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A topological Abelian group G is maximally almost periodic (MAP) in
the sense of von Neumann if for every eq # = € G there exists a continuous
character x (i.e., a continuous homomorphism into the one-dimensional torus
T) such that x(z) # 1. Every maximally almost periodic Abelian group G
embeds as a dense subgroup in a compact group which is called the Bohr com-
pactification of G and is usually denoted by bG. The topology that the group
G inherites from its Bohr compactification is then called the Bohr topology
of G. Following van Douwen, we will write G¥ to denote a discrete Abelian
group G endowed with its Bohr topology which turns to be the maximal
totally bounded group topology of G. ' '

In his paper [3] van Douwen proved (Theorem 1.1.3 (a)) the following
remarkable theorem:

THEOREM 1. (van Douwen) If G is an Abelian group, then every infinite
subset A of G* has a relatively discrete subset D with |D| = |A| that is
C-embedded in G* and is C*-embedded in bG.

Van Douwen’s proof is very technical and, therefore, it is difficult to place
the key ideas used in it. The goal of this paper is to present an alternative
and much simpler proof of that result and, over all, to make it clear the
main concepts we have used in our approach. This is achieved mainly with
Proposition 1 and Proposition 2, below, which intend to make clear which are
the foundations that lie in our approximation to the problem and suggest the
main line for subsequent extensions of van Douwen’s theorem.

*Research of both authors partially supported by Spanish DGES, grant number PB-96-
1075.
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Let I; and I_, be two closed and disjoint intervals in the one-dimensional
torus T which contain at least one nm-th root of the unity for each n > 2.
We will say that an Abelian group G satisfies property P if every infinite
subset A of G contains a subset B, with |B| = |A| such that, for every map
¢ : B — {1, -1}, there exists a character x of G satisfying that x(b) € I4
for every b € B.

PRrROPOSITION 1. IfG is an Abelian group all whose quotient groups satisfy
property P, then van Douwen’s theorem holds for G.

We will split the proof of this Proposition in several lemmas in order to
dissociate technical dificulties from the essence of the theorem.

Throughout Lemma 1 we adopt the notation of [3]. Given a topological
space X, we say that a set A is X-embedded in another topological space
B if A C B and every continuous function of A into X admits a continuous
extension to B. ‘

LEMMA 1. Let G be a discrete Abelian group and let A be an independent
subset of G such that all the elements in A have the same order, then A is
discrete and C-embedded in G¥.

Proof. That A is closed and discrete in G# whenever G is discrete and A
" is independent, is proved in [4].

Let us denote by H the subgroup generated by A. By [1, Theorem 6.3]
the group H# is Z-embedded and R-embedded in G#. On the other hand,
since A is discrete in G#, an application of Lemma 2.1.1 of [3] shows that, in
order to prove that A is R-embedded in G¥, it is enough to prove that A is
Z-embedded in G¥. Summing up, to show that A4 is R-embedded in G#, (i.e.
C-embedded) it will be enough to prove that A is Z-embedded in H#.

So, let f : A — Z be any function of A into Z. For each n € f(A) C Z,
pick exactly one a, € A with f(a,) = n and denote by L the subgroup
generated by the set {a,: n € f(A)}. Next, define a mapping g : A —

{a,:n € f(A)}, by
g(a) =a, when f(a)=mn.

Since the family {f~'(n): n € f(A)} defines a partition of A, it is clear that
g is well defined. Since A is an independent subset of G and all the elements
in A (and hence in g(A)) have the same order, it is possible to extend g to a
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homomorphism g : H — L. As it is well known, g will be a continuous as a
mapping of H# into L¥.

Now, the set {a,: n € f(A)} is a discrete closed subset of L* (note that it
is also an independent subset of L), thus, by [3, Lemma 2.1.2], the restriction
of the map f to {a,: a € f(A)} can be extended continuously over L* to a
function, say, f : L# — Z. The composition f o g provides then the required
extension of f over H#*. 1 '

LEMMA 2. Let G be a discrete Abelian group and let A be an uncountable
subset of G such that o(z) < m < w for all z € A. Then, there is a subset B
of A, with |B| = |A| which is discrete and C-embedded in G¥#.

Proof. We proceed by induction on m < w. If m = 2, we can take a
maximal independent subset B C A. Since for every z in A there must exist
some n € Z such that 0 # nz €< B> and o(z) = 2 for all z € A, it is clear
that |B| = |A|. It is then enough to apply Lemma 1 to B.

Suppose now that the result is proved for every group G and every subset
A of G provided that o(z) < n < w for all z € A, and consider A C G such
that o(z) < n+1 for all z € A. By the inductive hypothesis, it can be assumed
that o(z) =n+1 for all z € A.

Take a maximal independent B subset of A. If [B| = |A|, then we can
apply Lemma 1 to B and the proof is complete. :

Thus, we can assume that |B| < |A|. Define H =< B >. Then, (by the
maximality of B) for each z € A, there must exist m < n + 1 such that
mx €E<B>. If p: G — G/H denotes the canonical epimorphism, then
o(p(z)) < n for all z € A. Since |A| < |p(4)| - |B| and |B| < |4], it follows
that |A] = |p(A4)|. By the inductive assumption, there is a discrete subset B
of p(A) with |B] = |p(A)| = |A| which is C-embedded in (G/H)#*.

Now, for every Z € B pick exactly one element z € A such that p(z) = Z.
It is obtained thus, a subset B = {z € A: & € B} with |B| = |A|. It is easily
verified that B is C-embedded in G¥#. 1

The following Lemma will be necessary to reduce the general problem
to the cases studied in the previous ones. The idea of considering a clopen
partition of the group G¥ is inspired in Proposition 2.4 of [4].

LEMMA 3. Let G be a discrete Abelian group all whose quotient groups
verify property P and let A be an infinite subset of G. If H is any subgroup
of G such that |H| < |A|, then there exists a closed and open neighbourhood
V of H in G* such that |A\ V| = |A].
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Proof. Let p: G — G/H be the canonical mapping. Since |[H| < |A| and
|A] < |p(A)] - |H|, it follows that |A| = |p(A)|. On the other hand the group
G/H verifies property P. Consequently, it may be found a subset B; C p(A)
with |B;| = |p(A4)|, a characater x € (G/H)A and a neighbourhood U of the
identity in T such that xy~(U) N B, = 0. Recalling that the topology of
(G/H)* is zero-dimensional ([3, Theorem 4.8]), it is possible to find a closed
and open neighbourhood W of the identity in (G/H)#* such that W C x~1(U).
Then observing that

AP (W)] > [p(A\ (b7 (W)] = [p(A\ p™(G/H \ BY)| = |By| = |4
the lemma follows by considering V = p~}(W). 1

Now, we are ready to finish the proof of Proposition 1.

Proof of Proposition 1. Let G be an Abelian group and let A be an infinite
subset of G. Since G satisfies property P, it will contain a subset B with
|B| = |A| with the properties stated above. Take b € B. Then there exist two
closed disjoint intervals in T and a character x € G such that x(b) € I and
x(B\ {b}) C I_;. Then x~}(T\ I_,) is a neighbourhood of b in G#¥ which
intersects B exactly in the point b. This is to say that B is discrete in G#.

On the other hand, to see that B is C*-embedded in bG, it is enough to
prove that every pair of disjoint subsets of B, say B; and B_j, is completely
separated, i.e., there is a continuous function f € C(b@) such that 0 < f <1,
f(B1) = {0} and f(B;) = {1}. Applying again that G satisfies property P, we
can find two closed disjoint intervals in T, I; and I_; and a character x € G
such that x(B;) C I, and x(B_;) C I_;. Denoting by d the usual metric of
the complex plane, we can define g : T — R by '

_dw 1)
9(t) = dt, 1) + d(t, 1)

Clearly, g is continuous, 0 < g < 1, g(I;) = {0} and ¢g(I_,) = {1}. Every
character of G can be extended to a continuous character of the Bohr com-
pactification. So, if ¥ is the extension of x to bG, the function go ¥ shows that
B, and B_; are completely separated. Thus B is C*-embedded in bG. Note
that B cannot be relatively compact in G#, because clygB is homeomorphic
to BB, the Stone-Cech compactification of B, clg#B is a subset of < B >,
since every subgroup is closed in G#, and | <B> | = |B].

Suppose now that A is countable. Being countable, G, =< B># is real-
compact and it follows that every functionally bounded subset of Gy is rel-
atively compact. Hence, there is f € C(Gy,R) such that f|, is unbounded.
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That is, there is a subset D = {y,}%2, C B such that |f(ynt+1)|> [f(yn)| +1
for every n < w. Let now V,, = {z € Go |f(z) — f(ya)| < 1/2}. Since G, is
completely regular we can take, for every n < w, f, € C(G,) with the proper-
ties 0 < fr <1, fulyn) =1 and fo(Go\ V) = {0} If now g is any real valued
continuous function on D, the function )7, ., g f» is a continuous extension
of g to Gy. Since G, is C-embedded in G# ([1, theorem 6.3]) it follows that
"D is discrete and C-embedded in G# and C*-embedded in bG. _

Suppose finally that A (and hence B) is not countable. Since B = (BN
tG) U (BN G\ tG), it may be assumed that either all the elements of B are
torsion free or all of them have finite order.

Suppose first that B C tG, the torsion part of G. Denote in this case by
t,G the subset {z € G: o(z) < n} and let B, = BN(¢,G). If |B,| = |B| = |A|
for some n < w, then Lemma 2 applies and we are done.

So, we can suppose that |B,| < |B| and define H, =< B, >, for all n < w.
Then H = |J,, Hn is a subgroup of G and |B,| < |H,| < |B| = |H| for all
n < w. Since H* is C-embedded in G# (see [1]), it will be enough to prove
that B is C’-embedded in H#. ’ ‘

Since B = |J,,,, Bn, it follows that |B| has countable cofinality. Thus it
may be chosen a sequence of regular cardinals k; < --- < k, < --- such that
sup, k, = |B|. Recall that a cardinal number m is called “regular” if there
is no way of partitioning a set of power m into less than m pieces of smaller
power or, equivalently, if the cofinality of m is exactly m (see [2], Chapter 1).

By induction on n < w we will construct an integer m,, a closed and
open neighbourhood U,, of H,, in H# and a discrete C- embedded subset D,
of B, \ U,—; such that

.O<m; <my < -- My < -

<
2.0=U,CU, C-- QUQ
3. |Dn| = Kn, for a,lln<wand
4. |B\U,|=|B| for all n < w.

Given that «; is a regular cardinal, there is m; € w such that |B,,| = |Hp, | >
k1. Then, Lemma 2 applied to B,,, provides a subset D; C B,,, with |D;| = &,
which is discrete and C-embedded in G#. And Lemma 3 allows us to define
a closed and open neighbourhood U; of H,,, such that [B\ U;| > |B].

Now suppose that m,, D, and U, have been already defined so that they
hold the inductive assumptions 1-4.
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There is then m,; € w such that m,,; > m, and
'an+1| = |Hm,.+1| 2 Kng1 -

Lemmas 2 and 3, now applied to the subset B \ U, yield a subset D,;; C
B, \ Un with |D, 11| = Kn41 which is discrete and C-embedded in G# and
a closed and open neighbourhood V' of H,4; such that |[B\ (U, UV)| > |B].
Defining the set U,,,; = U, UV the inductive process is complete.

Consider now D = {J,,., Dn. Clearly |D| = |B| = |A|; let us see that D
is C-embedded in G# or, equivalently, that it is Z-embedded in G#. To this
end let f : D — Z be arbitrarily chosen and define f, = f|, . Since every
D, is C-embedded, there is g, € C(H*,Z) that extends continuously f,.
Now, since {Uy, \ Un_1}n<. is a closed and open partition of H# we conclude
that, denoting by x,, ., _, the corresponding characteristic function, the map
g : H¥ — Z defined by

9= InXomru._,

n<w

is the desired continuous extension of f ot H#. Thus D (which is a subset of
B) is discrete and C-embedded in G# and C*-embedded in bG.

Suppose now that the order of all the elements in B is infinite. Consider
again a maximal independent subset C contained in B. If |C| = |B| = |4| it
suffices to apply Lemma 1 to finish the proof. Otherwise, we define H =<C>
and 7 : G — G/H. Then, |B| = |n(B)| and o(w(z)) < oo for all z € B.
Applying the foregoing paragraphs to m(B) it follows the existence of a subset
C C n(B) with |C| = |n(B)| = |B| which is discrete and C-embeddcd in
(G/H)*. Now it is easy to find, as in Lemma 1, a subset C C 7~ }(C) N B
with |C| = | B| which verifies the required properties. The proof is now done. I

We will split the proof of the Theorem in two parts, first we will prove the
finitely generated case.

PROPOSITION 2. Every finitely generated Abelian group satisfies van
Douwen’s theorem. ’

Proof. Like every finitely generated Abelian group, G is isomorphic to
Z™ x F for some non-negative integer n and some finite Abelian group F.

Let A be an infinite subset of G. Let m; : G — H; where H; is isomorphic
with Z if 1 <1 < n and H,4; is isomorphic to F. Clearly there will exist ¢,
with 1 < 7 < n such that the set A; = m;(A) C Z is infinite.
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Consider a sequence {z,}%; C A, such that |z,| > |42,-1| and let {I,,}52,
be a sequence of intervals in T such that I, = I, or I, = I_; for every
n < w. Here I} and I_; are two closed and disjoint intervals in T of length
p(I;) > 2m/3 centered in 1 and —1 respectively. Clearly each of them contains
n-th rooths of the unity for every n > 2. Denote by {t,}22, the sequence of
middle points of the intervals I,. 4

Let J; be an interval in T such that z,(J;) = I; and such that the length
of Ji, p(J1) is 2m/3|z|.

Suppose now that a sequence of intervals in T, J;...J, has been
chosen such that J; C J;_;, p(J;) > 2n/3|z;|. Consider now the set
zip (Ji) = {e¥mznt 2t ¢ J1 Since |zp41 - p(Jk)| > 27 + 27/3, it
follows that there exists z,; with e?™@+1 € J; such that e?™#+1%+1 =
trr1- If {€2™ : |t — zgy1| < 1/(6]2x41])} is contained in J;, we choose this
set to be Jg.,. Otherwise, e?(@++1=) ¢ J, and we can choose Ji;; =
{e?™ : |t — (z441 — 1)| < 1/(6|2441])} which will have to be contained in
Ji. Moreover since e?™#k+1%k+1 = g2mize+1(@er1=1) = ¢, = (the center of I, ;)
and the length of Ji,, is exactly 2 7/(3 - |2k41]) it follows that in any case,
zk+1(=7k+1) C Iy

It has been thus constructed a sequence {J,}52, of closed intervals in
T such that z,(J,) C I,. Since the intervals satisfy the finite intersection
property, one point zy € (oo, J, may be chosen. This point can be identified
with a character of Z such that zy(z,) € I for all n < w.

Now choose a sequence {y,} C A such tha.t 7i(Yn) = 2,. The character
group G of G is exatly T x F, so if x € G is the character of G with i-th.
projection equal to z, and j-th. projection equal to O for all j # 4, then
it also holds that x(y,) € I, for all n < w. Since the subset A and the
sequence {I,}%2, were arbitrarily chosen, this means that G satisfies property
P. Every quotient of a finitely generated group is also finitely generated,
hence by Proposition 1 G also satisfies van Douwen’s theorem. [

THEOREM 2. Let G be a discrete Abelian group. Every subset A of G#
has a relatively discrete subset B, with |B| = |A|, such that B is C-embedded
in G* and C*-embedded in bG. '

Proof. In view of Proposition 1 it suffices to prove that every discrete
Abelian group G satisfies property P. In order to do this, consider I, and I_,
two closed disjoint intervals in T, both of them containing at least one n-rooth
of the unity for each n > 2.
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Given any subset C of A and any mapping ¢ : C — {1,—1} we define
N(¢,C)={xeG: x(c) € Iy forallce C }.
Now, we introduce a family X of subsets of A, as follows:
X={CCA: N(¢C)#0forall ¢ €{1,-1}}.

To show that the family X is not empty, take z € A and consider ¢ : B —
{1,-1}. If = has infinite order, then we can define x(z) € Iy(,) arbitrarily
and extend it to the subgroup generated by z. If o(z) = n, then we choose
t € Iy) such that t" = 1, and then it can be defined a homomorhism x of
<z> into T with x(z) = t. Since T is divisible, the resulting homomorphism
can be extended in both cases to a character of G ([5, A.14]). This character
belongs to N (¢, {z}). Therefore X is not an empty family.

The set X can be ordered in the following way: given B; and B, in X,
B; =% B, if and only if:

1. B; C B, and
2. (N(¢a B2))151 = (N(¢|B1’Bl))|81 for all ¢ € {1, _1}32'

Here, given a subset D of G and a subset Y of G , we denote by D|, the subset
{xiy : x € D}. |

The set X with the order introduced above is inductive. Indeed, assume
that {Cs : 6 € A} is a chain in X and define C = sep Cs. Given any
mapping ¢ : C' — {1, —1} it is easily verified that N (¢, C) = Nsea N (¢, > Cs)-
Hence to show that C belongs to X it is enough to show that the family
{N(¢c,,Cs) : 6 € A} has the finite intersection property. But this is clear
since for any finite sequence ¢; ... d,, the sets can be ordered such that Cj, <
... 2 Cs,and then N, N(i,,»Cs) = N(diq,, , Cs.) # 0. In order to check
that the set C is an upper bound of the chain, take § an arbitrary element of
A and any element x € N(4,,,B;). For every d € A define

P6 = {"/) EN(¢|06,CJ) : "nblcs =X|c<;}‘

Since {Cs : § € A} is a chain, it is easy to verify that the family of compact
sets {Ps}sca has the finite intersection property and an element 1 € Nsca Ps
can be chosen. Then ¢ € N(¢, C) and ¥),, = X|,,, showing that B; < C and
that C is an upper bound of the chain. Hence we may apply Zorn’s Lemma
to find a maximal set B in X for the order <.



ON ‘A THEOREM OF VAN DOUWEN 123

Suppose now that A < B >, then there must exist a € A\ < B >.
Consider B* = B|J{a}.

Take any mapping ¢ : B* = {1,—1} and let x € N(¢,,B). If <a>nN
< B >= {0}, then any function coinciding with x in < B> and mapping a into
I, can be extended to a homomorphism % of G into T. On the contrary, if
<a> N < B ># {0}, choose n such that na generates < a > N < B >.
Since Iy(q) contains one n-rooth of the unity, say t,, we can define a function
coinciding with x in < B> and mapping a onto ¢, and extend it to a homo-
morphism 1 of G into T. So, in either case, we obtain that ¢ € N(¢, B*) and
that ¢, = x|;. Thus, B* € X and B < B*. This goes against the maximality
of B and implies that A C< B >.

If B is infinite, it follows that |A| < | <B> | = |B|. Hence |A| = |B| and
the proof is done.

If B is finite, we may apply Proposition 2 to the group < B >. Since the
Bohr compactification of < B > is contained in bG and < B ># is C-embedded
in G* ([1, 6.3]) the result also follows. 1
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