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1. INTRODUCTION

There are two kinds of theories for describing the dynamical behaviour of
a physical system: Classical and Quantum theories. The quantum description
is obtained from the classical one following an appropriate procedure, which
is called quantization of the system.

In Theoretical Physics, there are different ways to quantize a classical
theory; such as, canonical quantization, Feynmann-path integral quantization
Weyl-Wigner quantization, Moyal quantization, and other methods derived
from these ones. In many cases, the first of them is a direct and easy way of
quantization.

Canonical quantization is based in the so-called Dirac’s rules for quanti-
zation. It is applied to “simple” systems: finite number of degrees of freedom
and “flat” classical phase spaces (an open set of R*™). The lines of the method
are mainly the following [1], [22], [24], [29]: '

o Classical description (starting data). The system is described by the
Hamiltonian or canonical formalism: its classical phase space is lo-
cally coordinated by a set of canonical coordinates (¢’,p;), the position
and momentum coordinates. Classical observables are real functions
f(¢’,p;). Eventually, a Lie group G of symmetries acts on the system.

e Quantum description. The quantum phase space is a complex Hilbert
space H. Quantum observables are self-adjoint operators acting on #,
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O(#H) . The symmetries of the system are realized by a group of unitary
operators Ug(H).

e Quantization method. As a Hilbert space we take the space of square
integrable complex functions of the configuration space; that is, func-
tions depending only on the position coordinates, % (g?). The quantum
operator associated with f(g’, p;) is obtained by replacing p; by —’fiha%j,
and hence we have the correspondence f(¢?,p;) — O;(¢’, —iha%j). In
this way, the classical commutation rules between the canonical coor-
dinates are assured to have a quantum counterpart: the commutation
rules between the quantum operators of position and momentum (which
are related to the “uncertainty principle” of Quantum Mechanics).

Nevertheless, canonical quantization involves several problems. The principal
ones are the following:

e As we have said, it can be applied to finite dimensional systems with
“flat” classical phase spaces. Some difficulties arise when this is not the
case.

e The method exhibits a strong coordinate dependence: it needs the exis-
tence of global canonical coordinates and depends on their choice, that
is, it is not invariant under canonical transformations. In addition, the
result of quantization depends on the order on which ¢/ and p; appear
in the expression of the classical observables.

e The procedure is easy for simple systems, but serious difficulties arise
when we deal with constrained systems or systems with internal degrees
of freedom.

e There are several ways to obtain the quantization of a system: the so-
called Schréodinger representation, Bargmann-Fock representation, etc.
Canonical quantization does not provide a unified frame for all of them.

In order to solve these and other questions, a new theory, called geometric
quantization, was developed in the 70’s. Its main goal is to set a relation
between classical and quantum mechanics from a geometrical point of view,
taking as a model the canonical quantization method. In this sense, it is a
theory which removes some ambiguities involved in the canonical quantization
procedure. Thus, for instance:

!The Hilbert space is complex in order to take into account the interference phenomena
of wave functions representing the quantum states. The operators are self-adjoint in order
to assure their eigenvalues are real.
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e It gives a unified frame for the various kinds of representations.

e It generalizes the quantization procedure for classical phase spaces which
are not necessarily “flat” (and, even, without being a cotangent bundle).

e Since it is a geometrical theory, it is a coordinate-free quantization pro-
cedure.

e It clarifies the analogies between the mathematical structures involved
in classical and quantum theories.

On the other hand, a relevant feature of geometric quantization is its
close relationship with the theory of irreducible unitary representations of Lie
groups [10], [47], [51]. This relation can be understood in the following way:
in the geometrical description of a regular system the classical phase space is,
in a lot of cases, a symplectic manifold (M, 2). The classical observables are
the real smooth functions Q°(M). Suppose G is a Lie group of symmetries
with a strongly symplectic action on (M, ). Geometric quantization tries to
establish a correspondence between the categories (M, Q°(M)) and (H, O(H))
and such that the group of symmetries G is realized as a group of unitary
operators Ug(#) [32]. The situation is summarized in the following diagram:

G — (MQ)
irr. unit. rep.l l geom. quant.
Ug(H) — H

Then, the way of constructing irreducible unitary representations of G (by
the orbit method) is related to the way of constructing the Hilbert space H
(made of quantum states) from (M, §2).

The first works on geometric quantization are due to J.M. Souriau [75], B.
Kostant [51] and LE. Segal [70], although many of their ideas were based on
previous works by A.A. Kirillov [47], [48]. Nowadays, their results constitute
what is known as prequantization procedure.

Nevertheless, the so-obtained quantum theory is unsatisfactory from the
point of view of the irreducibility of the quantum phase space, so that an-
other basic structure in the geometric quantization programme has to be in-
troduced: the so-called polarization, (this concept was due to B. Kostant and
J.M. Souriau in the real case, and to L. Auslander and B. Kostant in the com-
plex one). Concerning to this question, the relation between quantizations
of the same system arising from different choices of polarizations was also
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studied: it is performed by means of the so-called Blattner-Kostant-Sternberg
kernels (see [14], [15], [16], [40]).

Once the polarization condition is imposed, in a lot of cases, other struc-
tures have to be added, because the inner product between polarized quantum
states is not well-defined in general. The key is to introduce the bundles of
densities and half-forms [90] in order to define the inner product between
quantum states. Finally, in many cases the so-called metaplectic correction
must be done for obtaining the correct energy levels of the quantum theory
(14], [40], [52].

Although the geometric quantization programme was initially developed
for quantizing regular systems; that is, symplectic manifolds, it was applied
soon to presymplectic manifolds, as an attempt for giving a geometric frame-
work for the canonical quantization rules which P.A.M. Dirac applied to sin-
gular systems (see, for instance, (8], [18], [19], [33], [36], [57], [61], [74], [78]).
Nevertheless, the method shows important limitations; mainly, the noncom-
mutativity of the procedures of constraining and quantizing. In order to over-
come these problems new geometrical structures were introduced, which led
to the so-called BRST quantization (from Becchi-Rouet-Stora-Tuytin) [4], [5],
[27], [43], [53], [58], [79], [80].

In addition, geometric quantization has been extended in order to be ap-
plied to Poisson manifolds [84], [85]. The origin of this question is that, in
the most general cases, the phase space of classical dynamical systems are not
symplectic manifolds merely, but Poisson manifolds. As a generalization of
these ideas, quantization of Jacobi manifolds has been also considered recently
[21], [66]. The interest of this topic is that, from the mathematical point of
view, Jacobi manifolds are the natural generalization of Poisson manifolds (in
particular, of symplectic, cosymplectic and Lie-Poisson manifolds); and their
physical interest lies on their relation with the Batalin-Vilkovisky algebras.

As a final remark, it is interesting to point out that geometric quantization
is a theory developed essentially for the quantization of finite dimensional
systems. Few things are known about the geometric quantization of field
theories, which is a topic under research.

The aim of this paper is to give a mathematical detailed description of ge-
ometric quantization. In particular, our study concerns just to the “standard
theory” (up to the metaplectic correction); that is, we only consider geometric
quantization of symplectic manifolds.

We pay special attention to several questions, namely:

e The analysis of the mathematical aspects related to the structures in-
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volved in the geometric quantization theory, such as complex line bun-
dles, hermitian connections, real and complex polarizations, metalinear
bundles and bundles of densities and half-forms.

e The justification of all the steps followed in the geometric quantization
programme, from the standpoint definition to the structures which are
sucesivelly introduced.

Next, we give some indications on the organization of the paper.

In Section 2, we begin with a discussion on the ideas and postulates on
which the canonical quantization is based and which justify the steps of the
geometric quantization programme. Section 3 contains a careful and detailed
exposition of the mathematical concepts needed in the first stage of prequanti-
zation. Next we begin the geometric quantization programme, properly said.
So, Section 4 is devoted to explain its first steps which lead to the so-called
prequantization procedure. Once the problems arising above have been dis-
cussed, a new structure for geometric quantization is introduced and justified
in Section 5: the concept of polarization, its properties as well as their appli-
cation to quantization. Section 6 is devoted to introduce new mathematical
structures: the metalinear structure and the bundle of densities and half-
forms. These structures are then used in order to complete the quantization
programme. The final section is devoted to discuss some problems concerning
to the geometric quantization of constrained systems.

All manifolds are assumed to be finite dimensional, paracompact, con-
nected and C*°. All maps are C*°. Sum over crossed repeated indices is
understood. As far as possible, we follow the notation of references [1] and
[2]. In particular, if (M,Q) is a symplectic manifold (dimM = 2n), the
Hamiltonian vector fields are defined as (X ;)2 = df. Then, we have

{f9}= Q(Xf,Xy) = _'6'(Xf)i(Xy)Q =—-Xs(g9) = Xg(f)

and Xy .3 = [Xy, X;]. In a chart of canonical coordinates the expression of
the symplectic form is Q = dg? A dp;, and

2. PRELIMINARY STATEMENTS

Since our goal is to construct a geometrical theory of quantization based on
the canonical quantization programme, we will take as the standpoint model
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the geometrical framework which describes the canonical formalism of the
classical physical systems [1], [6]. Then, a set of postulates is stated in order
to construct the corresponding quantum description.

There are several ways of choosing a set of axioms or postulates for Quan-
tum Mechanics (see, for example, [22], [24], [29], [46], [59], [62], [69], [87]).
In general, these postulates can be arranged into three groups: those which
we can call the “kinematical” postulates, the “dynamical” postulate and the
“statistical” postulates. Nevertheless, in this paper we are only interested
in the “kinematical” and, eventually, in the “dynamical” aspects of quan-
tum theory and, therefore, we omit (if possible) any reference to “statistical”
considerations.

Thus, this section is devoted to state and comment those postulates of
Quantum Mechanics in which the standpoint definition of the geometric quan-
tization programme is based. Many details of this presentation can be found
also in [49] and [81].

2.1. THE POSTULATES OF QUANTUM MECHANICS

2.1.1. ON THE SPACE OF STATES. In the canonical formalism of Classical
Mechanics, the phase space of a physical system is assumed to be a manifold
M which is endowed with a symplectic structure 2 or, more generically, with
a Poisson structure { , }. Every point of this manifold represents a (classical)
physical state of the system. Since, as we will see in Section 4, the geometric
quantization program deals with symplectic manifolds, if M is Poissonian,
remembering that a Poisson manifold is the union of symplectic manifolds,
(its symplectic leaves [55]), with this programme we quantize every symplectic
leaf, which is only a partial representation of the phase space 2. This is an
essential fact because, given a symplectic manifold (M, Q2), there is a natural
way to define a Hilbert space associated with M and a set of self-adjoint
operators acting on it and satisfying the suitable conditions which we will
discuss afterwards.

In contrast to this fact, in Quantum Mechanics the framework for the de-
scription of a physical system is a separable complex Hilbert space. In general,
there are different ways of working, mainly: the Hilbert space formulation and
the projective Hilbert space formulation 3. Next we are going to compare both

*See the comments in the Introduction about geometric quantization of Poisson
manifolds.
3There is also a third possibility: the so-called unit sphere formulation. Nevertheless we
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of them.

1. The Hilbert space formulation:

The initial framework is a Hilbert space H. At first, it seems reasonable
to identify each element |[¢)) € H as a quantum state, but as it is well
known, the dynamical equations in Quantum Mechanics are linear in
the sense that the set of solutions is a linear subspace. Hence we cannot
identify each element |1)) € H as a quantum state since, for every A € C,
A # 0, there is no way to choose between the solutions |1) and A|)), so
they must represent the same quantum state . Then, the true quantum
states are really rays in that Hilbert space. Hence, in this formulation
there is a redundancy which has to be taken into account when we define
the quantum states.

2. The projective Hilbert space formulation:

If we want to eliminate this redundancy in the definition of quantum
states, the only way is passing to the projective Hilbert space PH which
is made of the complex lines in H:

[)c == {Aly) : AeC, ) € H}.
We have the following projection

H-{0} 5 PH
[4) AT

Hence, in this picture, a quantum state is given by an unique element
of PH. It must be remarked that, like in the classical situation, PH is
a differentiable manifold but, in contrast, it is infinite-dimensional.

We can summarize this discussion in the following postulate:

POSTULATE 1. In the framework of Quantum Mechanics, a physical sys-
tem is described by a separable (complex) Hilbert space H. Every state of
this system at time ¢ is represented by a ray |¢(¢))¢ belonging to the Hilbert
space. Any element |¢(¢)) (different from zero) of this ray is called a vector
state.

do not consider it here, since it is not relevant for our presentation of geometric quantization.
You can see a detailed exposition of it, as well as its use in an alternative presentation of
geometric quantization, in [76] and [81].

“When | A |= 1, A will be called a phase factor.
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Remark. There is a one-to-one correspondence between the states in this
postulate and the so-called pure states in several axiomatic formulations of
Quantum Mechanics [59], [62], [69], [87], [89]. This correspondence is estab-
lished in the following way: the pure states are the projection operators over
the one-dimensional subspaces of H, meanwhile the so-called mixed states
are convex combinations of projection operators (which are not necessarily
projection operators).

2.1.2. ON THE OBSERVABLES. In the classical picture, a physical observ-
able (that is, a measurable quantity) is a real smooth function f € Q°(M)
and the result of a measure of a classical observable is the value taken by
the representative function on a point (state) of the classical phase space. In
contrast:

POSTULATE 2. In the framework of Quantum Mechanics, every observable
of a physical system is represented by a self-adjoint linear operator which acts
on its associated Hilbert space °.

The result of a measure of a quantum observable is an eigenvalue of the
corresponding operator.

2.1.3. ON THE DYNAMICS. The above two postulates establish the “kine-
matical” framework for the description of Quantum Mechanics. The following
step lies in stating the dynamical equations. In the canonical formulation of
the classical theory, the usual way is to give a function H € Q°(M) contain-
ing the dynamical information of the system (the Hamiltonian function) and
hence to take the Hamilton equations as the equations of motion. Then, the
dynamical evolution of an observable f is given by

daf
Et“:XH(f):{faH}- (1)

In Quantum Mechanics we have two possible options:
POSTULATE 3. In the framework of Quantum Mechanics, the dynamics

of the system is defined by a quantum observable Oy called the Hamiltonian
operator of the system. Then:

5Technical difficulties concerning the domains of unbounded self-adjoint operators can be
ignored hereafter since they are not important for the purposes of geometric quantization.
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1. Heisenberg picture: The dynamical evolution of the system is carried
out by the quantum observables and, in the interval of time between
two consecutive measures, the evolution of every observable O;(t) is
given by the Heisenberg equation ¢

i#2.0;(t) = [04(2), Ow (1)

In this picture the states of the system are constant in time.

2. Schrodinger picture: The dynamical evolution of the system is carried
out by the states and, in the interval of time between two consecutive
measures, on each ray |1(t))c, there is some representative vector state
|1(t)) such that the evolution of the system is given by the Schrédinger
equation

i 19(0) = Only(0).

In this picture the observables of the system are represented by operators
which are constant in time.

Really, geometric quantization concerns only to the “kinematical” aspects
of the quantum theory. Nevertheless, several attempts have been made trying
to set up the dynamical postulate in geometrical terms, although we do not
treat this subject on our exposition (see, for instance [9], [44], [45], [76] for
more information on this topic).

There are other postulates which are related with the probability interpre-
tation of Quantum Mechanics. As we have said earlier, we do not consider
them in this study (for further information, see the references given at the
beginning).

2.2. THE GEOMETRIC QUANTIZATION PROGRAMME. Given a symplectic
manifold (M, Q) (the phase space of a classical system), the aim of the quan-
tization programme is to construct a Hilbert space H (the space of states of
a quantum system), and associate a self-adjoint operator O; to every smooth
function f in a Poisson subalgebra of Q°(M) 7. In addition, as the set of self-
adjoint operators O(H) is also a Lie algebra with the bracket operation, it

50bserve the analogy with the classical equation (1).
“The apparent modesty of this purpose is due to the fact that it is impossible to represent
the full Poisson algebra Q°(M) in the conditions that we will specify soon [86].
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seems reasonable to demand this correspondence between classical and quan-
tum observables to be a Lie algebra homomorphism.

Next, we are going to justify another condition to be satisfied by this
representation.

2.2.1. ON THE IRREDUCIBILITY OF THE SPACE OF STATES. First of all
we need to set the concept of irreducibility, both in the classical and the
quantum picture.

DEFINITION 1. Let (M,Q) be a symplectic manifold. A set of smooth
functions {f;} C Q°(M) is said to be a complete set of classical observables if
every other function g € Q°(M) such that {f;,g} =0, for all f;, is constant.

Observe that this imply that the functions {f;} separate points in M.
Moreover, for every m € M, there exists an open set U and a subset {f/}
of {f;} which is a local system of coordinates on U. Then, let X, be the
Hamiltonian vector fields associated with these functions. This set is a local
basis for the vector fields in M (notice that, in general, the subset {f/} is
not a global system of coordinates on M, since this would imply that M is
parallelizable. As a consequence, this notion is used only locally by means of
canonical systems of coordinates). Therefore, if {¢;,} are local one-parameter
groups of { X } defined in an open set V' C M, and S is a submanifold of M
with dim S < dim M, then SNV is not invariant by the action of {¢;, }, that is,
M is irreducible under the action of this set of local groups of diffeomorphisms.

The quantum analogy of this concept can be established as follows:

DEFINITION 2. Let H be a Hilbert space. A set of self-adjoint operators
{O;} (acting in H) is said to be a complete set of operators if every other
operator O which commutes with all of them is a multiple of the identity.

If H is considered as the quantum representation of a physical system,
then this set is called a complete set of quantum observables.

Notice that the operators {O;} and O involved in this statement do not
come necessarily from any set of classical observables.

As above, this concept can be related to the irreducibility of H under the
action of this set as follows:

PROPOSITION 1. If a set of self-adjoint operators {O;} on H is a complete
set of operators then H is irreducible under the action of {O;} (that is, every
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closed subspace of H which is invariant under the action of this set is either
equal to {0} or H).

Proof. Let {O;} be a complete set and F' C H a closed subspace invariant
under the action of this set. Let Il be the projection operator over F'. Then
IIr commutes with all the elements of the complete set. In fact, if O is a
self-adjoint operator on H which leaves F invariant (and therefore F'* is also
invariant), and ¢ € H, ¥ = 11 + 1, with 1, € F and ¢, € F*, we have:

(0, 1IF] = O(IIr(¥1)) + O(Ilp(¥2)) — Ip(O (1)) — Lr(O(th2))
=0(W1) = O(¥1) =0,
since IIp(¢;) = ¢, and IIp()y) = 0. Then Ip = Aldy, so F = {0} if A =0,
or F=HifA#£0. I

It is interesting to point out that if the operators O, and O are continuous,
then the converse also holds (see, for instance, [23] and [54]).
Taking into account the above discussion, we will demand:

IRREDUCIBILITY POSTULATE (FIRST VERSION). If { f;} is a complete set of
classical observables of a physical system then, in the framework of Quantum
Mechanics, their associated quantum operators make up a complete set of
quantum observables (which implies that the Hilbert space H is irreducible
under the action of the set {Oy, }).

Remark. Let M = R?" be the classical phase space, and (¢, p;) the posi-
tion and momentum canonical coordinates. Then the uniparametric groups
associated with the Hamiltonian fields X, and X, are the groups of trans-
lations in position and momentum which act irreducibly in the classical phase
space, that is, there are no proper submanifolds of M invariant by these ac-
tions. In the old canonical quantization scheme, H = L2(R") (the space of
¢’-dependent square integrable functions), and the self-adjoint operators cor-
responding to the complete set (¢7,p;) are

. 0
Oqj = q], Op] = Zha_qj
This set of operators is a complete set of quantum observables, and this is the
translation to the quantum picture of the irreducibility of the phase space

The above operators satisfy the following commutation rules:
(04,0451 =0, [05,, 0,1 =0, [Ogs, Op,] = ihidy; Id ®

8This last equality is related to the known uncertainty principle of Quantum Mechanics.
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2.2.2. CLASSICAL AND QUANTUM SYMMETRIES. A relevant concept in
Physics is the notion of symmetry of a system. Next we are going to discuss
this subject, both from the classical and the quantum point of view. As we
will see at the end, we can relate this discussion to the irreducibility postulate.

Let (M, Q) be a symplectic manifold. A symmetry of the system described
by (M, §2) is an element g of a Lie group G which acts symplectically on (M, Q).
So, every symmetry is represented by a symplectomorphism ¢,: M — M (that
is, such that ¢;Q = Q). Let Sp(M, ) be the group of these symplectomor-
phisms. A group of symmetries of (M, Q) is then represented by a subgroup
of Sp(M, ).

Remember that, if f € Q°(M), then every local uniparametric group {(;}
associated with the Hamiltonian vector field X is a group of local symmetries
of (M, Q).

The quantum counterpart of this concept is the following;:

DEFINITION 3. (Wigner) A symmetry of the quantum description of a
physical system is a map PH — P#H such that:

i) It is bijective.
ii) It preserves the map

PH xPH — RFU{0}

"2

(rl), i)~ ROl

which means that the“transition probabilities” are conserved.

Remarks:

e Incidentally, we can point out that this definition means that a symmetry
of the quantum description is an isometry in PH for the Fubini-Studdi
metric [91].

e The space PH is naturally endowed with a strongly symplectic form.
It can be proved that a bijection g: PH — P%H conserving this sym-
plectic structure and the natural complex structure of PH is a quantum
symmetry (if H is finite-dimensional, then the converse is also true: ev-
ery quantum symmetry preserves the natural symplectic form and the
complex structure of PH) (see [82] and the references quoted therein).

These comments reveal the analogy between the classical and quantum
concepts of symmetry.
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A way of realizing quantum symmetries is to projectivize unitary or antiu-
nitary operators on H. The following proposition proves that this is actually
the only possible way.

PROPOSITION 2. (Wigner) Let g be a symmetry of the quantum descrip-
tion of a physical system. Then:

i) There exists either a unitary or alternativelly an antiunitary operator
U, on H such that U, induces g, that is, for every |y) € H — {0}, we

have w(Uy|)) = g(r|t)).

it) IfU, and U, are unitary or antiunitary operators on H which induce g,
then U, and U, differ on a phase factor.

COROLLARY 1. If g1, g» are quantum symmetries and U,,, U,, are uni-
tary operators on ‘H inducing those symmetries, then Uy, 5, = a(g1,92)Uq, Uy, ;
where a(g1,92) € U(1).

Let G be a connected group of quantum symmetries. As a consequence of
the previous results, if U(H) denotes the set of unitary operators on H, there
exists a subgroup G’ C U(H) such that the following sequence is exact

1-U1)—»G —-G—1,

that is, G' is a central extension of G by U(1).

In other words, if U(H) induces the quantum symmetries and PU(H) :=
U(H)/U(1) is the group of projectivized unitary operators on #, then, it
is isomorphic to the group of quantum symmetries, and every subgroup of
quantum symmetries is isomorphic to a quotient of a subgroup of U(#) by
U(l). '

Summarizing, the situation is the following: Let G be a Lie group, then
it is a group of symmetries of the physical system, both for the classical and
the quantum descriptions, if we have the following representations of G:

e As classical symmetries, by a representation as symplectomorphisms
acting on (M, Q) (the phase space of the system in the classical picture).

e As quantum symmetries, by a representation as unitary transformations
acting on H (the space supporting the quantum states of the system in
the quantum picture).
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Then, we can state the following version of the irreducibility postulate:

IRREDUCIBILITY POSTULATE (SECOND VERSION). Suppose G is a group
of symmetries of a physical system both for the classical and the quantum
descriptions. If G acts transitively on (M, ) (by means of the corresponding
group of symplectomorphisms), then the Hilbert space H is an irreducible
representation space for a U(1)-central extension of the corresponding group
of unitary transformations.

Suppose G is a Lie group which acts on (M, 2) and the action is strongly
symplectic, that is the fundamental vector fields associated to the Lie algebra
of G by this action are global Hamiltonian vector fields {X,} C X,(M). In
this case, the connection between the first and second version of the irreducibil-
ity postulate can be established as follows: if the action is transitive, then the
Hamiltonian functions { f;} make up a complete set of classical observables for
(M, Q) °. Conversely, if {f;} is a complete set of classical observables, then
these functions can be thought as the generators of a group G of infinitesi-
mal symplectomorphisms whose action on (M, Q) is strongly symplectic and
transitive [49].

Now, a remaining question is the following: can every classical symmetry
of a physical system be translated into a quantum symmetry? This question
can be reformulated and generalized in a more precise way. In fact, since
every classical symmetry must be a symplectomorphism of the classical phase
space (M,Q), the maximal set of classical symmetries is the group of all
symplectomorphisms Sp(M,2). In an analogous way, since every quantum
symmetry must be a projective unitary transformation of P#, the maximal
set of them is the group of projective unitary transformations PU(H). Then,
the question can be generalized in the following terms: if (M, Q) represents
the classical phase space of a physical system and H is the Hilbert space for
the quantum description, are the groups Sp(M,Q) and PU(H) isomorphic?

As we will remark at the end of the following section, in general the answer
is negative [1], [32], [39], [86]: on the one hand, there is no way to associate
an element of PU(H) to every element of Sp(M, Q). Physically this means
that, in some cases, if G is a group of symmetries of a classical system, in
the quantization procedure some symmetries are preserved but other ones
are broken. These situations are called quantum anomalies in the physical

°If the action is transitive and symplectic but not strongly symplectic (or Hamiltonian),
then the fundamental vector fields are locally Hamiltonian and the corresponding locally
Hamiltonian functions make up a local complete set of classical observables.
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literature (see, for instance, [31] for a more detailed explanation on this topic).
On the other hand, neither every quantum symmetry comes necessarily from
a classical one. In physical terms this is related to the fact that it may have
unitary operators which have not classical counterpart.

Finally, a relevant fact is that, as it is clear from the discussion made in
this section, geometric quantization of a classical system is closely related to
the study of irreducible representations of a Lie group '°. Pioneering works on
these topics are [47] (for nilpotent groups), [10], [13] (for solvable Lie groups)
and [14], [16], [68] (for semisimple groups). (For a summarized guideline of
some of these methods see, for instance, [49] and [90]).

2.3. THE STANDPOINT DEFINITION OF THE GEOMETRIC QUANTIZATION
PROGRAMME. Taking into account the previous postulates and the discus-
sion made in the above paragraphs, we can say that the objective of the
geometric quantization programme is to try of finding a correspondence be-
tween the set of pairs (Symplectic manifolds (M, ), smooth real functions
C*>*(M)) and (Complex Hilbert spaces H, self-adjoint operators O(H)); or, in
a more general way, a functor between the categories (Symplectic manifolds
(M, 2), symplectomorphisms Sp(M,Q)) and (Complex Hilbert spaces H, uni-
tary operators U(H)). This functorial relation must satisfy certain properties.

Hence, we can establish the following standpoint definition:

DEFINITION 4. A full quantization of the classical system (M, ) is a pair
(Hg,O) where:

a) Mg is a separable complex Hilbert space. The elements |¢)) € H are the
quantum wave functions and the elements |)c € PHq are the quantum
states of the system. H is called the intrinsic Hilbert space and PHg
is the space of quantum states of the system.

b) O is a one to one map, taking classical observables (i.e., real functions
f € Q°(M)) to self adjoint operators O; on Hg, such that

l) Of+g = Of + Oy.

ll) O,\f =)\Of, V)\E(C .
iii) O; = Idy,.
iV) [Of,Og] = ’I:hO{f,g}.

10And, really, first developments of geometric quantization arose from works on the second '
problem. '
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v) If {f;} is a complete set of classical observables of (M, <), then
Hq has to be irreducible under the action of the set {Oy,}. Alter-
natively, suppose G is a group of symmetries of a physical system
both for the classical and the quantum descriptions. If G acts tran-
sitively on (M, ), then Hg provides an irreducible representation
space for a U(1)-central extension of the corresponding group of
unitary transformations.

The set of these operators is denoted O(#g) and its elements are called
quantum observables or quantum operators.

The justification of this definition lies in the discussion held in the previous
sections. Thus, part (a) of definition arises as a consequence of Postulate 1.
On the other hand, part (b) is the translation of Postulate 2 and, in relation
to conditions listed there, we point out that:

e Conditions (i) and (ii) establish the linearity of the map O which, al-
though it has not, in general, a physical interpretation, it is a desirable
property from the mathematical point of view.

e Condition (iii) gives account of the fact that, if the result of a measure-
ment has to be equal to 1 in every state of the classical description of the
system, then we want the same result in the quantum description; that
is the only expected value has to be 1, so the corresponding operator
must be the identity.

e Condition (iv) imposes that, moreover, the map O is a Lie algebra mor-
phism (up to a factor).

¢ Finally, condition (v) is the irreducibility Postulate.

Hence, the quantization programme consists of constructing a Hilbert
space Hg on which the Lie algebra of classical observables could be repre-
sented irreducibly by self-adjoint operators on H, satisfying conditions in
part (b) of Definition 4.

It is important to point out that, as it is proved in [1], [32], [39] and [86],
it is not possible to find a full quantization for every classical system, even in
the case of M = R?". (In this last case, it is not possible to quantize all the
classical observables of the system. Then, the usual way is to quantize only
a subset of all the classical observables which is called a Hilbert subalgebra.
We will treat this feature afterwards).
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3. HERMITIAN LINE BUNDLES

Before starting the explanation of the geometric quantization programme,
several geometric tools (which are basic in this task) have to be known. This
section deals with the study and development of all these concepts. General
references are [17], [30], [51] and [92].

3.1. COMPLEX LINE BUNDLES

DEFINITION 5. Let m: L — M be a projection of manifolds. (L, n, M) is
said to be a complex line bundle if:

i) For every m € M, the fiber L,,, = 7~!(m) is a one dimensional complex
vector space.

ii) There exists an open covering {U,} of M and sections s; : U; — L such
that the maps :
U CxU — 71'_1(U1)
(z,m) +—  zs(m)

are diffeomorphisms.
Observe that the family {(U;,n;)} is a bundle trivialization and that s;(m)
# 0 for all m € U;.
Taking into account that
C x Ulj _77.7_) 7T_1(Ulj) 77_1—_) C x Ulj,

where U;; = U, NU;), we have that the transition functions ¥,; are given by
J J J
@y = ;" oy, that s,

zs;(m) ,m> _

Uyi(2,m) = nfl(nj(z’m)) = nl‘l(zsj(m)) - ( si(m)

Observe that %f(i%) is well defined. We can also write ¥;(z, m) = (z¢;;(m), m)
where
Cij ! U[j — C

moo— %:(Wlowlj)(lam)

satisfying that c;jcjx = e, in Uy, ¢ = 1, and ¢; = cj'il. These functions
cij are also called “transition functions” and the above conditions cocycle
conditions.
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DEFINITION 6. Two complex line bundles (L,7, M) and (L',n', M) are
said to be equivalent if there exists a fiber diffeomorphism ¢ : L — L' such
that the restrictions to the fibers ¢, : L,, = L;, are C-linear and the induced
map on M is the identity.

In this case, we can construct trivializations with the same transition func-
tions, since they can be carried from one to the other by means of the diffeo-

morphism. We denote by L(M) the set of equivalence classes of complex line
bundles.

In the set L(M) we consider the tensor product (over C, that is, (LQL'), :=
L,®cL’); then we have a group structure in which the unit is the trivial bundle
and the inverse L~! is the dual L*. The transition functions of L ® L' are the
product of those of L and L'. This is called the Picard’s group of M.

Let 0 : M — L be a section. We are going to analyze the relation between
the restrictions of o to two open sets of a trivialization. Let {U;,n,} be a
trivialization with transition functions c;; and let o; be the restriction of o to
the open set U,. Considering the following diagram

C x Ul 'l> 7T—1(U[)

Ta

Ui

the section o defines local functions (with values in C) as f; := m o' o 0y;
and in the same way for U;. Now, in U;; we have:

film) = (m °771-1)(U(m)) = 7T1((77z_1 o nj °77j_1)(‘7(m)))
= <‘I’lj (nfl(a(m)))) = (‘I’tj (fj(m),m))

= m (e (m) f;(m), m) = a;(m)f;(m),

that is, f; = ¢;;f;. Therefore, a section of L induces, on each open set U;, a
function (with values on C) and the relation between the functions defined in
two intersecting trivializing open sets is obtained taking the product by the
transition functions.

3.2. CHERN CLASSES. Let (L, m, M) be a complex line bundle and {U, s;}
a trivialization with transition functions ¢;;. Let F be the sheaf of germs of
complex smooth functions in the manifold M, and F* the set of the nowhere-
vanishing ones, considered as a sheaf of groups with the product. The tran-
sition functions define a Cech l-cocycle in M, c : U; — ¢, with values in
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the sheaf F*, and then it determines an element in the cohomology group
HY (M, F*).

PROPOSITION 3. The above Cech cohomology class does not depend on
the trivialization used but only on the class of L in L(M). Moreover, the
assignment L(M) — H'(M,F*) is a group isomorphism.

Proof. The independence of the trivialization is a consequence of the fact
that the union of two trivializations is a trivialization whose associated cov-
ering is a refinement of those of the initial trivializations.

The assignment is a group morphism because the transition functions of
the tensor product are the ordinary product of the transition functions of the
factors. |

Consider now the exact sequence of sheaves
03Z S5 F S F =0,

where € is the natural injection and e(f) := e***/. The corresponding coho-
mology sequence is

H'(M,Z) - H'(M,F) = H (M, F*) — H*(M,Z) — H*(M, F),

but F is a fine sheaf (with partitions of the unity), therefore the cohomol-
ogy groups with values in F and degree greater than zero are null and then
HY(M,F*) = H*(M, 7).

THEOREM 1. The group L(M) is canonically isomorphic to H?(M,7Z).

Proof. 1t is a consequence of the last proposition and the above arguments.

_ DEFINITION 7. If [L] is an element of L(M), then the element K ([L]) of
H?(M,Z) corresponding to [L], will be called the first Chern class of L.

3.3. CONNECTIONS AND CURVATURE. Let I'(L) be the F-module of sec-
tions of (L,m, M) and X©(M) the module of complex vector fields on M
(XS(M) = X(M) ®C).
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DEFINITION 8. A connection in the complex line bundle (L, 7, M) is a
C-linear map

V: XY(M) — Home (I'(L),I(L)) = I'(L) ®c T'(L)*
X (=g VX

satisfying that

1) va:va)
2) Vx(fs) = (X[f)s+ fVxs,

that is, an element of (F* ® o I'(L)) ®c ['(L)* satisfying condition (2), where
FP denotes the module of complex p-forms on M.
Equivalently, a connection is a map

V: I(L) — F'@r I'(L)
S — Vs

such that

i) It is C-linear,
il) V(fs) =df ® s+ fVs.

(That is, V € (F!®x I['(L)) ®cT'(L)* and, moreover, it satisfies condition (ii),
from which, taking Vxs := (X )Vs, the equivalence between both definitions
is immediate).

V xs is called the covariant derivative of the section s with respect to X
and the connection V.

PROPOSITION 4. (Vxs)(m) depends only on X, and on the germ of s in
m.

Proof. If s has null germ in m, then it vanishes in a neighbourhood U of
m. Let f € F° be null in an open set V C U and taking the value equal to 1 in
the complementary of an open set W contained in U, such that V C W C U.
It is clear that s = sf and we have that

(Vs)(m) = (V(fs))(m) = (df)(m) @ s(m) + f(m)(Vs) = 0,

therefore two sections with the same germ in m have the same covariant
derivative in m. On the other hand, let U and V be open neighbourhoods of
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m in M with U C V and f € F° such that fly = 1, fly—v = 0. If sis a
section it is clear that s and fs have the same germ in m and then we have

(Vxs)(m) = (Vx(fs))(m) = Xu(f)s(m) + f(m) i(Xn)(Vs) = i(Xm)(Vs),
and then it only depends on X,,,. I

In order to find the local expression of a connection, let {U,s;} be a
trivialization of the bundle. Every section in U, has the form s = fs;; hence,
according to the property (ii), in order to calculate Vs, it suffices to calculate
Vs;. Writing Vs; = 2miw' ® s5,,'! (where w' is an element of F* in U}), in Uj;
we have that s; = ¢;s,, therefore

VS]' = V(cljsl) = dclj ® s + cles,,
that is
2w ® s; = 27ric,jwj ® s =dc;; ® s+ clj27riw’ ® sy,

therefore
27rz'cljwj = dcy; + c,j27riwl,
and hence, in Uj;,
w = ig—cﬂ Wt
2mi ¢y

Observe now that we can write the following relation for the covariant
derivative of a section:

Vxs = Vx(fs) = (X(f) +2mi(X,0') f)s:. (2)

The family {U,w'} is called connection 1-form, but this is not a global
form in M. Nevertheless, in Uj; the equality dw’|y,, = dw'|y,, holds, hence
there exists a global complex 2-form  on M such that Q|y, = dw'.

DEFINITION 9. The 2-form  so defined is called the curvature form of
the connection V.

The relation with the “classical” curvature is as follows:

"Be careful: the summation convention does not apply in this expression and those ones
related with it.
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PROPOSITION 5. If X;,X, € X®(M) and s € T'(L), then
27T’I:Q(X1,X2)S = (VX1VX2 - VXQVXI — V[xl,xz])s.

Proof. Taking a trivialization {U}, s;}, in the open set U, we have
QX1, X5) = dw' (X4, X3) = X0 (X)) — Xow! (X)) — ([ X1, Xa]),
but
Vx,Vx,8 = Vx, (21wt (X3)s) = 2miX; (W (X2))s + (2m6) 2w (Xe)w' (X1 ) sy,
Vx,Vx, 8 = Vx, (21w (X1)s)) = 2mi X, (W (X1))s + (2m6) 2w (X )w' (X2) s,
Vixy, x50 = 2miw' ([X1, Xa))si,
and thus the result follows immediately. Nl

Another way of defining the curvature is the following: we can extend the
action of V to the p-forms on M with values in I'(L) in the following way

FP @po T(L) 25 FPH @50 (L)
by means of the expression
VP(a®s)=da®s+ (—1)’PaAVs.
Denoting w := V! o V, we have that
w(fs) = (V' oV)(fs)=V'(df ®s+ fVs)
=d(df)®s—df ANVs+df AVs+ f(V'oV)s = fw(s),
therefore w is FC-linear, that is,
@ € (F? @0 I'(L)) ®z0 [(L)* = F* ® 5o ([(L) @0 T'(L)").

Let ) be the 2-form obtained from @ by means of the natural contraction of
the last two factors of w. The so-obtained form is a complex 2-form on M. In
order to see that it coincides with the curvature form, it suffices to calculate
it in an open set U; of a trivialization {U, s;}:

(VioV)s = VH(Vs) = VHw' ®s) = dv' ® s +w AVs
=d' ®s +w AW ®s =du' ® s,
therefore w|y, = dw' ® s; ® s}, where s is the dual of s;. Hence, Q = dw', as

we wanted to prove. (We have not considered the factor 271 which depends
on the definition of the connection form).
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3.4. HERMITIAN STRUCTURES

DEFINITION 10. Let (L, 7, M) be a complex line bundle endowed with a
connection V. A hermitian structure on (L,mw, M) is a correspondence such
that assigns a hermitian metric h,, on L,,, for every m € M, in a differentiable
way; that is, if s,s’ are differentiable sections, then the function h(s,s’) is
differentiable. This is equivalent to say that h is an element of I'(L* ® L*),
(where L is the conjugate bundle of L), that is, h satisfies condition A(s,s’) =
h(s',s).

Given a hermitian structure h on (L, 7, M), V is said to be a hermitian
connection with respect to h if

X (h(s,s")) = h(Vxs,s')+ h(s,Vxs'), VX € X(M), Vs,s' € I'(L).

This is equivalent to say that VA = 0, when the connection is extended to
I'(L* ® L*) in the usual way.

PROPOSITION 6. If V is a hermitian connection with respect to h, then
the curvature Q) of V is a real form '2.

Proof. We are going to see it for trivializing neighbourhoods. So, let
{U,, s} be a trivialization, {w'} the connection forms of V on {U;} and X
a real vector field; we have

X(h(sl, Sl)) = h(VXSl,Sl) + h(Sl, VXSl)
= 2mih(w (X)sy, 81) — 2mih(s;, W' (X)s))
= 27 (W' (X) — W (X))h(s, s1),

and therefore
_1_X(h(31, 51))

! — X)) =
w (X) w (X) 211 h(Sl,Sl)
That is 1 dh(s,s)
1 _—_ 1 ahlsys)
wow=aon h(si,s1)

hence dw! — dw! = 0, that is, dw' is real, for every [ and thus the curvature Q
isreal. 1

127 vector field X is real if X(f) € Q°(M), Yf € Q°(M). A 1-form « is real if a(X) is
real, for every real vector field. And so on.
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Remarks. Let (L, m, M) be a complex line bundle with hermitian metric h
and hermitian connection V.

1. Let {Uj;,s;} be a trivialization of L with h(s;,s;)(m) = 1, for every
m € U;. Then if w’ is the connection form of V in Uj, from the above
equality we have that w’ — wi = 0, so they are real forms.

These special trivializations can be obtained from any one by dividing
every s; by its module.

2. If {Uj,s;} is one of such trivializations, then |c;;(m)| = 1, for every
m € Uy, since

1= h(Sl, Sl) = h(Sj,Sj) = C[jéljh(Sj,Sj).

Then ¢; = e with f;;: U;; — R a differentiable function. So we have
that every hermitian line bundle admits a trivialization with transition
functions taking values in S?, the group of isometries of h.

3.5. EXISTENCE OF HERMITIAN CONNECTIONS. Let M be a differen-
tiable manifold and €2 a real closed two form on M.

THEOREM 2. The necessary and sufficient condition for §) to be the cur-
vature 2-form of a hermitian connection V on a complex line bundle (L, m, M)
endowed with a hermitian metric is that the cohomology class [)] € H*(M, R)
is integer, that is, the Cech cohomology class canonically associated with [Q)]
belongs to the image of the morphism €*: H?(M,Z) — H?(M,R) induced by
the inclusione: Z — R.

Moreover, in this case, §) is a representative of the image by €* of the
Chern class of the bundle (L, 7, M).

Before starting the proof, we remind how to construct the canonical iso-
morphism between the de Rham cohomology and the Cech cohomology of
degree two; and what means that [)] is integer.

Let Q € Q*(M) be a real 2-form with d) = 0 and [Q] € H?(M,R) its
cohomology class. We can associate an element of H>(M,R) to [©]. Let {U,}
be a contractible covering of M 3. Since U, are contractible, we have that

13What we understand by “contractible covering” is that all the open sets of the covering
and all their intersections are contractible. In order to prove its existence, it suffices to
endow M with a Riemannian metric and to take a covering by geodesically convex open
sets.
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Oy, = dw', where o' € Q(U;). But Uj; is also contractible and dw'|y,, =
dwi|y,;, hence (w? — )|y, = df¥9, where f¥ € Q°(Uj;). In Uy, we have that

(dflj + dfjk - dflk)lUljk = 07

therefore f4 + fi* — f* = qli* is constant in Ujj.

Let a be the map defined by (U, U;, Uy) = o!*. We have that a is a Cech
cochain associated with the cohomology class [Q2] and then we can construct
a map

H*(M,R) — H?*(M,R)
[€] - [a]

since da = 0, as

da(U;, U;, Ui, Uy) = a(U;, Uy, Up) — a(Us, Up, Uy)
+a(U;, U;, Uy) — a(U;, U;, Uy) = 0.

It is evident that [a] does not depend on Q but only on its cohomology class,
since, taking into account that, if Q' = Q + dp, then v’ = w' 4+ 1 in U,.
Therefore (v’ — w")|y,, = (W — )|y, = df* and hence both  and Q' have
the same associated cochain.

On the other hand, the natural injection € : Z — R induces a morphism

e?: H*(M,Z) — H*(M,R)
[a] = [e(a)]

therefore we obtain that [Q] is in the image of €2 if, and only if, there exists
a contractible covering {U;} of M, a family of 1-forms {w'} and a family of
functions {f“} such that

QlUl zdwl’ (wj _—wl)IUlj =dflj7 (flj +fjk "'flk)|Uljk € Z.
Now we prove the theorem.

Proof. (=) Let Q be the curvature form of a connection V on a complex
line bundle (L, 7, M) with hermitian metric h. Let {Uj,s,;} be a trivialization
of the bundle with h(s;,s;) = 1. We know that the forms w' are real, and
since

1 dClj

:dflj)

(L)j — wl . =
( )lUlJ 271 C[j

then the functions f% can be chosen real also. But we have 2mifY = logc;;
and since ¢jjcjr = ¢ we obtain that logc; + logcj, — log ey, is an integer
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multiple of 271, hence f' + fi* — f!* is an integer, so, as we have seen above,
[Q] is integer.

(<=) Suppose Q is a closed 2-form in M such that [Q] is an integer class.
Let {U,} be a contractible covering of M and {w'} and {f“} as above. Now we
have that fY 4 f* — f'* € Z. Put ¢;; = €™/ in U;. Taking into account that
¢jcjr = ¢, we deduce that a complex line bundle (L, w, M) with transition
functions ¢;; can be constructed. The sections s; can be taken equal to 1
on each U;. Once the bundle is constructed, we can take the connection V
which is determined by the connection forms w!, and whose curvature form is
obviously Q. The hermitian structure is given by

hm(e,€') = 2%,

where e = (m, z), ¢’ = (m, 2') in any open set of the trivialization' containing
m. We are going to see that this is a hermitian connection with respect to
this metric. Consider X € X (M) and s,s' € I'(L). If m € M and U, is a
trivializing open set with m € U, and s|y, = fis;, s'|v, = f/s1, then we have

(X (hs,5) m) = (X(hls, )|, 0m) = (X(hlisi fis)|, m)
= (X (fifNlo (m) = (X fi)(m) fi (m) + film)(X f;)(m).
On the other hand,
h(Vixs, )| (m) = h((X fi)s + 2mifiw! (X) s, fs1) ]y, (m)
= (X£)f] + 2mifiw(X) f)) (m),
h(s,Vxs )|y, (m) = ( (fus, (X f])s1 + 2mifiw! (X)s l))(m)
= (X F)) = fi2miflw! (X)) (m),

because w!(X) is real. Therefore

X (h(s,s")) = h(Vxs,s') + h(s, Vxs').

3.6. CLASSIFICATION OF HERMITIAN CONNECTIONS

3.6.1. AFFINE STRUCTURE ON THE SET OF CONNECTIONS. In the folj
lowing (M, Q) will be a symplectic manifold and (L,7, M) a complex line
bundle endowed with an hermitian metric h.
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Denote by Con(L) the set of connections on the complex line bundle L. If
V,V' € Con(L), we have that, for every s € I'(L) and f € F°,

(V=V)(fs)=f(V-V)s.
Therefore
V-V € Fl@pI'(L)®@r (L) ~T(LXL*)®x F' ~T(CXxM)®zp F' ~ F'.
On the other hand, if n € F! and V is a connection, so is V + 7. So we have:

PROPOSITION 7. The F°-module of the one-forms F! acts freely and tran-
sitively on the set Con(L). '

Remarks.

e An equivalent way of stating the above proposition is the following:
Con(L) has an affine structure modeled on the vector space F*(M).

e Observe that if {U;,s;} is a trivialization of the fiber bundle and {w’}
are the connection forms of V, then {w’/ + n} are the connection forms
of V4.

Denote by Con(L, k) the set of hermitian connections with respect to h.
Then, if V € Con(L,h) and n € F*, the connection V + 7 is hermitian with
respect to h if, and only if, 7 is real. In order to see this, it suffices to remind
that, in a trivializing system {Uj, s;} such that {U;} is a contractible covering,
the connection forms are real for the hermitian connections. Then we have
proved that:

PROPOSITION 8. The Q°-module Q! acts freely and transitively on the set
Con(L, h).

Now, let Con(L, h,Q) be the set of hermitian connections with curvature
Q. If V and V' = V + 17 are two of these connections, taking into account the
relation between the corresponding connection forms and their curvature, we
deduce that dn = 0. Thus:

PROPOSITION 9. The group Z*(M) of the differential 1-cocycles of M acts
freely and transitively on the set Con(L, h,2).
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3.6.2. EQUIVALENCE OF LINE BUNDLES WITH CONNECTION. Let
(L,w,M) and (L',n',M) be complex line bundles and ¢: L — L' a com-
plex line bundle diffeomorphism inducing the identity on M. If s: M — L is
a section of L, then s’ = ¢os is a section of L. The map I'(¢): I'(L) — I'(L')
given by I'(¢)(s) := ¢ o s is an isomorphism of F°-modules, because it is a
diffeomorphism and is ¢ is C-linear on the fibers.

In order to calculate I'(¢) locally, let {Uj,s;} and {Uj, s;} be trivializing
systems of L and L'. Then ¢os; = @;s;, where p;: U; — C* is a differentiable
function with values in C*, because ¢,,: L,, — L., is a C-isomorphism for
every m € M. But s; = ¢;s; and s; = cj;s), where ¢;; and cj; are the
transition functions of L and L' respectively. Then, on Uj; we have:

P osj = Pis; = PiCi;Sk»
pos;=¢o (ijb‘k) = crjpo s = ij@ksk»

therefore @ c;; = ckjor, that is ¢; = cp1(ch,;) ™! Hence, I'(¢) is represented
1

by the family {U;, ¢;} with ¢;: U; — C* satisfying ; = c;0k(ci;) 7
Let V be a connection in L. We can construct a connection in L’ induced
by V and ¢.

DEFINITION 11. The connection induced by V and ¢ in L' is the unique
connection V' in L' such that the following diagram commutes:

(L) L@, I'(L)

v| |+
Fl@po (L) 229 11,0 T(L)

ProPOSITION 10. If V' is the connection induced by V and the diffeo-
morphism ¢, then both connections have the same curvature.

Proof. Let {Uj,s;} and {Uj, s} be trivializing systems of L and L. We
have
Vs; =2miw’ @ s;, V's) = 2miw’ @ s,

where {w’} and {w7’} are the connection forms of V and V' for the open
covering {U;}. According to the above notations, ¢ o s; = ;s}, then:

(id @T(¢))(Vs;) = (id ® I'(¢)) (2miw’ ® s;) = 2miw’ @ ¢;s},
V'(D(@)s;) = V'(p;s;) = dp; ® s} + 2mip;w’ @ .
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But (id®T(¢)) oV =V'oI'(¢), then

271 ®j

bl

hence dw’ = dw; and the result follows.

Remarks.

1. Observe that if V' is induced by V and ¢, we have proved that their
connection forms are related by

‘ 1 dy; .
w = —-,—(& + w? (3)
2w @;
where ¢;: U; = C* is defined by ¢ o s; = ¢;s;.
2. Let {Uj,s;} be a trivializing system of L. Then {Uj,s; = ¢ o s;} is
a trivializing system of L', because ¢ is a diffeomorphism. In these

trivializing systems the functions ¢;: U; — C* are identically equal to
one, then w/ = w. '

3. Let L and L' be complex line bundles on M and {Uj, s;}, {Uj, s}} trivi-
alizing systems. Suppose ¢; : U; — C* is a family of functions related
by ¢; = crjpr(ci;) 7" in Ujx. Then there exists a unique diffeomorphism
¢: L — L' which induces the family {¢;}. In fact, ifl € L and n(I) € Uj,

put l
O T GOACOR

Observe that ¢(1) is well defined, since if 7(l) € U}, then the expression
of ¢(1) does not depend on the chosen index and the calculus can be made
using the trivializing systems. Hence we have proved the following:

PROPOSITION 11. The necessary and sufficient condition for a connec-
tion V' in L' to be induced by a connection V in L and a diffeo-
morphism from L to L', is that there exist trivializations {U;, s;} and
{Uj, 85} on L and L' and a family of functions ¢;: U; — C* satisfying
©; = cjpr(ch;) 7"

4. Now suppose that L = L', ¢: L — L is a diffeomorphism and {Uj}, s,}
a trivializing system of L. In this case we have that ¢ o s; = ;s’, but
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©; = ckjor(ck;) ™' = ¢r in Ujy,. Therefore there exists a global function
@: M — C* such that ¢ o s = s, for every s € I'(L).
If V is a connection in L and V' is induced by V and ¢, then the

connection forms are related by (3). Now, repeating the arguments of
the comment 3 above, we have that:

e Given ¢: M — C*, there exists a unique diffeomorphism ¢: L — L
such that I'(¢)s = ¢s, for s € T'(L). In this casc, if [ € L, we have
that ¢(I) = (7 (1))!.

e The necessary and sufficient condition for the connection V' to be
induced by V in L is that there exists one function ¢: M — C*
such that, if {U;, s;} is a trivializing system of L, their connection
forms are related by (3).

Taking into account the above results and comments, the equivalence we
will use is the following:

DEFINITION 12. Two complex line bundles with connection (L,V) and
(L', V') on M are said to be equivalent if there exists a diffeomorphism ¢: L —
L' such that V' is the connection induced by V and ¢.

Remark. Observe that, if (L, V) =~ (L', V') by the diffeomorphism ¢, tak-
ing trivializing systems of L and L', {Uj,s;} and {Uj, s} = ¢ o s,}, according
to comment 2 above, we have

Vs; = 27miw! ® 55,
V'(pos;)=V'p;s; = 2min’ @ s

That is, the local connection forms associated with V and V' are the same
with respect to the given trivializing systems.

3.6.3. THE CASE OF HERMITIAN LINE BUNDLES. In the same way as in
Definition 12, we state:

DEFINITION 13. Two complex line bundles with hermitian connection
(L,h,V) and (L',h', V') on M are said to be equivalent if there exists a dif-
feomorphism ¢: L — L' such that h = ¢*h’ and V'’ is the connection induced
by V and ¢.
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We are interested in studying the set of equivalence classes of complex line
bundles with hermitian connection. Previously we need the following:

LEMMA 1. a) Let hy, hy be two hermitian metrics in C. There exists
a C-linear isomorphism ¢: C — C such that, if z;,z; € C, we have that
hi(z1,22) = ha(P(21), ¢(22)); that is hy = ¢*hy. Moreover ¢ is real.

b) Let (L,m, M) be a complex line bundle and hy, h, two hermitian metrics
in L. There exists a diffeomorphism ¢: L — L such that, if l,,l; € L,
then hy(ly,15) = ha(é(ly), ¢(ls)); that is hy = ¢*h,. In addition, ¢ is
generated by a real function p: M — R*.

c) Let L and L' be complex line bundles over M with the same Chern class
and h and h' hermitian metrics on L and L'. There exists a diffeomor-
phism ¢: L — L' such that, ifl),l, € L, then hy(l,12) = ha($(l1), d(l2));
that is hy = ¢*h,.

Proof. a) Let z € C with hy(2,2z) = 1 and let A = hy(z,2). Consider the
isomorphism ¢: C — C given by ¢(w) = A/?w. Then ¢ satisfies the required
conditions.

b) If m € M, then hy,, and h,,, are hermitian metrics on L,,. Consider the
function ¢: M — R* such that hy,(l1,1s) = hopm((m)l, o(m )lz) for every
l; and [ in L,,. The function ¢ exists by the item (a), and it is differentiable
because h; and h, are differentiable. The diffeomorphism ¢: L — L given by
d(l) = @(m(l))! satisfies the required condition.

c) Let ¢: L —» L' be a dlﬁ'eomorphlsm Its existence is assured because L
and L' have the same Chern class. Let i be the metric on L' induced by Y
and h, that is, h = '(,b*h, Let n: L' — L' be the diffeomorphism mapping h
into &', that is, & = n*h’. Then ¢ =not: L — L'is a diffeomorphism and
¢o*h' =h. 1

The equivalence of complex line bundles with hermitian connection is given
by the following:

PROPOSITION 12. Let (L,h) and (L',h') be complex line bundles with
hermitian metric and having the same Chern class. Let ¢: L — L' be the
diffeomorphism satisfying h = ¢*h'. If V is an hermitian connection in L with
respect to h, then V', the connection induced by ¢ on L', is hermitian with
respect to h'.
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Proof. We have that V'oI'(¢) = (id®T'(¢)) oV, that is, if X € X(M) and
o € I'(L), then Vs (¢o0o) = (¢ o Vx)o. Now, take s,s" € I'(L'), then there
exist 0,0’ € I'(L) with s = ¢oo, s’ = oo, and, if X € X(M), we have

X(W(s,8") = X(h(¢7" 05,47 0")) = X(h(0,0"))
= h(Vxo,0') + h(o,Vxo')
— K($oVxa,$o0') +H($oa,d0Vyo)
= h'(Vis,s') + h'(s, Vis').

Remarks.

1. The last proposition proves that it is irrelevant to take different hermi-
tian metrics on a complex line bundle or different complex line bundles
with the same Chern class. That is, if we fix (L, h), then in the quotient
set defined by the equivalence relation introduced in Definition 13, every
class has a representative of the form (L, h, V).

2. According to this, from now on we will take a fixed complex line bundle
L with one fixed hermitian metric h on L. Then, all the results obtained
in the following will refer to complex line bundles having the same Chern
class as L.

Now, the result we are interested in is:

PrROPOSITION 13. Let V, and V5 be equivalent connections on the com-
plex line bundle (L, n, M) with hermitian metric h. Suppose that V; is her-
mitian. Then V, is hermitian if, and only if, the function ¢: M — C* relating
the connection forms of V, and V4 has constant modulus.

Proof Let {U],sj} be a trivializing system with h(s;,s;) = 1. We have

that w] = 2" —f + w) . As every hermitian connection has real connection

27

of the following lemma whose proof is immediate. N

forms, then —T} must be a real form. Then the statement is a consequence

LEMMA 2. Let p: M —> C* be a differentiable function. The necessary
and sufficient condition for to be imaginary is that ¢ has constant modulus.
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Consider now the group B = {¢: M — C* : |p| = const.} with the
product operation, and the morphism

n: B — ZYM)
1.d
o = 55F
kern is made of the constant functions. Let C be the image of . According
to the above discussion, we have proved that:

PRrROPOSITION 14. The group ﬂlcﬂl acts freely and transitively on the set
Con(L, h,Q)/ ~; where ~ is the equivalence of hermitian connections.

3.6.4. CALCULATION OF Z'(M)/C AND C/B'(M).
LEmMA 3. B} (M) c C C ZY(M).

Proof. Consider f € Q°(M). Then df € B*(M). Let ¢: M — C* be the

map defined by ¢ := 2™/, So we have that 2#7”.%3 = df ; therefore the result
follows. (Observe that, in general, B*(M) = C does not hold, as we will see
later.) 1

Therefore we have the following exact sequence of groups:

1 1
C_ 2 2

0= 50 ~ B C

and from here

zZ'(M) _ z'(M)/B' (M) _ H'(M,R)
c ~ T C/BI(M) _ C/BI(M)

Now, we are going to study the group Fl%w_) in order to characterize the
last quotient. Consider the natural injection €: Z — R, which is understood
as a morphism between constant sheaves over M. We have:

PROPOSITION 15. The morphism e': H'(M,Z) — H'(M,R) (induced by
€) is injective.

Proof. Consider the exact sequence of constant sheaves over M:

0-Z5RS S -0,
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with e(a) = e>™*, whose associated exact cohomology sequence is
70 € 7o S 770 1y 8% 71 el 1
0= H(M,Z) S BO(M,R) & B°(M, $Y) & HY\(M,Z) &5 HY (M, R),

that is , .
0Z5RSSS HY(M,Z) S HY(M,R)...

hence ker 8° = S!, and then Im8° = kere! = 0. 1

On the other hand, we have a canonical isomorphism between H'(M,R)
and H!(M,R) which is constructed-in the following way: consider [f] €
H'(M,R) and n € [n]. If {U;} is a contractible covering of M, then there
exist f;: U; = R such that df; = n |y;. In Uj; we have that d(f; — fi) =0,
then f; — fi |u,, € R, that is, it is constant. In this way we have the assign-
ment [] = {U;; ~ f; — f}, which is an isomorphism. Let a: H(M,R) —
H'(M,R) be the inverse isomorphism. Consider now the sequence of maps:

HY(M,Z) 5 HY(M,R) % H'(M,R).

Let H'(M,Z) be the image of H'(M,Z) in H'(M,R) by aoe?, this subgroup
is characterized in the following way: [n] € H'(M,Z) if, and only if, there
exists a contractible covering {U;} of M and functions f;: U; — R such that
df;j = n |uy; and f; — fi |u,. € Z; for every representative n € [n]. Taking this
into account we can characterize the group B_l((JAT) as follows:

PROPOSITION 16. ey is isomorphic to H' (M, Z).

Proof. According to the definition of C, we have a natural injection

c Z' (M) _ 1
500~ Fon =Y (M, R).

Consider p: M — C* with |p| = r. Its associate element in C is %ﬂ.%ﬁ . We

denote by [ﬁ ‘—’f] its class in and maintain this notation when it is

B
considered in H!'(M,R). We are going to see that [2—71;; %‘3] € H'(M,Z). The
image of ¢ is in the circumference with radius equal to r in the complex plane,
Consider the following open sets in this image

Ui={2€C: |z|=rz#r}, Us={z€C: |z|=rz#—r}.
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Consider U; = ¢~ (U;) and ¢; = ¢ IU,’- (j = 1,2). Taking determinations of
the logarithm in U, and U,, we can construct differential functions f;: U; —+ R
such that ¢; = re®™/i. We have that df; = lld—‘;”;- and if m € U] NUj, then
re?mifilm) = pe?mif2(m) hence f, — f, € Z. Therefore [5 —‘3] € HY(M,Z), as
we wanted.

On the other hand, if [§] € H'(M,Z) and {U;} is a contractible open
covering of M, let f;: U; — R be maps such that 1 |y, = df; and f;— f |u,, € Z.
Let ¢;: U; — C* the map defined by ;(m) := e2*/i(™ . If m € U}, we have

27

‘Pj(m) = e2milfi(m)=fi(m) — 1
e })
wr(m)

therefore ¢; |u,, = @ |u;,, hence there exists @: M — C* such that ¢ |y,= ¢;,

for every j. Moreover |p| = 1, then ;= —f € C and [27” ¢] € %M). The

image of [ﬁ;d—f] in H'(M;R) is [n], since

1 de
(7] - %?) lu,= df; — df; = 0,

and the assertion holds. 1

In addition, taking into account the canonical isomorphisms H*(M,R) ~
H'(M,R), H'(M,Z) ~ H'(M,Z), we have proved that:

THEOREM 3. The group ?{—‘%M_Z) acts freely and transitively on the set
of hermitian connections in (L,m, M) related to a given metric h and with

curvature ), module the equivalence of connections.

And taking into account the influence of the hermitian metric and the
diffeomorphisms of L, we have proved also the following:

THEOREM 4. Let M be a differentiable manifold and Q a real closed 2-
form in M. The group % acts freely and transitively on the set of
equivalence classes of complex line bundles with hermitian connection (L, V)
in M which have the same Chern class ¢(L) (that is, which are diffeomorphic

to L) and the same curvature (2.

COROLLARY 2. If M is simply connected, then there exists only one equiv-
alence class of complex line bundles with hermitian connection (L, V) with the
same Chern class and the same curvature.
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3.6.5. INFLUENCE OF THE KER OF THE MORPHISM &*: H?(M,Z) —
H?(M,R). Given a manifold M and a real closed 2-form Q on it, if L is a
hermitian complex line bundle, we have studied the equivalence classes of her-
mitian connections in L with curvature . In this case Q is a representative of
the image of the Chern class of L by the morphism 2. As L(M) ~ H*(M,Z),
and €? is not injective, then the following problem arises: there are non-
diffeomorphic line bundles whose Chern classes in H?(M,Z) have the same
image under 2. Now we are going to study the effects of this problem on the
classification of complex line bundles with connections (L, V) on M.

Consider the morphism e2: H*>(M,Z) — H?(M,R) induced by €: Z — R;
and denote G = kere?. Given [Q] € H?(M,R) ~ H?*(M,R), let V be the
antiimage of [2] by €. The group G acts freely an transitively in V in the
natural way. If ¢ € V, let P, be the set of equivalence classes of complex
line bundles over M with hermitian connection (L, V) whose Chern class is ¢
and with curvature . We have that €2(c) = [Q]. If 0,0’ € V with o # o,

then P, N P,» = . Then we have a natural projection 7: P = {J,cy P, = V.
H(MR) in P
H1(M,zZ)
preserves its fibers and is free and transitive on these fibers. Hence (P, 7, V)
is a G-principal bundle of sets.

The already known exact sequence of constant sheaves over M

Moreover, as we have seen above, the action of the group G =

0-ZS5SRSS"—=0
gives the cohomology sequence
052Z5RS ST (M, 2) S HY(M,R) & 0 (M, 80 S ...
and taking into account that Im 8° = kere! = 0 we have
0— HY(M,Z) S HY(M,R) & H'(M,S) 2 kere? — 0,
therefore, as €' is injective, we have

H'(M,R)

0o 20
(M, Z)

% HYM,SY) 5 G o0,
(where €' is the natural morphism), that is
0G5 H(M,S") S G0

Hence 8': H'(M,S") — G is a G-principal bundle of sets.
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Next, we are going to construct for each o € V' a bijection ¢ between P
and H'(M,S"). Let n: V. — P, u: G — H' (M, S") be sections of = and 6"
respectively. If L € P, we have that (L) € V. There exists a unique § € G
such that w(L) = 0g. On the other hand, there is a unique g € G such that
L = n(n(L))g, then we define ¢(L) as ¢(L) := u(g)g. So, ¢ is a map from P
to H'(M, S") such that the following diagram commutes:

P —% HY(M,SY)

nl lal

v ¢ G
where, if v € V, ¢(v) = h € G is the unique element such that v = oh.
Observe that ¢ is a bijection and ¢ is a bijection on each fiber, hence ¢ is also
a bijection. In addition, ¢ is covariant with respect to the actions of G and G,
that is, if L € P, we have that ¢(Lg) = ¢(L)g and ¢(vg) = $(v)g, for g € G
and g € G.
Taking into account this bijection, we have proved the following:

THEOREM 5. Let M be a differentiable manifold and Q an integer real
closed 2-form. The action of the group H'(M,S") on the set of equivalence
classes of complex line bundles with hermitian connection (L, V) with curva-
ture ), is free and transitive.

COROLLARY 3. If M is simply connected, then this set of equivalence
classes has a unique element (since H'(M,S") = 0, because H'(M,S"') =
Hom(x! (M), S') =0).

4. PREQUANTIZATION

Now, we are ready to start the geometric quantization programme.

Our first goal in the geometric quantization programme is to construct the
intrinsic Hilbert space of the system. With this aim, we follow a systematic
procedure, starting from the easiest possible model and modifying it in such
a way that the situation is adapted to the rules of Definition 4 (as it is done,
for instance, in [48], [71] and [92]).

4.1. FIRST ATTEMPTS TO DEFINE QUANTUM STATES AND OPERATORS.
Let (M,) be a 2n-dimensional symplectic manifold. The easiest way of
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constructing a Hilbert space associated with it is to consider the algebra of
complex smooth functions with compact support in M and the inner product
defined on it by

(p1]pa) == /M P1P2Aq (4)

for a pair ¢, @, of such a functions, where Aq is the Liouville’s volume form
Ag == (—1)#m=D1On With respect to this product, this algebra is a pre-
Hilbert space. Denote by C(M) its completion 4.

Our first attempt is to take C(M) as the intrinsic Hilbert space of the
system. Next, we want to define a set of self-adjoint operators O(C(M)) such
that

I) There is a one to one correspondence between the set of classical ob-
servables Q°(M) and O(C(M)).

II) The map f — Oy satisfies conditions (i-v) of Definition 4.

In order to achieve (I), the simplest way is to construct O(C(M)) from the
set of Hamiltonian vector fields in M, Xy (M). Then, for every X; € Xy (M),
we construct an (unique) operator Oy € O(C(M)) which is defined as follows:

Of = —ith,

where X acts linearly on C(M) as a derivation of (real) functions (i.e., taking
into account that C°(M) = Q°(M) ® C). Then, if ¢ € C(M), we have

Osl) == —ihX; ().

Nevertheless, the map

O: QM) — Xyg(M) — OC(M))
f — Xf — Of

is not one to one since, if f is a constant function then df = 0 and X; = 0,
hence functions differing in a constant have the same associated operator. In
addition, even though properties (i) and (ii) of Definition 4 are satisfied, (iii)
fails to be true. In order to solve this, the simplest correction consists in
adding an extra term in the above definition of Oy, writing:

Of = —-Z'ﬁXf‘f'f,

1 Observe that C(M) coincides with the set of square integrable smooth complex-valued
functions £L2(M) N C*(M).
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and so, for every ¢ € C(M),
Osl) := —1hX;(4) + fo.

Now the properties (i-iii) hold but not (iv) because

[Ofa Og]|¢> = ﬁz[XfaXy](¢) - 2ih{g’ f}("/))
= ih(—ihX (5,0 +2{f, 9}) (%) # RO} [9).

Therefore, a new correction is needed. Let 8 € QY(U), (U C M), be a local
symplectic potential, i.e., Q = df (locally). Then we define

Of = —1ih (Xf + %(Xf|0)> + f, (5)
and so, for every ¢ € C(M),
Ofl) = =in (X, + (X, 0)) W)+ 6. (®

Now, (i-iv) hold (see the proof of Theorem 8) and, at the moment, this is
the final form of the quantum operator associated with the classical observable
f- Observe that this is a local construction and that the expression of this
quantum operator depends on the choice of the local symplectic potential.

4.2. SPACE OF STATES: DEFINITIONS AND JUSTIFICATION. The neces-
sity of introducing a local symplectic potential in order to have a correct
definition of the quantum operators leads to a new difficulty. In fact, as we
have said, the construction of the operators is local. This means that if U, U’
are local charts of M and 6, 8" are the corresponding local symplectic poten-
tials, then in the intersection they differ (locally) by an exact one-form, that
is, 0' = 0 + da, for some o € QXU NU’) . Observe that Oglp) # O%|v).
Then, if we want the action of the quantum operator on the vector states to
be independent on the choice of 6 (that is, to be independent on the local
chart), we have to impose that, if ) € C(M), then ¢ and 9’ = e® ) must
represent the same vector state of the intrinsic Hilbert space that we want to
construct, because

Oy} = (=i (X + £, 60) + 1) ey
i

= (=in (X, + 50,0)) + £) = <Ol

15Physically, to change the local chart means that we are changing the local reference
system of the observer, and we are allowing gauge transformations.
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and then the relation between O}[t') and Of|¢) is the same as between 1’
and . .

The geometrical meaning of this property of invariance is that the vector
states |1) of the intrinsic Hilbert space cannot be just functions on M, but,
according to the results in Section 3.4, sections on a complex line bundle,
(L, 7, M), with structural group U(1). It is relevant to mention that every
complex line bundle can be endowed with an hermitian metric h [38], which
allows us to define an hermitian inner product in the complex vector space of
smooth sections I'(L).

We can summarize this discussion in the following statement [71]:

REQUIREMENT 1. Let (M, Q) be a symplectic manifold (which represents,
totally or partially, the phase space of a physical system). In the geometric
quantization programme the space of quantum states # is constructed start-
ing from the set of (smooth) sections, I'(L), of a complex line bundle over M,
(L, 7, M), with U(1) as structural group.

Then the complex line bundle (L, w, M) is endowed with a smooth her-
mitian metric, h: I'(L) x I'(L) — C. The inner product of sections (with
compact support) is defined by

Wil = (55) [ M )he ¢

As a consequeice, a more subtle study concerning the geometrical struc-
tures involved in the quantization procedure is required. In fact, if the quan-
tum states are constructed from sections of a line bundle (L, 7, M), and since
the quantum operators are defined from Hamiltonian vector fields in M, it is
necessary to clarify how these vector fields “act” on sections of L.

It is obvious that the natural way is to introduce a connection V in
(L,m, M) and use it to associate a linear differential operator to each vec-
tor field on M, acting on sections of L. This operator is just the covariant
derivative V x. But, which kind of connections are suitable? Taking into ac-
count the expression (6) we can conclude that an immediate solution to our
problem consists in taking the connection in such a way that, if ¢ € I'(L),

2

Vi, = (Xf + E(X,,a)) b, 8)

and so

Osl) := (—thVx, + f)¥,
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(observe that the product fv is well defined).

Notice that taking into account the expression (2), the equation (8), as a
condition on V, is equivalent to demand (locally) that ;% is the connection
I-form w of V. But, since locally Q2 = d#, this is equivalent to demanding that

o = curvV = Q. (9)
We will use this condition later, in order to prove that the assignment f — Oy
is a morphism of Lie algebras (see Section 4.3).

Hence, we can establish [71]:

REQUIREMENT 2. In the geometric quantization programme, the complex
line bundle (L, 7, M) must be endowed with a connection V such that condi-
tion (9) holds.

In addition, the hermitian metric (introduced in Requirement 1) and the
connection have to be compatible in the following sense: h is V-invariant,
that is, if X € X(M) and 9,1, € I'(L), then

X (h(sh1,:)) = h(V xth1,%2) + h(thr, Vxibs),
(i.e., the connection is hermitian in relation to this metric).

We can summarize this discussion in the following:

DEFINITION 14. Let (M, ) be a symplectic manifold (which represents,
totally or partially, the phase space of a physical system). A prequantization
of this system is a complex line bundle (L, 7, M) endowed with an hermitian
metric h and a compatible connection V such that 2‘73—,1 = curvV . If some
prequantization exists for (M,$2) we say that the system is prequantizable
and the quintuple (L,m, M;h, V) is said to be a prequantum line bundle of
the system.

At this point, the question is to study whether a classical system (M, Q) is
prequantizable or not. The answer to this question is given by the following
theorems [1], [51], [71], [73]:

THEOREM 6. (Weil’s theorem [88]) Let (M, Q) be a symplectic manifold.
Then, the system is prequantizable if, and only if, [;%] € H*(M,Z), that is,
(2] is an integral cohomology class. *°

16 [2(M, Z) is the image of H2(M,Z) by the following composition
0— H*(M,Z) — H(M,R) > H*(M,R).
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In the particular case of M being simply connected, then the connection V
and the compatible hermitian metric are unique (except equivalence relations).

Remarks.
e Notice that  must be a real form.

e The first part of this theorem is Theorem 2. The second part is a
consequence of Section 3.6.

e The condition on the first part means by duality that the integral of 5%
over every integer 2-cocycle in M is integer. This integrality condition
is called the Bohr-Sommerfeld quantization condition.

Another complementary result is the following:

THEOREM 7. Let M be a manifold and (L,m, M) a complex line bundle
endowed with a connection V with local connection 1-form %. Then, there
exists a V-invariant hermitian metric in (L, 7w, M) if, and only if,  — 0 is an

exact 1-form.

Proof. See [51], p. 110. 1

A new problem arises now: the integral (7) is not necessarily convergent.
This means that I'(L) fails to be a Hilbert space because the norm ||| is not
defined for every ¢ € I'(L) and hence I'(L) cannot be the intrinsic Hilbert
space. In order to avoid this difficulty, we can take the subset of I'(L) made
of sections with compact support. This subset with the inner product (7) is
a pre-Hilbert space. Then:

DEFINITION 15. The completion Hp of the set of sections with compact
support in I'(L) is a Hilbert space which is called the prequantum Hilbert
space 7. The projective space PHp is the space of prequantum states.

4.3. PREQUANTIZATION OPERATORS. Now, we can prove that the set
of operators Oy given by

Of = —iﬁVx, +f = —ih (Xf + %(X,&)) +f,

satisfies part (b) of Definition 4.

1"Remember that this is also the set of square integrable smooth sections in I'(L).
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THEOREM 8. The assignment f — Oy is a R-linear map from the Pois-
son algebra of the functions Q°(M) into the Lie algebra of the self-adjoint
operators of H p, satisfying the properties b(i-iv) of Definition 4.

Proof. In order to see that the operator Oy is self-adjoint we calculate:
/ h(O(¥),%')Aq —/ h((—ihVx, + [, ') Aq
M
- / —ih X, (h(w, ') Aa + / iBh(4, Vx,9')Aq
M M
+ [ B, )M
=/ h(’(/),—ith,'(,bl)AQ’i'/ h('(/)af’(»bl)AQ
M M
+ / —ifiX; (h(%, %)) A
= [ W, (ifVx, + 00 Aa + [ =ihX, (k4 9)) A
——-/ '(/) Of AQ +/ —’ith h(¢,¢ ))AQ
= (10, ) + / ~ihX, (h(, ") A,

and it suffices to show that the last integral vanishes. But observe that this
is an integral of the form [;, X;(9)Aq, where g € C*°(M) is a function with
compact support. We have that dAq = 0 and d(gAq) = 0, since they are
maximal degree forms. Moreover, L(X;)Q? = 0, since X; is a Hamiltonian
vector field, hence

(Xr9)Aq = L(X;)(gAa — g L(Xf)Aq = L(Xy)(9Aq)
= d i(X;)(gAa) +i(X;)d(gAa) = d i(X[)(gAe),

and the integral of d(X;)(gAq) vanishes because g is a function with compact
support.

It is quite evident that the assignment is R-linear and that it satisfies the
three first properties.
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For the last property we have:

(01, 04](%) = (050, — 0;0,) (%)

= (—thVx, + f)(—ikVx, + g)(¥)
— (-—iﬁ,VXg + g)(—iﬁvxf + (@)

= -l (Vx,Vx, — Vx,Vx,) ) —ih(Vx, (99) + [V, (%) + fgv)
= Vx,(fY) — 9Vx, (%) — gf)

= —I’[Vx,, Vx,](¥) —ih(X;(9)¥ + gVx, (¥) + fVx, (%)
=X, (H)Y = VX, (%) — gV, (%))

= —1?[Vx,, V(%) + 2ih{f,g}¢

= 1 (Vi + 320 X,) ) () + 20, g}y

= (B*V_1x,,x,) — th{f, g} + 2iA{f, g})(4)
= (h2vx{f,g} + Zh{fag})('(:b) = ih’(_ih’VX{f,g) + {f,g})(¢)
= iho{f,g}('(/))a

where we have taken into account the property given by Proposition 5. 1

Observe that, for every f € Q°(M), the operator Oy is well defined on the
set of compact supported sections of the complex line bundle (L, 7, M).

This is the prequantization procedure of Kostant, Souriau and Segal [51],
[70], [75]. Summarizing, given the symplectic manifold (M, ), it consists
in constructing a complex line bundle (L, 7, M) endowed with an hermitian

Q

metric h and a compatible connection V such that curvV = 5 5.

4.4. EXAMPLES

4.4.1. PREQUANTIZATION OF COTANGENT BUNDLES. In the particular
case of M being a cotangent bundle 7* @), we have a natural (global) symplectic
potential, which has as local expression § = —p;dg’. The cohomology class
of —2% is zero and we have simply L ~ M x C. Then, Hp ~ C(T*Q) and a
natural hermitian metric is defined by

h’((ma zl), (m, zz)) = ZIZZa

which is compatible with the connection defined by 6.
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4.4.2. PREQUANTIZATION OF THE HARMONIC OSCILLATOR. Next, as a
typical example, we consider the n-dimensional harmonic oscillator. In this
case we have:

. S 1 2
M = {(¢’,p;) €eR"}, Q=dq’ Adp;, Hzi(p?'*-q])-

The conditions assuring the prequantization of the system hold since [5%] = 0
(so it is integer), and L = M x C, since M is contractible.

The usual metric is the product. If 1 is a section of L, the hermitian
connection is given by

Vxth = Xtp + 2miw(X)h = Xop + %H(X)z/).

If we take as a (local) symplectic potential 6 = 1(¢?dp; — p;dg’), the quantum
operators that we obtain are:

0 1 . 0 1
i = 1h—— —q’ = —ih— =D
Oy zhapj + 59" Oy, zhaqj + 2p,,

and then, with this choice for the symplectic potential,

0 . 0
Oy =—ith|{pj— — ¢ —
therefore the action of the operator associated with the energy is

Ou(y) = th{H,}}.

Then the classical and prequantum dynamics coincide and this shows that
prequantization is not the suitable method for quantizing this classical system,
because the spectrum of the energy operator is continuous and this is not true
for the quantized harmonic oscillator.

4.4.3. AN ENLIGHTENING CASE. Finally, the following case reveals an-
other problem still remaining at the end of this stage. Consider a cotangent
bundle T*@Q, where @ is a compact manifold we have again:

Q= dqj N dpja HP = C(T*Q)a

and we can take L = T*Q x C because [;%] = 0. Taking as a symplectic.
potential § = ¢?dp;, we obtain the following quantum operators:

0

Oy = —ith—,
q 8])]

. 0
Opj = ’Lﬁa—qj +pj.
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Now, if we take the closed subset of C(T*Q) made of the functions which are
constant on the basis @, that is, the set Co(T*Q) = {f(p;)}, we have that,
for every f € Co(T*Q),

Ou(f) = —ifgl € CoT"Q), Oy (f) = ih5;

+p;f €Co(T7Q),
hence, Co(T*Q) is an invariant subspace under the action of this set of oper-
ators or, what means the same thing, Hp is not irreducible by this represen-
tation.

Notice that this conclusion can also been reached observing that the op-
erators 3—1 and - p — £¢’ commute with O, and O,,. Hence, the last ones
do not form a complete set of commuting observables and, as a consequence,
there exists some non-empty closed subspace of H p different from H p which is
invariant with respect to their action. So that, the condition (v) of Definition

4 does not hold for these systems.

5. POLARIZATIONS

Hp is not the suitable choice as the intrinsic Hilbert space of the system
(or, what is the same thing, PHp is not the true space of quantum states).
In fact, as we have seen in the last example, in general, in the set O(Hp)
(whose elements are the operators O; defined in the equation (5)) we can find
that, from a complete set of classical observables, we get a set of quantum
observables which does not satisfy condition (v) of Definition 4 (it is not
complete). The origin of this problem is the following: if M is the phase
space of the classical system and dim M = 2n, then the prequantum states in
P#Hp depend on 2n variables, but according to Quantum Mechanics, the true
quantum states depend just on n variables (the dimension of the configuration
space).

In order to solve this problem the 1dea is to “restrict” the Hilbert space
Hp and the set of quantum operators. Then, a new geometric structure is
defined in (M, Q): polarizations '®

We devote this section to justify, define and develop the main features
related to this concept, which are relevant for geometric quantization. A
more extensive study on (real and complex) polarizations can be found in
[92]). Other interesting references are [73] and [76].

18Sometimes, this structure is called Planck’s foliation (1].
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5.1. PREVIOUS JUSTIFICATIONS. In the case M = T*R", (¢*,p;) is a
global set of canonical coordinates. According to Quantum Mechanics, the
wave functions depend only on (¢*) (or only on (p;)). Then we must select n
coordinates and remove them in order to obtain the space of wave functions.
Next, we are going to generalize this idea.

The first step of the idea lies in selecting n directions in M by means of
the choice of a n-dimensional distribution P in TM. Then we will require
that the sections of the prequantum line bundle (L, w, M) representing the
quantum states are invariant by the transformations induced in M by this
distribution, that is,

Vo = 0. (10)

Now, let U C M be an open set in which L trivializes and let s: U — L
be a trivializing section. A section 9 = fs satisfying that Vp1 = 0 have to
satisfy that (P(f)+£(P,0))f)s = 0. If we take the distribution to be adapted
to the connection V, that is, such that there exists a local symplectic potential
6 satisfying that (P, 0) = 0, then the above equations reduce to be

P(f) =o0.

This is a system of n independent linear partial differential equations and, in
order to assure that it is integrable, it suffices to demand that the distribution
P is involutive.

So, f is constant along the fibers of P and therefore ¢ is represented as a
constant function along the fibers of the distribution. In this way, the states
represented by the sections 1 which are solutions of the equations (10) are
represented by functions which depend just on n variables, in the following

sense: being P involutive, by the Frébenius theorem, there exist local coordi-
nate systems {z;, y;}1~; such that P is spanned by {5%}; then {z;} are local
coordinates of the integral manifolds of P, which are defined by y; = const .
Therefore P(f) = 0 is locally equivalent to a%f? =0, so f depends only on the
variables {y;}.

But now, an additional consistency condition is required: equation (10)

implies that, if 5% is the curvature form of the connection, we have

0= [VP, V'P]'(,b = v[’P,’P] + 1Q(P7’P) 1/),
h

then, if the distribution is involutive, V(p p1% = 0, and therefore it must be
Q(P,P)y = 0. This last condition is assured if we impose that the distribution
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is isotropic but, since it is n-dimensional, it would be maximal isotropic, that
is Lagrangian. Thus, at the moment, what we need is an involutive Lagrangian
distribution.

Suppose P is spanned by a set of global Hamiltonian vector fields {Y7, }7_, .
The isotropy condition Q(Yy,Ys,) = 0 can be written in an equivalent way as

{fi. i} =0. (11)

Conversely, if { f;} is a set of n independent global functions such that equation
(11) holds, then their Hamiltonian vector fields span an involutive Lagrangian
distribution on M. Nevertheless, for many physical systems, to choose a set
of n independent global functions satisfying the equation (11) is not always
possible and, for this reason, our construction must be more general.

Finally, another consideration is needed: instead of working with real dis-
tributions we will consider complex distributions, that is, locally spanned by
complex vector fields. In other words, we are going to work in the complex-
ified tangent bundle TMFC instead of TM '°. There are mainly two reasons
for doing so °:

1. First, as we will see later, there is a kind of distributions which are
specially interesting for quantization (those which we will call Kihler
polarizations), and they are complex distributions.

2. Second, complex polarizations are necessary to establish the relationship
between geometric quantization and the theory of irreducible unitary
representations of Lie groups of symmetries [49], [90].

5.2. DEFINITIONS AND PROPERTIES

5.2.1. COMPLEX DISTRIBUTIONS AND POLARIZATIONS. Taking into ac-
count the above comments, we define:

DEFINITION 16. Let (M, ) be a symplectic manifold. A complex polar-
ization P on (M, Q) is a distribution in TM€ such that:

a) It is Lagrangian, that is

1%Keep in mind that, for every m € M, T M€ ~ T\, M @ C.

20Tn addition, in order to make the formalism more coherent, if we are considering complex
Hilbert spaces and complex functions in M, it seems reasonable working with TMC, and
then taking complex distributions.
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i) Vm € M, dimP,, = n, (complex dimension)

i) Q(P,P)=02%
It is involutive, that is
i) [P,P] CP.
It satisfies the additional condition

iv) dim(P,, NP, N T}, M) is constant for every m € M.

Observe that if P is a polarization, so is P 2.
In relation to these four conditions we can remark that:

Condition (i) is stated in order to reduce the number of independent
variables just to n.

Every complex polarization P induces a real isotropic distribution which
is also involutive. In fact, as PN7P is a complex distribution invariant by
conjugation, then D := PNPNTM is a real distribution satisfying that
D® = PN P; and it is called the isotropic distribution. Furthermore,
the fact of P being involutive (as it is required in condition (iii)) implies
that D is also involutive.

Hence the Frobenius theorem assures that D defines a foliation on M
and, as a consequence of the isotropy condition (ii) of Definition 16, the
tangent bundle D,, of every integrable manifold can be locally spanned
by vector fields whose Lagrange brackets are equal to zero. We denote
by D := M/D the space of the integrable manifolds of D and by np :
M — D the projection.

Observe that, due to condition (iv), the leaves of the foliation defined
by D have the same dimension. A remaining question is if the space D
is a differentiable manifold.

Sometimes the involution condition (iii) of Definition 16 is replaced by
the following integrability condition: there exists a local family of com-
plex functions {z;}}_, € C*(U) , (U C M), such that P is locally
spanned by the set of locally Hamiltonian vector fields X, [92].

210 is extended to TMC as a C-bilinear form.
*2Sometimes we commit an abuse of notation denoting also by P the set of (complex)
vector fields taking values on the distribution P.
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e As we are going to see in the following subsection, for a certain type
of polarizations (K&hler polarizations), there exists a local family of
complex functions {z;}7_, € C*(U) , (U C M), such that P is locally
spanned by the set of vector fields ;9% (Nirenberg-Newlander theorem

[42], [65] ).

e Finally, consider the complex distribution P + P. Since it is invariant
by conjugation, it can be considered as the complexification of a real
distribution E; that is, EC = P + P; where E = (P + P) N T M, which
is called the coisotropic distribution. Notice that D+ = E 23, as it can
be easily proved [49].

Then we define:

DEFINITION 17. Let (M, Q) be a symplectic manifold. A polarization P
is called strongly integrable or reducible if:

i) E is involutive.

ii) Both spaces of integral manifolds D and £ := M/E are differentiable
manifolds.

iii) The canonical projection mpg : D — £ is a submersion.

Given a complex polarization P on (M, Q), for every m € M, we can define
a (pseudo) hermitian form hA,, in P,, by

~ —

hon (Xmy Yin) = 120 (X, Yin) (12)
for every X,,,Y,, € P,,. We have that:
PROPOSITION 17. kerh = P N 7P.

Proof. In fact PNP C ker h because P is isotropic. On the other side,
for every X € P, if X € kerh, then Q(X,Y) = 0, for all Y € P, that is,
QX,Y)=0, for all Y € P, hence X € P because P is Lagrangian and so is

P. 1

Consequently, h projects onto a non-degenerate form on the quotient
P/(P NP). We denote this form by h. Then:

DL denotes the orthogonal symplectic complement of D; that is, DY = {X €
X(M):VY € D, Q(X,Y) = 0}.
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DEFINITION 18. Let P be a complex polarization on (M,Q). P is said
to be of type (r,s) if the form h has signature (r,s). Then, P is said to be
positive if s = 0.

Observe that, if P is of type (r,s), then P is of type (s,r).

Since the complex dimension of kerh is n — (r + s) and P N P is the
complexification of the real distribution D, then this number is the dimension
of the distribution D in TM. For this reason n — (r +s) = n — [ is called the
number of real directions in P. On the other hand, from the definition and
properties of D and E, it can be proved that the dimension of E = D+ is n+1
(and hence dim D + dim E = 2n).

Furthermore, if P is strongly integrable then, in every subset U C M, there

is a set of local coordinates {Z;,... ,Zn_1;Y1s-+ s YnotjUty--- ,U;V1y.e. , U}
. 8 n—l o n—l
such that D is generated by the vector fields { Y }jzl and P by {sz} ,

=1

1
{ o }k=1 , with zp 1= uy + v, [48].

8z

Next we introduce the condition of P to be adapted to the connection:

DEFINITION 19. Let (M,) be a symplectic manifold and (L,w, M) a
complex line bundle endowed with a hermitian connection V. A polariza-
tion is called admissible for the connection V (or adapted to the connection)
if, in some neighbourhood of each point m € M, there is a symplectic potential
0 (i.e., w = 2mif is a connection form of V) such that (P,0) = 0.

In relation to this concept, we remark here the following result:

PROPOSITION 18. Let (M,Q) be a symplectic manifold and (L, 7, M) a
complex line bundle endowed with a hermitian connection V. IfP is a strongly
integrable polarization then it is admissible for the connection V.

Proof. See [67]. 1

Strongly integrable polarizations will be the only ones we are going to
consider from now on. :

Due to their relevance for quantization, we devote the following subsections
to studying two particular cases which are specially interesting.

5.2.2. KAHLER POLARIZATIONS. The first important case of polarization
is the following:
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DEFINITION 20. Let (M,2) be a symplectic manifold. A polarization P
on M is said to be a Kahler polarization if PNP = 0.

For a Kihler polarization P we have that TM® = P @® P and npg: D =
M — &. Hence, if P is of type (r,s), we have that r + s = n (and, thus, a
Kéhler polarization is “totally” complex, in the sense that it does not contain
any real direction).

In order to analyze the properties of this kind of polarizations, we need to
introduce several new concepts (see [40], [43], [66], [92]).

DEFINITION 21. Let M be a differentiable manifold. An almost-complex
structure in M is a (1,1)-tensor field J on M such that J,,> = —Idp, um
for every m € M. If J exists, then (M, J) is said to be an almost-complex
manifold.

Remark. The existence of an almost-complex structure implies that the
dimension of M is even. Hereafter, {U;z1,... ,Zn,¥1,... ,Yn} denote a chart
of coordinates on M.

Jm can be extended to a C-linear endomorphism in T,,, M€. Consider now
the set of complex analytical coordinates {z; := z; + iy;}, then a basis of
T,,MC is made of the vectors

).+ (). @)
(3). (). @).)

Notice that, if J is an almost-complex structure, then the extension of

the endomorphism J,, to T,,M® has eigenvalues #i. Then, T,,M® can be
decomposed into a direct sum:

T.M® =TOM @ TV M,
where

TUOM = {Xp € TuMC: TnXm = +iXn},
T1_('?:1)M = {Xm € TmMC: ijm = —sz}'

Vectors belonging to these sets (and the corresponding vector fields, denoted
X0 (M) and XON(M)) are called vectors (vector fields) of (1,0)-type and
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vectors (vector fields) of (0,1)-type, respectively 2. Let P and P be the
complex distributions of TMC defined by T} M and T{>YM respectively
for every m € M.

DEFINITION 22. An almost complex structure in M is said to be a com-
plex structure if the complex distributions P and P are involutive and n-
dimensional.

This is equivalent to say ([66, p. 379]) that there are sets of local complex
analytical coordinates (z;, Z;) such that, for every m € M,

] (9 AN A
Jm(a?;)f’(ﬁz;)m’ Jm(éz—j)m-"(a—z,-)m’

or, what is equivalent, there exist local charts of coordinates {U;z;,y;} such

that 5 P 5 9
Jm(a—x;)f(‘a‘y—j)m’ Jm@)m:"('a?j)m-

Then (M, J) is a complex manifold.

If J is a complex structure, then {%} and {8—'2:} are local basis for

X0 (M) and X OV (M)), that is, for P and P, respectively.
Then we can define:

DEFINITION 23. An almost-Kéahler manifold is a triple (M, 2, J) where:

1) (M, ) is a symplectic manifold.
ii) (M, J) is an almost-complex manifold.

iii) The almost-complex structure and the symplectic form are compatible,
that is, for every X,Y € X (M),

QUIX,TY) = Q(X,Y).

In this case, the distributions P and P are isotropic, v.g.: if X;Y € T39O M
then '

QX,Y) = QUIX.JY)=Q3X,iY) = -QX,Y) = QX,Y)=0,

and, since dim P + dim P = 2n, they are Lagrangian.

?*Observe that, for every X € X (M) we have that Xt := 1(X —iJX) € X0 (M) and
X" = HX +iJX) e XV (M), and hence X = XT + X, 50 ¥(M) C P® P.
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DEFINITION 24. A K&hler manifold is a triple (M, 2, J) where:
i) (M,Q) is a symplectic manifold.
ii) (M, J) is a complex manifold.

iii) The complex structure and the symplectic form are compatible, that is,
for every X,Y € X(M),

QIX,JY) = QX,Y).

Equivalently, we can say that a Kéhler manifold is an almost-Kihler man-
ifold for which the complex distributions P and P are integrable.

There is a close relation between Kéahler manifolds and K&hler polariza-
tions, which justifies the name of these last ones. It is stated in the following
proposition:

PROPOSITION 19. If (M,,J) is a Kihler manifold, then P and P are
Kaéhler polarizations, called the holomorphic polarization and the antiholo-
morphic polarization respectively.

\ Conversely, if (M, ) is a symplectic manifold which carries a Kihler po-
larization P, then there is a complex structure J defined in M which is
compatible with 2, and therefore, (M,Q, J) is a Kahler manifold.

Proof. The first part of the proposition is immediate. For the second one
we have that if P is a Kahler polarization, as T, M C T,, M€ = P,, ®P,,, then
we can define an almost-complex structure J as follows: for every X,,, € T,,M
we can write X,, = Y;, + Y, for some Y,, € P,, and Y! € P, and then

TInXm 1= 1Yy, — Y.

The differentiability of J follows from its expression in local coordinates. On
the other hand, J is compatible with  because, if X,,, Z, € T,nM, then

Qo (T X TnZm) = QT (Y + V), T (Wi + W)
QY zY',zW — W)

= Qu(Yon, W) + Qu (Y, W)

(Yo + Y W + W) = Qi (Xony Zim)-

Hence, (M,Q,J) is an almost- Kdhler manifold. Finally, P is integrable
by definition and then (M,Q,J) is a Kahler manifold (for which P. is its
holomorphic polarization). i
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On the other hand, the following property holds:

PROPOSITION 20. In every Kahler manifold (M,Q, J) there is a non-de-
generate (pseudo) hermitian metric k defined on M in the following way: For
every X,Y € X(M),

E(X,Y):=9g(X,Y) - iQ(X,Y),
where g is a (pseudo) Riemannian metric given by
9(X,Y) :=Q(X,TJY).
This hermitian metric is “compatible with J”, that is:
E(IX,JY)=k(X,Y).

Proof. To prove that this is a non-degenerate hermitian metric is imme-
diate. For the compatibility with 7, remember that € is compatible with 7,
hence

E(JTX,TY) = g(JX,TY) —iQUIX,TY) = QIX, JTY) — iQ(X,Y)
=Q(X,JY) —iQX,Y) = g(X,Y) —iQ(X,Y) := k(X,Y).
I

Remarks.

e It is interesting to point out that if k£ is not positive definite then nor
is g and therefore the corresponding Kahler polarization P is of type
(r,s), with s # 0. In the same way k is positive if, and only if, so are g
and P. Sometimes, in the literature, the term “Ké&hler polarization” is
applied only when this last condition holds and the other ones are called
pseudo-Kahler.

e Observe that this proposition allows to state that, in every Kahler man-
ifold, the symplectic form can be taken as the imaginary part of a non-
degenerate (pseudo) hermitian metric which is compatible with the com-
plex structure.

In relation to the converse problem we have:
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DEFINITION 25. Let (M, J) be an almost-complex manifold endowed with
a (pseudo) hermitian metric k defined in M, which is compatible with 7. Then
we can define a (skew-symmetric) non-degenerate 2-form Q by '

QUX,Y) :=Img (k(X,Y)),

which is called the fundamental form of (M, J).

If Q is closed (i.e., symplectic), then it is called a K&hler form. In this case,
(M,Q,T) is an almost-Kahler manifold and, in addition, if 7 is a complex
structure, then (M, 2, J) is a Kdhler manifold.

It is possible to find a local smooth function f(z,Z) such that the local
expression of this Kahler form is

2

L —O0°f g
1 9%,028 Z; N dz :=ih00f,

(where we have introduced the notation 9 := aizjdzj, 0= gg:dik [50], [63],

[66] and their composition is in the sense defined in [91]). Then the most

natural local symplectic potential is '

ih =
o =22(0f - 7).
Taking these local expressions into account, it is immediate to prove that:

PROPOSITION 21. Let (M,, J) be a Kdhler manifold and (L, n, M,V h)
the corresponding prequantum line bundle. Then, there are local symplectic
potentials  and § adapted to the holomorphic and antiholomorphic polariza-
tions P and P, respectively, (that is, these polarizations are admissible for the
connection V). Their local expressions are:

of of

0= zh@f = Zha—zdej, 0= —zh@f = —zhé—gdz]

5.2.3. REAL POLARIZATIONS. The other interesting case is the opposite
one to the above.

DEFINITION 26. Let (M, Q) be a symplectic manifold. A polarization P
on M is said to be a real polarization if P = P.



FOUNDATIONS OF GEOMETRIC QUANTIZATION 193

As you can observe, every real polarization is always positive, as h = 0;
and D = E.

Notice that, if P is a real polarization, it holds that P NP = P. Consider
D = PNTM, that is, the real elements of P. D is a Lagrangian distri-
bution in TM. Conversely, if D is a Lagrangian distribution of T'M, then
its complexification DC is a real polarization. Hence, the fact of considering
real polarizations in M is equivalent to take Lagrangian distributions in T'M.
Therefore, M is foliated by Lagrangian submanifolds.

In addition the following result holds:

PROPOSITION 22. IfP is a real polarization, then there exist a local basis
of D made up of Hamiltonian vector fields.

Proof. Let {X,,...,X,} beabasisof D in an openset V C M. The differ-
ential 1-forms §(X;)Q (j = 1,... ,n), are linearly independent and vanish on
D over V, since D is Lagrangian. Therefore, in the open set V, the submodule
incident to the one generated by these forms is D. Let {z1,... ,Zn,¥1,-+- ,Yn}
be a local system of coordinates in U C V such that '

(o 9
{Xla"' a-Xn}z{a_xla“' ,'a?n},

and let {Z,...,Z,} be the vector fields defined in U by i(Z;)Q2 = dy;. The
existence of these local systems is guaranteed because D is an involutive dis-
tribution. We have that

0 0

. "=, — = {X,...
{dyh 7dyn} {3:317 ) 81,',—,,} { 1y aXn})
(where { }' denotes the submodule incident to { }), but

P 21 .
(dys,... dys)} = {8—371 ,6—%} = DR, (X)),

then, since

{dys,... ,dy,} = {i(Z1)Q,... ,i(Z,)Q},
it follows that {X,,... ,X,} ={Zi,...,Z,} because Q is symplectic. Hence,
the vector fields {Z;} make a basis satisfying the conditions of the statement.

As a consequence of the isotropy condition (ii) of Definition 16; and taking
into account the above proposition, you can prove that the Poisson brackets
between every two coordinates of the Lagrangian submanifolds which foliate
M vanishes.
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5.3. THE POLARIZATION CONDITION ON THE STATES

5.3.1. THE GENERAL SITUATION. Once the concept of polarization is
established, we use it in order to correctly define the quantum states. Thus,
reminding Definition 4, we claim:

REQUIREMENT 3. (and DEFINITION) Let (M,Q2) be a symplectic mani-
fold. Let (L,m, M;h,V) be the prequantum line bundle obtained after the
prequantization procedure. Let P be a strongly integrable polarization of
(M, Q). The space of quantum states of the system is constructed starting
from the set of smooth sections I'(L) which are covariantly constant along P;
that is, such that

We call them polarized sections (related to P) and denote this set by I'p(L).

From this condition it can be observed that, if we take local symplectic
potentials such that (P, ) = 0, then the polarized sections are constant along
the leaves of the foliation induced in M by D, in the sense which we have
discussed in the beginning of this section. In particular, using the local basis
of coordinates introduced in the comments after Definition 18, we have that

n—1 1
P is locally spanned by the set of vector fields { Be; }j=1, { Bor }k=1 (with
2z := ug + iv;) and then, condition (13) implies that the polarized sections
are represented by functions which only depend on the coordinates {y;}, {Z}.

The last requirement introduces new complications in the geometric quan-
tization scheme:

e In general, I'p(L) ¢ Hp since the polarized sections are not necessarily
square integrable.

e Even more, if 9,9, € I'p(L), then h(1;,1,) is a function which is
constant along the leaves of the foliation induced by D, but the inner
product (4 ]1),) is not defined, in general. In fact, since h(%);, ;) defines
a function in the quotient manifold D, we would integrate it in D, but

this is not possible because, in the general case, we have not a measure
defined in D.

The way to solve these problems will be studied in the following section.
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5.3.2. QUANTIZATION OF KAHLER MANIFOLDS. There is a special situa-
tion in which the last obstructions are almost overcame: quantization of sym-
plectic manifolds carrying Kahler polarizations or, what is the same thing,
quantization of Kahler manifolds. In fact, K&hler manifolds are a distin-
guished kind of symplectic manifolds for quantization, as it has been studied
in [41]. Next, we show the guidelines of this method (following [92]).

Let (M, Q) be a prequantizable system endowed with a K&hler polarization
P, and let (L, 7w, M) be a prequantum line bundle. We can suppose, without
loosing of generality, that we are considering the complex structure in (M, ©2),
such that P is the holomorphic polarization. Remember that the prequantum
Hilbert space Hp is the set of square integrable smooth sections in I'(L).

Now, in order to obtain the polarized sections, we can choose the adapted
symplectic potential 8 = 1Adf of Proposition 21. Then, polarized sections 1
are locally represented by holomorphic functions F'(z), that is, those such that
OF = 0, Taking another symplectic potential, for instance © = 2(9f — 9f),
the polarized sections are locally given by '

Then, you can observe that © = 6 + do with o = £f(2,2) and the rela-
tion between both representations of polarized sections is ¥ = z/)eiTa, which
is consistent with the complex linear bundle structure. In any case, since
there exists a local trivialization in which polarized sections are represented
by holomorphic functions, we say that they are holomorphic sections of the
hermitian line bundle (L, 7, M).

However, the inner product of these polarized sections are not well defined
since they are not necessarily square integrable. Hence, we have to restrict
this product to the set of square integrable holomorphic sections. We will
denote this set by 'y (L).

Now we are going to prove that I'y, (L) is a closed subspace of Hp. In
order to achieve this result, we need the following lemma due to Weil [88]
(although the proof we present here is adapted from [77]).

LEMMA 4. Let ¢ a polarized section, that is, ¥, = F,s®, with F, an
holomorphic function; and let {U,} be an open covering of M satisfying the
following conditions:

1. {U,, ¢a} is a differentiable atlas on M.

2. {Uq,, s} is a trivializing covering of L and h(s*,s®) = 1, for every a.
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3. For each U, there exists a differentiable function f, such that Q |y, =
.3 —02f0 7=
zh-éz—jé%dzj AN de .

4. For each U,, the polarization P is generated by the vector fields {6—2;;}
and 6 = ihdf, is an adapted symplectic potential.

Then, for each compact K C U,, there exists a constant C(K) > 0 such that,
ifm € K, we have

hom ($ha(m), Ya(m)) = Fo(m)Fo(m) < C(K)(4 | 9).
Proof. Given K C U,, consider 6 > 0 such that, for every p € K,
B'(p,208) = ¢3' (B(¢a(p),26)) where B(¢a(p),20) C ¢a(Us) C R2". Then

i) = [ h)da> [ h@ ke = [ FoFukg

= eNERA)=[  REs> [ REA
¢a(Ua) ¢a(Ua) B(¢a(p),6)
>C(K) [ FRAV = (),

B(¢a(p).9)

where dV?" denotes the Lebesgue measure in R??, K’ := U,cx B(do(p),d) C
#«(U,) and C(K') > 0 is a constant such that A, > C(K')dV?". Observe
that the existence of such a constant is justified since

dV*™ = gAg < SE'pgAg2 = Ay > C(K')dV?",
where C(K') := —L

supgrg '

(+) = C(K")FL(©) F4(€)V(B(6a(p), )

> OU)EL (63O 3DV (Bn0).)) s e

= C(K’)C((S)Fa(p) a(p)a

V(B(an (p), 5)) being the volume of the sphere B. The product C(K')C(6) >
0 depends only on K, taking into account the initial choice of § and the

construction of K'. Therefore F,(p)F,(p) < C(K)(¢|p) ; where C(K) =

1
cwyew - |1
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Then, we have:

PROPOSITION 23. If P is a Kahler polarization, then T'y, (L) is a closed
subspace of Hp, and hence Iy, (L) is also a Hilbert space.

Proof. Let {1} be a Cauchy sequence in I'y (L), that is,

(Yr — twr | e — wr) LS}

From the above lemma, {1} is pointwise convergent to a section v € T'(L).
Then, since the convergence is uniform in a neighbourhood of every point, and
the uniform limit of a sequence of holomorphic functions is also holomorphic,
it follows that 9 € I'y,(L). Furthermore, the sequence {t;} converges to an
element 9’ € Hp, as Hp is a Hilbert space. Moreover, if K C M is compact
then, using the triangle inequality, it follows that, for each k,

[/Kh(w—w',@bw')mrg [/Kh('z,b—zpk,zp—qpk)j\ﬂ
+ (@R W — i |9 — )]

Taking into account the above mentioned convergences, we have that ¢ and
' differ at most on a zero-measure set, so I'y,;(L) is a closed Hilbert subspace
for the uniform convergence. Really we have to consider equivalent sections
differing just on a zero-measure set, and the induced Hilbert space structure
on the corresponding quotient set. [

Hence, the quantization procedure would end at this stage. Nevertheless
certain problems concerning the spectrum of the quantum operators remains
unsolved, as it will see in the examples (see the quantization of the harmonic
oscillator).

Using the antiholomorphic polarization, polarized sections would be the
antiholomorphic sections, but the procedure is the same as above.

5.4. THE POLARIZATION CONDITION ON THE OPERATORS. To take the
polarized sections as the standpoint set for constructing the true quantum
states obliges to restrict the set of admissible quantum operators or, what
means the same thing, the set of quantizable classical observables. In fact, if
we want that condition (v) of Definition 4 holds, we have previously to assure
that I'p (L) is invariant under the action of the quantum operators. This leads
to set the following:
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DEFINITION 27. The set of polarized quantum operators, O{I'p(L)), is
made of the operators O; corresponding to functions f € C*°(M) such that,
for every ¢ € I'p(L),

Osl¢) € Tp(L). (14)

There are different ways of characterizing the functions f representing the
quantizable classical observables. In order to obtain them and establish their
equivalence with the above definition we need to prove that:

LEMMA 5. Let (M,Q) be a prequantizable system and (L,m, M,h,V) the
corresponding prequantum line bundle. Let P be a polarization in (M, Q) and
X € XC(M) such that Vx(I'p(L)) =0. Then X € P.

Proof. It suffices to prove it locally. Thus, consider the local set of co-
ordinates {Z1,... ,Zn1;¥Y1y--+ yYnt}Ul,y--- ,U;V1,... v} introduced in the

comments after Definition 18, and a local symplectic potential 6 adapted to
n—l1
the polarization P. Since P is locally spanned by the vector fields {Bm } .
J Jj=
!
{a—"j—;}k K (with z; := uy + iv;,), then a local symplectic potential adapted to
P is given by 0 = o’dy; + B¢dz.

Let 9 be a complex function representmg a polarized section. Then ¢ =
$(y;, z). Now, if X = A2 4+ BI 2 4 Ch L ‘9 + D’“i is a vector field such
that Vxv = 0, we are gomg to see that this 1mp11es that Bi=0and C* =0.
In fact, we have that

0=Vxy=XH)+(X,0)= By 3k

+ Bloj 4+ C*Bp. (15)
Now, the set {y;}, {2} is a basis for the functions representing the polarized
sections. The above condition for this set splits into a system of n linear
equations (with the coefficients B, C*, as unknowns):

1+ oy, Q21 Q1Y By - Byr [ B' ]
1Yz 1+asys - A 1Y2 Bry2 e By B?
: : : : : : 0
O Ynt CYn o L+ CnUnot BiYn—t 0 Bye— || B =
12 a2y e Qpy2 1+Biz -+ Bz ct 0l
L 12 (07%7) Qp_12 Bz o 1+ Bzl C
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and we are going to prove that it has only the trivial solution. In fact, this
system has the form TX = —X, where

a1 QY1 ... Qn_1Y1 Byr - By

T = 0 Ynt CYn—t o On_gYnot BrYn—t -+ BiYn-i
121 Qs 2y cen Qp_12] Bz ce Bizi

L 12 Qs 2y Qp—12] Bz Biz |

and X is the matrix of unknowns. Then, observe that T" has rank equal to 1
(each row is a linear combination of other ones), except if § = 0. Therefore
its only eigenvalue is the trace of T', that is, }°; o;y; + 3 4 B2k, which is
different from —1 (because, if it were constant, then it would be equal to
zero: it suffices to calculate it at the point such that the image under the
homomorphism of the system is the point zero in R?>"). So, —1 is not the
eigenvalue of T, therefore the determinant of the system is different from zero
and then the solution is X = 0, that is, B/ = 0 = C*. Therefore, we have
0 0

X=A_" D" ep.
8flfj+ Bikep

Notice that if = 0 this result follows in a straightforward way from (15).

Now, we can prove that:

PROPOSITION 24. The following statements are equivalent:
1. Oy € O(I'p(L)).

2. Oy preserves the polarization P; in the sense that [O;,Vp|ip = 0, for
every ¢ € I'p(L).

3. The function f, from which the operator Oy is constructed, is such that
(X5, Pl CP.

Proof. The equivalence

0; € O(Tp(L)) & [0, Vpl=0

is an immediate consequence of the equation (13). Now, we are going to prove
that

for every ¥ € I'p(L), [0, Vplp =0 & [X;P]CP.
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We have that

[Of,V'p]'l,b = OfV'p'(,[) - VpOf‘lp = —V-pOf’Lp = —v'p(—’ithf + f)'l,[)
=ihVpVx, ¢ — Vp(f)) = ikVeVx, o = P(f)Y — [VpY
=ihVpVx, — P(f) =ik(VeVx, — Vx,Vp)p — P(f)

= it (Vipxg + 5P, X)) = P

= iﬁV[fp,x,]lZ) — (Q(P,Xf) + Q(Xf,'P))z,b = ihv[P,Xf]d)'

Therefore, if [X;,P] C P, then [Of, Vp]tp = 0. Conversely, taking into ac-
count the above lemma, we have immediately that

[Of7 V'P]"/) =0 = [Xfap] CP.

So we have:

- REQUIREMENT 4. The set of quantum operators O(I'p(L)) is made of the
operators Oy satisfying condition (14) or, what is equivalent, the conditions
(2) or (3) of Proposition 24.

It is evident that, once the complex line bundle is known, the quantiza-
tion of a system (i.e., the Hilbert space and the set of quantum operators)
depend on the choice of the polarization (but it does not on the choice of the
symplectic potential). To select a polarization determines the representation
of the quantum system (see the examples).

In order to compare different representations, that is, quantizations ob-
tained from different choices of polarizations, there is a procedure known as
the method of the Blattner-Kostant-Sternberg kernels, [14], [15], [16], [40]. In
particular, since the condition given in Proposition 24 does not allow to quan-
tize all the classical observables, this method is applied in order to quantize
observables which do not satisfy that condition.

5.5. EXAMPLES

5.5.1. COTANGENT BUNDLES: THE SCHRODINGER AND THE MOMENTUM
REPRESENTATIONS. In the particular case of the Example 1 in Section 4.4,

where M = T*(Q, there is a very special real polarization: the vertical po-

larization, which is spanned by the vector fields {527}' Then, taking the
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adapted symplectic potential § = —p,dg’, the polarized sections are the func-
tions 1 € C(T*Q) such that 3%';”7 = 0; i.e., those being constant along the fibers

of T*Q, that is, ¥ = 1(¢?). The quantum operators corresponding to the
observables positions and momenta are
0
agi’
but the energy is not quantizable. When we quantize in this manner, the pair
(T'p(L),O('p(L))) is known as the Schrédinger representation of (T*Q, ).
Using the polarization spanned by the vector fields {a%,.} (which is also

Oy = ¢, O,;, = —ih

real), and taking as adapted symplectic potential 8’ = g?dp;, we would obtain
the functions 9 = 1)(p;) as the polarized sections and the quantum operators
corresponding to the observables position and momenta are now

., 0
Oqj = Zﬁ@, Opj =Dj-
This is the so-called momentum representation of (T*@Q, ).
Observe that the relation between these representations is the Fourier

transform. (See [73] for more information on these topics).

5.5.2. COTANGENT BUNDLES: THE BARGMAN-FOCK REPRESENTATION.
For the case M = T*(Q, we have just seen that the Schrdodinger and the
momentum representations are obtained by choosing the real polarizations
spanned by the Hamiltonian vector fields corresponding to the momenta and
positions respectively. Next we are going to analyze another typical represen-
tation obtained when we use a particular Kahler polarization.

Instead of the canonical coordinates, we introduce the complex ones {z;, Z; }
where z; := p;+ig’. The expression of the symplectic form in these coordinates
is .
1
2
Now, (T*Q,Q, J) is a Kahler manifold, where the complex structure is given

T iR)-@) @)

Now, we take the polarization P, spanned by < -2- }. As symplectic potentials
Y 1 5z Yy P

J

Q= dEJ /\de.

we can chose )
@ = %(Zjdzj — z]-déj),
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or the adapted one '
6= ';—fjd.z]'.
In any case, the polarized sections are the holomorphic sections of the complex
line bundle T*@ x C, and, using the symplectic potential ©, the quantum
operators are
o  z 0 Z;
0, =—-2h—+=2L 0, =0 =2h—+ -2 16)
’ 62_1 + 2 . ’ % azj 2 ’ ( )
which, in the physical terminology, are called the creation and annihilation
operators, respectively. In this representation, a relevant role is played by the

so-called number operator:

OEjzj = 2h (Z] 8 2—3_—> .

5, Y,

This way of quantizing is known as the holomorphic or Bargman-Fock rep-
resentation of (@, (2). On the contrary, if the polarization used is the holo-
morphic one P, the polarized sections would be the antiholomorphic sections

and the representation so obtained is called the antiholomorphic representa-
tion of (T*Q, Q).

5.5.3. THE HARMONIC OSCILLATOR: BARGMANN REPRESENTATION. The
next example that we consider is the quantization of the n-dimensional har-
monic oscillator, using Kahler polarizations. The prescriptions we are going
to follow will lead us to obtain the holomorphic or Bargmann representation
of the harmonic oscillator.

We begin identifying the phase space M = R?>" (which is an Euclidean vec-
tor space endowed with the usual metric) with C*, and introducing the com-
plex analytical coordinates {z;,Z;} defined in the above subsection. Hence,
the Hamiltonian function and the symplectic form are written

- 1_ (.
H(Zj, Z]') = §Zij, Q= §de A de.
(C*, 9, ) is a Kdhler manifold, where the complex structure J is given in the
usual way, and the hermitian metric is given also by the Hamiltonian. Then,

we can take the Kahler polarization P spanned by {aiz,-}’ and as symplectic
potentials (which are global, in this case) we can chose

9 = (.—Z-dej — zjdij),

AN
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or the adapted one '
1
0= ijdzj
Using the first one, the polarized sections (eigenstates of the system) are

z;Z;

¥(z;,7) = F(2)e” %,

which are holomorphic sections on C, and the inner product is given by

zjZ;

o AQ

(1 | h2) = <%>H/M Fy(2)Fy(2)e”

For the observables, we obtain O,; and O3, given in (16) and

1 o _ 0
§Oijz,~ =h (Zja—zj — Zja—zj) .

It can be checked out that these operators satisfy the condition given in Propo-
sition 24, and, so, the Hamiltonian function is quantizable. It is also immediate
to observe that '

OHZ

O.,1$) = 29 = 2, F(2)e” ",

oz OF _:;z;
+ — Jaly — - IR
O 1¥) = 2h(9zj + 5 P 2hazje ,
_ AN .3P
Ouly) =h (zj 2 Z; 82j> = hz; o

Now, the problem of quantization of the harmonic oscillator is almost
solved. It remains to obtain the energy spectrum. In order to make it, we
have to solve the eigenvalues equation for the Hamiltonian operator

Oul) = El4),
but, taking into account the expression of O, this equation is
OF(z)
ﬁZj 8zj = EF(Z)

Therefore, we obtain that the eigenfunctions F'(z) are homogeneous polynomi-
als of degree N, F(z;) = az;'*...zN" (where N; € Zand N = Ny, +---+ N,),

"vn

and the eigenvalues of the Hamiltonian (i.e., the energy) are N#.
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As you can observe, if use is made of the adapted symplectic potential 6,
the eigenstates are 1(z;,2;) = F(z) and the Hamiltonian operator acting on
these functions is just Oy = hzjai;j. Hence the results are the same as above.

Nevertheless these results are not physically correct, since the true eigen-
values equation is really

h < 2 g) F(z) = EF(2),

z
J
sz

and the eigenvalues are (N + 2)h. This shows that, even in the case of using
Kéhler polarizations, quantization does not end at this stage and a final step
must be done: the so-called metaplectic correction [73], [76], [92].

6. METALINEAR BUNDLES. BUNDLES OF DENSITIES AND HALF-FORMS.
QUANTIZATION

As we have already pointed out in the above section, the set I'p(L) of
polarized sections are not necessarily square integrable; and, in addition, if
1,12 € I'p(L), the inner product (¢;|1,) is not defined, in general, because
we have not a measure defined in D. Although, in general, the use of Kah-
ler polarizations allows us to overcome these problems, the spectrum of the
quantum operators which is obtained is incorrect in certain cases.

The way to solve these problems consists in introducing the bundles of
densities and half-forms, as new geometrical structures for quantization.

Some basic references on this topic are [30] and [92] (In addition, some
interesting and important examples of application of these techniques can be
examined in [73], [76], [92], and other references quoted on them.). Finally,
in the appendix we give some explanations about bundles associated to group
actions, which can be of interest for the understanding of this section.

6.1. COMPLEX METALINEAR GROUP. Consider the group GL(n,C). Its
subgroup SL(n,C) C GL(n,C) is defined as the group of matrices A €
SL(n,C) with det A = 1. Consider now the following exact sequence of groups:

0—2Z-2% CxSL(n,C) % GL(n,C) — 0, (17)

where )
27‘('1,]{2 _ 2nik

€ TI) ,  plu, A) = e"A.

k) = (

n
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On the other hand, if p(z, A) = I, then e*A = I, hence A = e~*I and therefore
(2,A) = (2,e7*I). Since 1 = det(e™*I) = e™*", then z = %, with k € Z;
hence (z, A) = (2=, e~ %% ) = j(k). Thus, we have proved that kerp = Im j.
We can also construct the following exact sequence ‘

o—>22—’;C><SL(n,C)l>Q%(”’9—>

0, (18)

where now j is restricted to 2Z; that is, j(2k) = (élnlk, e~k [) .

DEFINITION 28. The quotient group

_ CxSL(n,0)

ML(n,C) : 7

is called the complex metalinear group of dimension n.

Observe that (21, 4;),(22,42) € C x SL(n,C) give equivalent elements
in ML(n,C) if and only if there exists k € Z such that z; = 2z + % and

4nik

A1=6_ n

As; in other words, the coset of (2, A) is

(z,A) = {(z—{— 47rlk,e‘4’:~ikA) ik GZ}.

n

From the above definition we have a surjective natural morphism

p: ML(n,C) — GL(n,C)
(z,A) +— €*A

which makes commutative the following diagram

p

ML(n,C) —>—~ GL(n,C)

RN
C x SL(n,C)

If p(z,A) = I then e*A = I, therefore e®® = 1 and A = e *I, hence
z = 2 for some h € Z. But z is determined up to an integer multiple of
4k therefore

2 ) ) mi 4nik '
kerpE{( mih | Amik s JI): h,kez}.

n n
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Observe that, if hy, hy have the same parity, they give the same element of
ML(n,C). Then we have that

2 ) 4 ) nih 4ni
kerp = {( Zh + 7:k,eJTe‘_ﬂ_kI) : h=0,1, k EZ}

- {(O,I), (2—”3,6—%1)} ~ 7.
n

Therefore, we have the exact sequence

0= Zy - ML(n,C) % GL(n,C) — 0, (19)

2ni

where ¢(0) = (0,1) and (1) = (%,e‘TI). Taking into account the nat-
ural structures of complex Lie group in M L(n,C) and GL(n,C), this exact
sequence characterizes M L(n,C) as a double covering of GL(n,C). Observe
that the construction of this double covering arises from the two exact se-
quences (17) and (18) since

C xf(LZ()n,C) ~ GL(n,C), Cx SL(n,C) _

and taking them together

0> Z 4 CxSLn,C) % GL(n,C — 0
T T To

0 2Z % CxSL(n,C) 5 ML(n,C) — 0

Now, p is defined in a natural way using these sequences. On the other
hand, in order to evaluate ker p, it suffices to see that, if (z, A) € M L(n,C)

has the same image (by p) than (0, ), then (2, A) and (0,I) have the same
image by p, that is, (z, A) € j(Z). Therefore, either (z, A) € j(2Z), and then

(2,A) = (0,1); or (2,A) € j(2Z), and hence we have that
_ iz _
kerp— ](2Z) =~ Zg,

as we have already pointed out.
Notice that the sequence (17) allows us to write the elements of GL(n,C)

(2,A) = {(z-{- Zzh,e"z’:hA) . he Z},

as
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with z € Z, A € SL(n,C).

For every B € GL(n,C) we can write B = e*By, with det B, = 1 and
e"* = det B. Then, it is clear that z is determined up to a factor 22 with
h € Z. Then B = p(z, By). In constructing M L(n,C), we split the elements
(2, By) into two classes: the one having h even and the other having h odd.

Observe that, in GL(n,C), the square root of the determinant is not de-
fined as a holomorphic function. However, so is it in M L(n,C). In fact, we
have

ML(n,C) % GL(n,C) — C
(2, A) — e*A —  det(e*A) = e det A = ™

and we can construct the function

x: ML(n,C) =%
(z,A) e

which is well defined, since it does not depend on the representative of (z, A).
In fact, if we consider (2, A) € M L(n, C), then x((z, A)) = e™*/2 is well defined
because z = zo + =, and therefore e"*/? = e 2t +2mih — 3% which does not
depend on h. Moreover, it satisfies that

X*((2,4)) = (€¥)* = ™ = (det 0p) ((2, 4)),

and then x = 4/(detop). That is, we can lift the map det to M L(n,C)
by means of p and obtain a square root of this lifting. Observe that this
function cannot be defined in GL(n,C) in this way. In fact, if B € GL(n,C),
according to the above considerations we have B = e*By, with e™* = det B.
Now, B = p(z, Bg) and writing

GL(n,C) <%
B =p(z,By) +— €Y =detB

the function B — €™*/? is not well defined since z = 2z, + 3’{1&, with h € Z,

a 2mih nzg .
and hence e"*/? = ¢%(20+%5%) — ¢ +7h whose value depends on h.

6.2. PRINCIPAL METALINEAR BUNDLES. CLASSIFICATION

DEFINITION 29. Let p: P — M be a principal fiber bundle with structural
group GL(n,C). A metalinear bundle associated with (P,p, M) is a principal
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fiber bundle p : P — M with structural group M L(n,C) and a differentiable
map p: P — P between bundles over M giving the identity on M, such that
the following diagram commutes

Px ML(n,C) —— P

b
P x GL(n,C) —— P

where ¢, 7 are the actions of the groups on the bundles, and such that p is a
double covering.

Now, given a principal fiber bundle (P,p, M) with structural group
GL(n,C), we can ask when a metalinear associated bundle exists and, in
this case, if it is unique. We will answer these questions afterwards.

Let (U;,s;) be a trivial system of P with transition functions g;; : U;; —
GL(n,C). We can construct transition functions of P, gi; : U;; — M L(n,C),
making commutative the following diagram

p

0 — Zy— ML(n,C) — GL(n,C) — 0

> 96
i I H

Uy

In order to construct g;;, it suffices to take U;; in such a manner that g;;(U;;)
is contained in a fundamental open set of the covering.
Let us suppose that U;; are contractible. Then the function
Cijk *= Gi; 9k ki © Ui — M L(n,C)
satisfies that p o c;;; = 1, therefore c;j, € SZ,, hence c;j;, is constant. In this
way we have defined a 2- cochain

C(P) : (Ui, Uj,Uk) —* Cijky

with coefficients in Z,, which is associated with every trivializing covering of
P. It can be proved that
1. ¢(P) is closed.

2. [e(P)] € H*(M,Z,) does not depend neither on the local system (U;, s;)
used, nor on the liftings g;; constructed. It is a cohomology class asso-
ciated with p: P — M.
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3. A GL(n,C)-principal fiber bundle (P,p, M) admits an associated met-
alinear bundle if, and only if, ¢(P) = 0. Then:

DEFINITION 30. Let (P,p, M) satisfying that ¢(P) = 0; and p, : P, —
M and 5, : P, = M two metalinear fiber bundles associated with P,
with covering maps p,: P, — P and ps: P, — P. Then P, and P, are
equivalent if there exists a diffeomorphism 7 : P, — P, such that

a) It is an isomorphism between Z,-principal fiber bundles over P.

b) It is an isomorphism between M L(n, C)-principal fiber bundles over
M.

4. With the above definition of equivalence, the group H'(M,Z,) acts
freely and transitively on the set of equivalence classes of metalinear
fiber bundles associated with P.

A last question is to find the condition for a function f: P — C to be p-
projectable. The necessary and sufficient condition for this is that, if a,b € P
and p(a) = p(b), then f(a) = f(b). Then, you can observe that, if 5(a) = (b),
then p(a) = p(b); that is, there exists § € M L(n,C) such that b = ag, hence
p(g) = id, that is, § € ker p. Therefore, the desired condition is that @ € P
and g € ker p, then f(a) = f(ag).

6.3. BUNDLES OF DENSITIES. In order to introduce integration in non-
integrable manifolds, we need new structures: the so-called densities.

6.3.1. BUNDLE OF ORIENTATIONS

DEFINITION 31. Let M be a differentiable manifold with dim M = n, and
let (Uq,.) be an atlas of M. Consider the line bundle L over M defined by
taking {U, x R} as open sets and

fap := signdet J (1 0 ¢5") = signdet J(gap)

as transition functions; where g, = 1, © 1/151 are the functions of change of
variables in M for the atlas (U,,%,); and J denotes the Jacobian matrix. L
is called the bundle of orientations of the manifold M.

Note that, from the condition gng © ggy = gy, we deduce that fogo fz, =
far, and then the family {f,s} satisfies the cocycle condition and hence the
bundle structure is unique. )
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PROPOSITION 25. M is orientable if, and only if, L is trivial.

Proof. (=) If M is orientable then there is an atlas with changes of
coordinates with positive jacobians, therefore f,s are the identity and, then
L trivializes.

(«<=) If L trivializes, there exists a trivializing covering with transition
functions g,g which are the identity, that is, M is orientable since the signs
of the jacobians are positive. 1

6.3.2. BUNDLE OF DENSITIES

DEFINITION 32. Consider the real line bundle Q(M) := A™(T*M) ®r L.
Its transition functions

hag = det['J(gap)] " signdet J(gag) = |det J(gap) "],

(Ua» ¥o) being an atlas of M and gap = 9, 0 95'. Q(M) is called the bundle
of densities of M. Sections of Q(M) are called densities on M.

Now we are going to see how the densities change when the coordinates
change. Let 0: M — Q(M) be a density on M and let (U,,%,) be an atlas
of M. Put ¢, = {4, ... 9¥2}. A basis of the sections of Q(M) in the open set
U, is given by a basis of Q™(T*M) |y, which is {dy: A...Ady"}; and a basis
of L |y, whichis {u,} € R So then {{dyp} A... Ady} @u,} is a basis of the
sections of Q(M) in U,.

Thus, the density ¢ induces the map o,: U, — U, x L given by

o'a(CL‘) = (masa(m)(dwi AT dTPZ ® Ua)z)7
that is, in U, the section is given by s,(z)(d¥l A ... A dyY? ® u,)., and in
Ug by sg(z)(dipy A ... Ndipj @ ug),. If we take z € Uyg we have s,(z) =

sg(z) det (J(gap(z))). Hence, the integration of o in M has sense, since we
have only to restrict to trivializing open sets {U,}; and taking a partition of

the unity {n,},we define
/MG = za:‘/lju NaOa;

which has the same properties than the usual integration of forms in orientable
manifolds.

As final remark, it is usual to consider complex densities, that is, to take
sections of the fiber bundle Q(M)®gC, which is a complex line bundle over M.
You can observe that a complex density o is nothing but a sum o = o, + i0s;

o, and o, being real densities.
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6.4. BUNDLES OF HALF-FORMS. Let p: P — M be a principal fiber
bundle wit group GL(n,C), which admits an associated metalinear bundle
p:P = M.

DEFINITION 33. 1) Consider the action of M L(n,C) on C

ML(n,C) xC — C
(9,2) = x(@)2

(remember that, if § = (z, A) with z € C and A € SL(n,C), then x((z, 4)) =
¢™*/?). The line bundle associated with this action is denoted N'/2; that is,

N'?:= P Xprpme) C 2222 M,
whe:re we remind that P X s L(n,c) C is defined through the equivalence relation
inPxC
(@,2) ~ (b,w) & 3j€ ML(n,C) | (bw)=(ag,g " 2).
2) Consider now the action of GL(n,C) on C

GL(n,C) xC —» C
(9, 2) = |detg |z

The line bundle associated with this action is denoted |N|; that is,
|N| =P XGL(n,C) C ————-)FGL("VC) M,

where we remind that P Xgp(n,c) C is defined through the equivalence relation
inPxC

(a,2) ~ (b,w) & 3Fg € GL(n,C) | (b,w) = (ag,g7'2).

Next we study the sections of N*/2 and |N|.

Ifo: M — N2 is a section of 7, L(n,), We can interprete it as a function
o : P — C satisfying the following condition: if @,b € P with p(a) = p(b)
(and then there exists § € ML(n,C) with b = ag), then o(a) = x(g)o(b).
In a similar way, If p : M — |N| is a section of 7gL(nc), We interprete
it as a function p : P — C satisfying the following condition: if a,b € P
with p(a) = p(b) (that is, there exists ¢ € GL(n,C) with b = ga), then
p(a) =| det g | pu(b). Bearing this interpretation in mind we have the following
result:
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PROPOSITION 26. Let o,0': M — N'/2 be sections of Tr(n,c), which we
interprete as associated functions o, 0" : P — C. Then the function oo’ : P —
C is projectable by p: P — P and its projected function p(co’™) : P — C
arises from a section of |N|. This allows to construct a map

T(NV2) x D(NV2) X 1(N))
(0,0") = ploa’™)

which is sesquilinear with respect to the module structures of the sections of
N2 and |N| on C®(M) ® C.

Proof. a) oo’ is p-projectable:

We have to prove that, if @ € P and § € ker p, then o0'*(ag) = oo'*(a).
In fact, as the action of § = (2, A) on C consists in multiplying by e"*/2, we
obtain that

(Notice that x(g)? = det p(g) = det I = 1.) So, the result is proved.
b) p(co'*) arises from a section of |N|:
We have to prove that, if a € P and g € GL(n,C), then

p(o0"™)(ag) =| detg |* 5(o"")(a).

In order to see that, consider @ € P and § € ML(n,C) with p(@) = a and
p(g) = g. Then we have that

p(oa'")(ag) = (c0”")(ag) = x(3) 7" (x(3)™")"(e0")(@) =] x(3) |7* (o0")(@)
=| det p(g) | ™" (00")(@) =| detg |7 (00"")(a),

as we wanted to prove. [

Now we introduce the Lie derivative of sections of N'/? and |N]|.

Let X € X(P) be a GL(n,C)-invariant vector field. Since p: P — P is
a local diffeomorphism, we can lift X to a vector field X € X(P) which is
M L(n,C)-invariant (because X is GL(n,C)-invariant and it has coverings).
Let o : M — N'/2 be a section. If we consider it as a function from P to C, it
makes sense to calculate L(X)o. In the same way, if u : M — |N| is a section,
it makes sense to calculate L(X)u, when we interprete it as a function from

P to C. Then the following property holds:
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PROPOSITION 27. Let X € X(P) be a GL(n,C)-invariant vector field and
X € X(P) its ML(n, C)-invariant lifting. Consider o,0' : M — N*/2. Then

a) L(X)o, L(X)o' are sections of N'/2,
b) L(X)(o,c') is a section of |N|.
¢) L(X){(o,0") = p((L(X)0)o") + Ao L(X)o").

Proof. a) We have to prove that, if a € P and § € ML(n,C), then

(L(X)o)(@g) = x(3)"' (L(X)o)(a).
In fact, if X is M L(n, C)-invariant, this means that Xz; = Tyu(g)Xa, where

therefore

since X is C-linear and (o o u(g))(Z) = 0(Z3) = x(g) o (Z).

b) We have to see that, if a € P and g € GL(n,C), then
(L(X)(o,0")) (ag) =| det g |7* (L(X)(o,0"))(ag).
In general, this condition holds for every section o : M — |N|; in fact:

(L(X)a)(ag) = Xega = (Tup(9)Xa)a = Xa(a o p(g)) = Xo( | detg |~ @)
=|detg |™! X,a =|detg | L(X)a

by the same reasons than in the above paragraph.
c) Consider a € P and a € P such that p(@) = a. We have that

(L(X){0,0"))(a) = X,
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Observe that, in general, the equality
L(X){0,0") = (L(X)o,0") + (0, L(X)o")
does not hold since L(X)o"™ # (L(X)o')*, except if X is real. In this case the

true relation is

L(X){o,0") = (L(X)0,0") + p(0 L(X)o"),

and it is easy to prove that the function o L(X)o'" is p-projectable and, hence,
the expression makes sense. It can also be written as

’

L(X){0,0") = (L(X)o,0") + {0, L(X*)o"),
where X* is the conjugate vector field of X. :
In general, we are going to be interested in deriving with respect to vector
fields which are tangent to M. In order to do it we must have a procedure
for lifting them to vector fields tangent to P being GL(n,C)-invariant. In
addition, if we restrict to real vector fields, then

L(X){o,0") = (L(X)o,0") + (0, L(X)a").
6.5. SOME PARTICULAR CASES

6.5.1. FRAME BUNDLE OF A DIFFERENTIABLE MANIFOLD. Let M be a
differentiable manifold with dim M = n and p,: P, — M the bundle of covari-
ant complex references of M. P, is a principal fiber bundle with structural
group GL(n,C). Suppose that P, admits an associated metalinear bundle
P.: P, = M and let |N| be the associated bundle.

PROPOSITION 28. |N| is diffeomorphic to the bundle of complex densities
of M. :

Proof. The bundle of complex densities of M is Q(M) ® C. In order
to prove that they are diffeomorphic, we must see that they have the same
transition functions.

Observe that Q(M) and Q(M) ®g C have the same transition functions,
since C is the trivial bundle; then its transition functions are the identity.
On the other hand, the transition functions of Q(M) are the absolute value
of those of A*(T*M), therefore, the transition functions of Q(M) are
| det*[T'gag])~"|. The transition functions of |N| are the same than the ones of
P,, which are (T'gap)*, and act on C in order to obtain |N| as |det(T'g3)*|.
Hence, they have the same transition functions. H§
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DEFINITION 34. With the above considerations, the sections of the bundle
N'/2 are called uniformly complex sections.

According to the above results, if 0,0’ € I'(IV'/?), then (o, 0') is a complex
density on M.

As an example, consider the bundle p*: P* — M of contravariant complex
references of M, and suppose that it admits an associated metalinear bundle
$*: P* — M. In this case and, in the same way, the sections of the associated
bundle |N| can be identified with the complex multiples of the absolute values
of the skew symmetric contravariant tensors of higher degree.

Now, let X be a real vector field in M. It can be lifted to a vector field in
P~ in the following way: Let 7; be a local uniparametric group associated with
X. This group acts on the references of X by means of the differential, and
so we obtain a vector field X € X(P*). In addition, X is GL(n,C)-invariant,
that is, if {u;,... ,u,} is a complex reference of T, M and g € GL(n,C), then

T1((u1y--- yun)g) = (T1e(u, ... yUs))g.

Since X is GL(n,C)-invariant and P* is a covering of P*, the vector field X
lifts to a vector field X in P*. In order to construct X it suffices to do it in
basic open sets of a covering. Observe that the so-obtained vector field X is
M L(n,C)-invariant by construction.

If X is a complex vector field, it suffices to take its real and imaginary parts
in order to obtain the associated vector field X € X (P*) which is M L(n, C)-
invariant.

6.5.2. FRAME BUNDLE OF A REAL POLARIZATION IN A SYMPLECTIC MAN-
IFOLD. (See Section 5.2 for notation.) Let (M, ) be a symplectic manifold
with dim M = 2n, and let P be a real polarization. Let p : P — M be the
frame bundle of P which is a principal bundle with structural group GL(n, C),
and we suppose that it admits a metalinear bundle P associated with P. Let
|N| and N'/? the line bundles associated with P and P. The elements of
['(M,|N|) and T'(M, N'/?) are called complex densities and complex half-
forms on M associated with the polarization P.

Consider X € X€(M) such that lets the polarization P invariant; that is,
[X,P] C P. Denote by XC(P) the set of these vector fields. If 7; is a local
uniparametric group associated with X and T, its lifting to TMC, we can
obtain a vector field X € X(T'MC) associated with the group T'r,. Since X
lets invariant the polarization, the transformations 7’7, change references of P
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into references of P, then X can be interpreted as a vector field tangent to P.
This is equivalent to saying that the trajectories of T'r; in TMC are contained
in P or that X is tangent to P.

In addition, X is GL(n,C)-invariant since if p € P and A € GL(n,C)
we have T, 7(pA) = (T,7(p))A; as a consequence of the associativity of the
product of matrices. Therefore, X lifts to a vector field X which is M L(n, C)-
invariant, using the local diffeomorphism g : P — P and the action of Z, on
ML(n,C).

We can define the action of X®(P) on the densities and half-forms asso-
ciated with the polarization P. Let X € X¢(P); and a € T'(M,|N|) and
B € T'(M,N'/?). Since a can be considered as a function o : P — C, we can
write _

L(X)a = X(a),

and I(X)a € T'(M, |N|), since X is a GL(n,C)-invariant vector field. In the
same way, since § can be interpreted as a function 8: P — C, we can write

L(X)B = X(B),

and L(X)B € T'(M, N'/?), since X is a M L(n,C)-invariant vector field.

Now, consider X € XC(M), its extension X to P and a section a €
I'(M,|N|). Suppose that it is a Hamiltonian vector field (according to the
Proposition 22), and denote it by X;. If X, is another Hamiltonian vector
field in D ?°, we have that i([X;, X,])Q = 0; and taking into account that
in non-degenerate we conclude that [X;, X,] = 0. Therefore, X, is invariant
under the action of the uniparametric group 7, generated by X;; that is,
T1(X,,) = Xy, (z). Then, let {Xy,,..., Xy, } be a basis of X(P) in an open
set U C M made of Hamiltonian vector fields. We can consider the following
functions in U associated with the section «

Fo(z) = (L(X)e) (X1, (2),-. . , Xy, (2)),
Ga(m) = [X(a(Xfl7' .. 7an))] (l’),

for a given X in D. Therefore:

ProproOsITION 29. If X = X; is a Hamiltonian vector field then F, = G,

ZRemember that, for a real polarization, D = E =P NTM.
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Proof. If X is the canonical lift of X to P, we have that
Fo(z) = (L(X)a) (X, (2),-.. , X}, (2) =
= lim(1/t)(a(TenXp,(2), .., TerXy, (@) — (Xp, (2),- ., Xy, (2)))
=lim(1/t) (a(Xp, (n(2)), - , X1, (m()) = a(Xp, (@), - X1, (),
since the vector fields are invariant under the action of 7,. On the other hand,

Ga(z) = [X(a(Xfw s ,an))](.'L')
=lim(1/t)(a(Xy,,. .., X1)) (@) — a(Xp, -0, X ) (@)

= lim(1/8) (X1, ((2); - . , Xy, (1(3)) = (X, (3, , X, ("’””)‘u

Taking into account the above considerations we have:

PRrROPOSITION 30. Consider z € U C M. Let V be the integral manifold
of D passing through z; and the section 4

c: UnvVv — P
T — (Xfl,...,Xf")

where {Xy,,... ,Xy,} is a basis of D in U made of Hamiltonian vector fields.
Then, X; is tangent to the image of o, for every f € C*(M).

Proof. If T is the local uniparametric group associated with Xy, then T'r
lets invariant the vector fields X,, hence the integral curves of X are contained
in (U NV) and therefore it is tangent to the image of 0. 1

Let m: M — D be the projection defined by the integral manifolds of the
distribution D. Let {&} be the set of complex densities of D. We are going to
define a map ¢ from {@} to I'(M, |N|) which allows us to integrate sections of
|N|. Consider z € M and X, € D,, then {(X,;)Q: T,M — C is R-linear and
vanishes on D, hence it passes to the quotient T, M/D, which is canonically
isomorphic to Tr(;)D. Let ®(X,) the map induced in Ty (;)D. Then, we have
a R-linear map

®: D, — Homg(TrsD,C)
X, + (X,)
which is an isomorphism because  is a symplectic form. If {X},... , X7}
is a C-basis of D,, then {®(X}),...,®(X])} is a basis of (T, D)¢. Let
{X1,..., X"} be the dual C-basis. Then:
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PROPOSITION 31. For every complex density & € D, let {X},... , X} be
a reference of D, (that is a point of P). Define a map ¢: {a} — I'(M,|NJ]),
such that a := (&), as follows

Therefore:

i) ¢ is well defined.
ii) ¢ is injective.
iii) Imp = {a: P - C: a € T'(M,|N|), L(X)a = 0, for every X in
D (loc. hamiltonian)}.

Proof. 1) We have to see that the so-defined function satisfies that
a(Rg) = g~ a(R) = |det g| " o(R),

where R € P and g € GL(n,C). Let R = (v},... ,v™) be a reference of D,
and g = (g;;) a matrix of GL(n,C); then

Rg = (Zgﬂvi,... ,ngv') = (u',...,u"),

therefore . '
P(u)=92 (Z gijm') = Zgij@(v’),

and hence ®(Rg) = ®(R)g. Now, we are going to see the relation between the
dual basis of ®(R) and ®(R)g. Denoting by ®(R) the dual basis ®(R) we have

that ‘®(R) - ®(R) = I, and hence ‘®(R)g - ®(R)g = I. But ®(R)g = ®(R)h,

for some h € GL(n,C), then ‘h'®(R)-®(R)g = I; and thus h = *g~!, therefore

we obtain ®(R)g = ®(R) - {g™!, so we have that

ii) If p(@) = 0 then & vanishes in a reference of (TM)C, thus it is null.

iii) Let @ € Imp with a = (&), we have to see that L(X)a = 0 for every
locally Hamiltonian vector field X in D (it suffices to prove it for the vector
fields in D). Observe that it suffices to see that, for all z € M, it holds
(L(X)a)(X2,...,X?) = 0 for a reference of D,. Let {X},...,X"} be a
reference of D and {Xy,,..., Xy, } a basis made of Hamiltonian vector fields
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in an open set U C M with z € U, which prolongs the above reference. Let X
be the extension of X to P. If V, is the integral manifold of D passing through
z, X is tangent to o(UNV,), being o(z) = (Xy, (z),... , X7, (z)), therefore, in
order to see that L(X)(X},...,X?) =0, it suffices to see that « is constant
on o(UNV,). In fact, consider Z = m(z) € D and let U C D be an open set
with 7(U) C U. Since X f; is in D, the functions f; are constant along the
integral submanifolds of D. In fact, i(Xy,)Q = df; and df;(Xy,) = 0, Vi; then
df; = 0, when restricted to the integral submanifolds of D. Therefore, there
exist functions f;: U — C such that n*f; = f;. Now, consider y € U NV,
hence 7(y) = Z and we have that

O (X5, (v) = dfj(z) |lr.p= df; (),

therefore the dual basis of {® (X, (y)),... ,®(X;. (y))} is {—3-—
and thus

XA W)+ X5, ) = AT @), X @) =@ (57

i',-.. ,a—ﬁz'

which is constant when y varies in U NV, as we wanted to prove.

Conversely, consider @ € I'(M, |N|), a: P — C, satisfying that L(X)a =0
for every locally Hamiltonian vector field X in D. We are going to construct
a density @ on D such that @ = ¢(@). In order to do this, it suffices to give
its action on a local basis in D. Thus, consider Z € D and let {fi,..., fn}
be local coordinates in D. Put f; = n*f; which are defined in U = n~}(U)
and let Xy ,..., X, be their associated Hamiltonian vector fields; then they
are a local basis of D made of Hamiltonian vector fields and, for every y €
V = n~1(Z) (V being an integral submanifold of D), a(Xy, (v),... , X, (v))
is constant. In fact, since V is connected, it suffices to see that, if X, € T,V
then X, (a(Xy,...,X;,)) =0. Let X € X(M) be a Hamiltonian vector field
which prolongs X, locally; according to Proposition 29 we have

0= (L(X)a) (X, Xp,) = Xo(a(Xpy, o X)),

hence a(Xy,,... , Xy, ) is constant on V.
Now we can define the density & in D given by

AT
AR

) = Ol(Xfl,... ,an)

)
|4
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(since we can take any point of V). In this way we have defined locally a.

Now we can define it globally. Let {G1,.-- ,0n} be another local coordinate
system in a neighbourhood V' of Z. Then
0 0
|l =—|, .-y =—| | =a(X,,..., X .
a (agl 2’ ’ agn a_;) a( g1 ’ yn) IV

If g = (f) and (Jt) denotes the Jacobian matrix of 1 (the change of coor-
dinates), then, if & must be a density, it must satisfy that

(a (a% %U) = | det J4| (07 ('a%

since 55 = Z(J9) . In fact, we have that

9
o

dg = df(Jy) = X, =X (Jy),
since the map f + X, is C-linear. Therefore
_( 0 0
& (50150 ) | = 0K Xo) o= (X Xr )T Iy
= IdetJ'th_la(Xfl,... ,an) IV

= | det Jy| & (’a%"" ,6ifn)

)
T

as we wanted to prove. Hence & € {a}. 1

In relation with densities over D and N'/2 we have:

PROPOSITION 32. Let o, o' be two sections of N*/? such that L(X)o =0,
L(X)o' = 0, for every locally Hamiltonian vector field X in D. Then (o,0")
is a complex density on D (that is, (o,0') belongs to Im ¢).

Proof. If X is locally Hamiltonian then
L(X)(o,0") = (L(X)o,0") + (0, L(X)o') = 0,

and the result follows as a consequence of the above proposition.
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6.6. QUANTIZATION: SPACE OF QUANTUM STATES. OPERATORS. Let
(M, ) be a symplectic manifold, [;2] € H?(M, R) being an integer class. Let
m: L — M be a complex line bundle endowed with a hermitian connection
V with curvature 2-form -2% Suppose that M is also endowed with a polar-
ization P and that the frame bundle of P, p: P — M, admits a metalinear
bundle p: P — M. Let N*/? and |N| be the line bundles of half-forms and
densities associated with P.

We are going to define the space of quantum states in the following way:
We consider the line bundle p: L ® N*/? — M and, in the set of sections
(M, LQN'/?), we denote by H” the C-vector space generated by the sections
s® o, where s € I'(M, L) and o € I'(M, N'/?), with compact support and
such that Vxs = 0 and L(X)o = 0, for all locally Hamiltonian vector field
X € P UP; that is, the sections s and o are invariant by the vector fields of
P UP. Observe that, if s ® o and s' ® o' are elements of H”, then (s, s') is
a projectable function on D = M/D. On the other hand, (o,0*) is identified
with a complex density on D. Therefore, (s,s')(o,0*) € {a}c, (where {a}c
denotes the set of complex densities on D with compact support). This allows
us to define a pre-Hilbert product in the following way:

(50,8 ®0') i= /D (s, 5') {0, 0"), (20)

which can be extended linearly to H”. Then:

REQUIREMENT 5. In the geometric quantization programme, the comple-
tion H” of the set H”, endowed with the hermitian product (20), is the intrin-
sic Hilbert space Hg and the projective space PH” is the space of quantum
states PHq of the Definition 4.

Now, as it was stated in Section 2, we must represent the Poisson algebra
of (M,R) in H?. Nevertheless, according to the Proposition 24, it is not
possible to represent all its elements but only those belonging to A" = {f €
C>®(M) : [X;,P] C P} (the set of observables whose Hamiltonian vector
fields preserve the polarization). Therefore:

REQUIREMENT 6. (AND DEFINITION) In the geometric quantization pro-
gramme, the quantum operator associated with the classical observable f €
AP, is the operator 7Oy defined in H?, with values in I'(M, L ® N'/?), which
is defined by

POs(s®0) = (0;s) ® 0 +1is ® L(X})o,

where Oy is the prequantization operator defined by (5).
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And then we can prove:

THEOREM 9. The map

Q: AP — self-adjoint operators in HP
f = P05

is well defined and satisfies the conditions (b-iii) and (b-iv) of the Definition 4.

Proof. In order to see that Q is well defined we have to prove that

1. 9(f)(s®0) e HP,Vs® 0 € HP,
2. Q(f) is self-adjoint.
Therefore, let U be an open set of M and X, in PN P a locally Hamiltonian
vector field for g € C*(U); since Q(f)(s® o) = Ops @ 0 +is @ L(X;)o, we
can easily prove that
VXQ (OfS) = ng (foS - 27Tif8) = 0,
L(X,) L(X;)o =0,
and the part (1) follows. The proof of the part (2) is a simple matter of
calculation.

Finally the verification of the conditions (b-iii) and (b-iv) of the Defini-
tion 4 is immediate. 1

6.7. EXAMPLE: SIMMS QUANTIZATION OF THE HARMONIC OSCILLATOR.
The physical system we are considering is specified by the following features:

e Phase space: M = {(q,p) € R* — {0}} = C".
e Symplectic form: €2 = dp A dg,

Symplectic potential: 8 = 1/2(pdq — gdp).
e Hamiltonian function: H = 1(p* + ¢%).

We take as line bundle the trivial bundle L = M x C, with the usual metric
h((z,2), (z,7')) = zz' and the hermitian connection given by

Vxf=Xf+2mi0(X)f,
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where f: M — C is a section of L. Consider in M the real polarization P
determined by the circumferences with center at the origin of R?. In this case,
P admits a global basis given by the vector field

0 0

XH=_p8—q+q8_p—=—5§’

which is just the Hamiltonian vector field associated with H. Therefore, the
GL(1,C)-principal fiber bundle, P, of references of P is a trivial bundle and
a global trivialization is given by

M x GL(1,C) —s P
(z,2) —  zXg(z)

which is a diffeomorphism. (Observe that (z,1) — Xg(z)). On the other
hand, according to the definitions we have that H?(M,Z;) = 0 and
H'(M,Z,) = Zs, (both because S* is a deformation retrac of M), and hence
P admits two equivalence classes of associated metalinear bundles. We are
going to describe and quantify them.

First case: Trivial metalinear bundle.

In this case we have P, = M x M L(1,C), and the covering map p: P, — P.
is given by p(z, §) := ((z,p(g)), where p: ML(1,C) — GL(1,C) is the natural
covering.

In order to identify the sections of the bundle L ® N'/2 — M you can
observe that, if sg: M — M x L is the unit section and o € ['(M, N/?)
satisfies that oo(z,1) = 1, (we consider it as a function oq: P, — C), then the
sections of L ® N'/? have the form fsy® oo, where f is a function of M in C.

For constructing H” we have to consider the sections fsy ® oy such that
L(Xg)oo =0, Vx,(fso) =0, since the polarization P is real and Xy gener-
ates P globally. The first condition holds trivially and, for the second one, we
have that

0= Vx,fso=(Xuf)so+2mif0(Xmu)so

_of (L2 _(3_fﬁ-2)
~8@so+27rzf( 27‘)30— 36 wir® f | So,

and the condition for f is

g—é— —mir’f =0, (21)
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besides of having compact support. This equation has no solution. In fact:
its general solution should be f(r,®) = C(r)e™"®, but it must satisfy that
f(r,©) = f(r,©+2mn), n € Z, and hence e™r"2™ = 1, that is 77 € Z, which
is absurd if f depends differentiabily on r. Therefore H” = 0 and hence this
system cannot be quantified.

Nevertheless, instead of ordinary functions we can take distribution sec-
tions of L. This consists of taking sections of the form fso where f is a distri-
bution in M. In this way, we will arrive now to the same equation (21) which
has solution. In fact, we can prove a solution of the form f(r,0) = g(r)e*®,
with £ € R and g(r) being a distribution in R*. We have that

ikg(r)e*® — mirlg(r)et*® = 0,

therefore (k — nr?)g(r) = 0. Thus g(r) has to be a multiple of the distribution
o(r— \/g) and, in addition, k has to be a non-negative integer since f(r, ) =
f(r,©+2mh), h € Z. Therefore we obtain that a set of non-vanishing vectors
of H” is given by e*®§(r — \/f-)so X 09, with k € {0} UZ. In this space
we can apply the quantization procedure previously described for the case of
functions. The result is that these vectors are eigenvectors of the operator Oy
corresponding to the Hamiltonian function. Moreover, since Xy belongs to
the polarization, as a consequence of the corollary of the quantization theorem,
we have that Oy consists in multiplying by the function 27 H = 2772,

Second case: Non trivial metalinear bundle.

In this case, in order to construct the bundle p: P, — P, we consider the
set RY x R x ML(1,C). We take on it the equivalence relation defined by

(r,©,)) ~ (r,0 + 27h,e")\), h € Z,

where ¢ is the non trivial element of the ker of the morphism p: M L(l,_(C) —
GL(1,C). Let [r,0,)] be the equivalence class of (r,©,A) and let P, the
quotient set. We have the natural map

ﬁ: Pg — P
It is clear that P, is not the trivial bundle P,, since the points we have iden-
tified when we construct P, are not the same as in P;. '

In order to construct a trivial system in P,, observe that M is the quotient
of Rt x R, by the same equivalence relation, but restricted to this set, that is,

(r,©) ~ (r,® +27h), h € Z.
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Now, we take the following open sets in M:
Uy ={re®®: reRY, ©€(0,2m)}, U,={re®®: reR", ©€(-mm)},
and, from the natural projection $: P, — M, the following sections:

S1: U1 e .Pg Sy Ug — P2
re® — [r,0,1] re® — [r,0,]1]

Then, {U;,5;} is a trivial system of the bundle p: P, — M. The transition
function c; = 5, 057" is

5.(r i©

_ [T)@a 1], NS (07 7T)
1 [©-2m1] =[r,0,¢], © € (m2n)

(remember that U;; = (0,7) U (m,27)). Let 0: M — P, be a section of p,
then poo: M — P is a section of p. For 3; and 3, we have

(pogl)("'eie) =15([7"@’1]) = ('reie,l)’ in Uy,
(p o 55)(re®) = p([r, ©,1]) = (re’®,1), in U,.

Observe that, according to the global trivialization defined in P, Xy (re®®)
corresponds to (re’®, 1), and then both sections po 5, and p o 5, give Xy in
their domains.

In order to quantize the non trivial bundle, we start describing the bundle
N2 5 M. In U; and U, we take the sections o;: U; — N'/? as follows:
we define o; as a function o;: p~1(U;) — C and we work at a point (taking
into account that the invariance condition must be satisfied). If z € U;, we
define oy(z) € N1/? such that o,(z)([5,(z)]) = 1, and if z € U,, we define
o2(z) as o2(z)([32(z)]) = 1. The relation between both sections is as follows:
if © € (0,27), then 5,(re®) = 35,(re'®), therefore o;(re®) = oy(re’®). If
© € (m,27), then 5,(re®) = 5,(re*®)e, and hence

01((51(reie))) = 01(52(re™)) = —03(5(re')).

and, in this case, 0, = —05.
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The sections of L ® N'/? are studied in the following way: let so: M — L
be the unit section. The elements of H” are of the form f;5, ® o, in Uy, and
f2s0 ® 03 in Us; and since Xy is a global generator for P, we have that

L(XH)O'l = O, in Ul, L(XH)UQ = 0, in Uz,
VXH(fISO) = 0, in Ul) VXH(f2SO) = 0) in U2-

Now we can see that the conditions on o; are automatically satisfied. In
fact, consider z € P, with p(Z) = z, then there exists A € ML(1,C) with
Z = 3;(x) A, therefore

(L(Xu)o1)(Z) = (L(Xn)or) (51(z)X) = A7 (L(Xu)o) (5:(2)),

where the invariance condition of Xy (the lifting of X to P,) is taken into
account. Now, if 7; is a uniparametric group of Xy, we have that

(L)) (1(0)) = lim 7 (o(7(51(2)) ~ o(ar(a) ).

t—0 t

and using the corresponding local diffeomorphisms we have that

7 (51(2)) = p~ (Trp(5:(z)) = p~* (T Xy (z))
=p! (XH (Tt(-’ﬂ))) =p (15 03§ (*rt(:z;))) = 5,(n(z)),

where we have taken into account that pos; = X H,; and hence

(L(Xm)o1) (5:1(z) = hml(("l 0 51)(m(z)) — (o1 0 51)(90))

t—0 t

= (Xu(o105))(z) =0,

since ¢y o §; is the unit constant function. In the same way we obtain that
L(XH)O'2 =0 in U2.

The conditions on f;s, give again the equation (21), therefore H” = 0
unless we work with distribution sections as in the above case.

For other examples see [73], [76], [92].

7. SOME IDEAS ON GEOMETRIC QUANTIZATION OF CONSTRAINED SYSTEMS

The geometric quantization programme which we have explained along the
above sections deals with regular dynamical systems; that is, systems whose
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classical phase space is represented (totally or partially) by a symplectic mani-
fold. Nevertheless, Dirac and Bergmann started early the study of singular (or
constrained) dynamical systems and their quantization [11], [25], [26]. Hence
we expect that the methods of geometric quantization can be applied for quan-
tizing these systems (perhaps after some minor modifications). Geometrically
this means to quantize presymplectic manifolds. Thus, in this brief section
we make an introduction on how the geometric quantization programme is
applied to singular systems and the problems arising in this procedure. Rep-
resentative references on this subject are [8], [18], [19], [33], [36],[57], [61], [74],
[78]; and we refer to them for a more detailed expositions on the topics of this
section. Survey expository works on the geometrical description of classical
singular systems are, for instance, [12], [20], [35], [37], [64].

7.1. GENERAL SETTING AND ARISING PROBLEMS. As it is known, the
phase space of a constrained system is a presymplectic manifold (C,w¢). But,
in order to apply the geometric quantization procedure we need a symplectic
manifold. Then, there are three kinds of symplectic manifolds associated
with (C,w¢), namely: some extended phase space (M, ), the reduced phase
space (C,Q), and some “gauge fixed manifold” (P,Qp). The first one can be
constructed, in general, by applying the coisotropic imbedding theorem [34],
[60]. Then M is a tubular neighbourhood of C, considered as the zero section
of the dual bundle (ker wc)* (where ker we denotes the characteristic bundle
of C); and M is unique up to local symplectomorphisms between tubular
neighbourhoods. In the second one, € is the quotient C/ker we (which is
assumed to be a differentiable manifold). Finally, a gauge fixed manifold is a
global section of the canonical projection p: C' — C. Thus, the quantization of
a constrained systems is based on the quantization of some of these symplectic
manifolds.

Geometric quantization via gauge fixing conditions is not the most suitable
way. The most usual forms of quantizing a constrained system consist in using
the reduced or some extended phase space, and these are the only cases that we
discuss here (comments and results on the geometric quantization via gauge
fixing conditions can be found in [74]).

As it is known the true space of physical states of a constrained systems
is the reduced phase space (C, ). Hence, the most reasonable thing seems to
quantize it directly. Nevertheless, in general, this is a difficult task because:

e The topology of C is very complicated.

e Covariance is lost in the reduction procedure.
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e Additional assumptions on C are required in order to C have a suitable
structure for quantization.

e C has singularities, etc.

In spite of these problems, the geometric quantization of the reduced phase
space can be successfully carried out in a significant number of cases {8], [33],
[83]; and then we will denote (#,O(#)) the Hilbert space and the set of
operators so obtained. In these cases, the advantage of the method is that,
both constraints and gauge symmetries are incorporated and divided out at
the classical level and they*have not to be considered at the quantum level:
# is the intrinsic Hilbert space and O(#) is the set of quantum operators
corresponding to the constrained system.

Although it is not the true physical phase space of a constrained systems,
quantization of the extended phase space is more natural by several reasons:.

e The topology and geometry of M are simpler than those of C.
e No additional requirements must be assumed for C.

e In many cases, the extended phase space M is an initial datum of the
problem and it has not to be constructed; although, in these cases, C
must be a coisotropic submanifold of M. If C is not coisotropically
imbedded in M, then second class constraints must be previously re-
moved in order to achieve a consistent quantization; and then the Pois-
son bracket must be replaced by a new operation called Dirac bracket.
In geometrical terms, this correspond to take a symplectic manifold
where the submanifold C is coisotropically imbedded, and then use the
Poisson bracket operation defined on it by the corresponding symplectic
structure [72].

This method involves two steps: starting from (M, ), we first obtain the
corresponding pair (H¢*, O(He*t)). But H is not the true intrinsic Hilbert
space of the constrained systems, since constraints have not been taken into
account. Then, they have to be enforced at the quantum level. The way to
implement this is known as the Dirac’s method of quantization of constrained
systems, whose guidelines are the following:

e It is assumed that the final constraint submanifold C is defined in M
as the zero set of a family of constraint functions {¢}, and that these
constraints are quantizable, that is, {O.} C O(H).

e Then, constraints are enforced at the quantum level, demanding that
the set of admissible quantum states is HC := {|¢) € H: O|y) = 0}.



FOUNDATIONS OF GEOMETRIC QUANTIZATION 229

The translation of this procedure in terms of geometric quantization was
carried out mainly by Gotay et al [34], [36]. This method leads to consistent
results only if it allows us to obtain a representation of the Lie algebra of the
gauge group on H*! and, in order to achieve it, some previous requirements
are needed (see [36]). When the Dirac’s method goes on, a subset H¢ C
He*t is obtained and it contains the physical quantum wave functions of the
constrained system.

Then, a subsequent problem to be taken into account is that H® is not
always a Hilbert space, and the way to make it into a Hilbert space #; is
not clear in general. When this is possible, H, and O(H,)) are the intrinsic
Hilbert space and the quantum operators of the constrained system.

7.2. COMPARISON BETWEEN METHODS. In this way, several new prob-
lems arise in relation to the geometric quantization of a constrained system.
In fact: '

1. In some cases, to quantize both the reduced and the extended phase
space simultaneously is not always possible, since:

a) Sometimes the reduced phase space (C,) cannot be quantized.

b) Some (or none) extended phase space (M,2) is not quantizable,
because the Dirac’s method is not applicable.

c) The set HC (if it exists) is no longer a Hilbert space.
2. If both methods of quantization go on, it is expected to be equivalent?®,
that is, the Hilbert spaces # and H, would be unitarily isomorphic; and
the same for the corresponding sets of quantum operators. Unfortu-
nately, as it was analyzed first in [7], this is not the case because there
are two kind of obstructions:

a) The geometrical structures needed for the quantization of (M, Q)
(hermitian line bundles, polarizations, metalinear bundles) could
not be invariant under the action of the gauge group and then they
cannot be p-projectable in order to obtain compatible geometrical
structures for the quantization of (C,Q). Thus, both quantization
procedures are incompatible.

61n fact, at the classical level it is equivalent to construct the reduced phase space (C, )
or, starting from the extended phase space (M, ), to carry out the constraints and divide
the symmetries out. Hence we can expect the same equivalence to be true at the quantum
level.
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b) Both quantization procedures can be compatible in the above sense,
but a second obstruction can appear when we introduce the inner
product on H°®* and H. In fact, Ho could not inherit an inner
product from H®® or, if does it, the equivalence between both
quantizations could not be extended to an unitary isomorphism
between #, and .

In the literature, these questions are referred as the noncommutativity of
the procedures of reducing (or constraining) and quantizing; and they con-
stitute one of the main problems in the quantization of constrained systems.

A lot of works have been devoted to discuss these topics:

For example, geometric quantization of constrained systems is studied in
[33] for the particular case when the extended symplectic manifold is a cotan-
gent bundle; showing that, under some general hypothesis, reduction and
quantization commute. In relation to this last case, in [28], some examples
for which these hypothesis do not hold are discussed (and then, the problem
of quantization is solved in the ambient of the BRST theory).

Another more generic example of noncommutativity between reduction
and quantization is given in [57], where the quantization of the extended
phase space leads to non-equivalent different possibilities, in general.

[36] is another classical reference, where geometric quantization via co-
isotropic imbedding is studied. After giving the conditions for which quanti-
zation is independent on the choice of the ambient symplectic manifold other
problems concerning this way of quantizing are commented; namely: how the
quantization procedure depends on the choice of a basis of constraints defining
C in M, or what happens if some of these constraint functions is not quanti-
zable or, even, how to quantize when there are not constraints defining C' in
M.

Finally, [8] is mainly devoted to the study and comparison of polarizations
in both ways of quantization.

As a final remark, it is important to point out that many of the problems
concerning geometric quantization of singular systems are solved using the
more recent techniques of the BRST theory. The explanation of this method
goes far from the aim of this work. Some references on this topic are [4], [5],
[27], [43], [53], [58], [79], [80] (as it is obvious, this list is far to be complete).
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APPENDIX. BUNDLES ASSOCIATED WITH GROUP ACTIONS

Let p: P — M be a principal fiber bundle with structural group G and
let @Q be a differentiable manifold with a differentiable left action of G in Q.
Consider the set P x @ and the action of G defined by

Gx(PxQ) — PxQ
9,(a,q)  — (ag,97q)
Let P X¢ @ be the orbit space of this action. This is the quotient of P x @
by the equivalence relation (a,q) ~ (r,s) < 3g € G | (ag,97'q) = (r,s) We
have the natural projection

m: PxgQ — M

(a,q9)  +— pla)

Let {Uq,%.} be a trivializing system of P. Then ¢, : 77 (U,) = U, X G
is a diffeomorphism and 9, o ngl means to multiply by an element of G in
the fiber. We can construct the diffeomorphisms

PHUa) X Q 225 UL x G % Q
which allow us to define the bijections

W (U,) 2 U, xQ

(a,9) = (p(a), Pala:q)

where @,(a,q) is the unique element of @ such that (p(a),e, @a(a,q)) ~
(¥o(a),q). Notice that ¢, is well defined; in fact, consider (a,q) ~ (a1,q),
that is, 3g € G | (a19,97'q1) = (a,¢) then

('()ba X id)(a’Q) = (")ba X id)(algn‘]—lql) = ('l)ba(alg),g—lql)
= (¢a(alg)g—1,q1) = (Yala1),q1) = (Yo x id)(a1,q1).

Imposing the condition of ¢, to be diffeomorphisms, we obtain on 7= (U,)
a structure of differentiable manifold which, on its turn, gives a fiber bundle
structure on P X g @ with the projection 7 : P Xg@Q — M, with fiber Q. So we
have that 7 : P xg @ — M is a fiber bundle over M with fiber @) which is say
to be associated with P by the action of G in Q. If {U,,%,} is a trivializing
system of P, then we can construct another one of P xg @ by means of

YU, 2 U, % Q
(a,q9) = (pla),Ba(a,q))
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where (1a(a), q) ~ (p(a), 1, Pa(a,9)).
Now, let 0 : M — P xg Q be a section of 7. We can interprete o as

amap ¢ : P = Q in the following way: let a € P and z = p(a), we take

o(z) = (a, z) and then we define &(a) := z, that is, we take &(a) in such a

way that o(z) = (a,5(a)). You can observe that there is only one element of

the class of o(z) whose representative has a € P as the first element, that is,

such that o(p(a)) = (a,d(a)). It is easy to prove that & is differentiable.
Thus we have a map

1 T(PxaQ) — C*(PQ)
g — g

Now we can ask for the image of 7, that is, given a map ¢, which condition
satisfies ¢ in order to be the map associated with a section of 7?7 Let o be a
section of m and a,b € P such that p(a) = p(b), then, if b = ag, we have

o(p(a)) = o(p(b)) = (a,6(a)) = (b,5(b)) = (ag,5(b)) = (a,95(b)).
That is, if b = ag, then

g(a) = ga(b) = G(ag) =g '6(a)

This condition characterizes the image of 7. In fact, let ¢ : P — Q be a map
satisfying that ¢(a) = g¢(b) if b = ag. We construct a section ¢ : M — PxcQ
in the following way: ¢(z) = (a,¢(a)), a being any element of P such that

m(a) = z. Obviously n(¢) = ¢.
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