Proceeding of the International Congress of Mathematicians", Berkeley, USA, 1986, 798-820.
 [3] MAJID, S., "Foundations of Quantum Group Theory", Cambridge University Press, Cambridge, USA, 1995.
- [4] MASUOKA, A., Extensions of Hopf algebras and Lie bialgebras, Preprint de l'Institut Mathématique de l'Université de Munich, 1996–1997.
- [5] SINGER, W.M., Extension theory for connected Hopf algebras, Journal of Algebra 21 (1972), 1-16.

