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1. INTRODUCTION

Let m(T") denotes the space of all bounded functions on the ordinal I'. The
pointwise topology on m(I') is the topology of coordinate convergence in the
m(I'), we use U pointwisely open, F' pointwisely closed ... with respect to
this topology and we use U/ norm open, F norm closed ... with respect to the
norm topology on m(T).

Let mo(I") denotes the subspace of functions a(n) € m(I') that converge
to 0 for n approaching I', i.e. for each € > 0 there exists A < I" such that
|a(n)| < € for n > A . The space my(I') inherit both pointwise and norm
topologies from m(T).

We say that topologies blue and greenm on a space X are binormal if for
each pair of disjoint subsets F' and F of X, F blue closed, F green closed,
there are disjoint subsets G and G of X, G blue open, G green open, such that
FCG,Fcg (2,1, p.85]).

2. RESULT

THEOREM 2.1. Let X = m(T) forT > w or X = mo(T") for T > w. Then
the norm and the pointwise topologies on the space X are not binormal.

Proof. Set F = {a € X,a = (ar)rer,a0 = 0,ar € {0,1}}. We see that
F is pointwisely closed (for @« € X \ F we find a pointwisely open neigh-
borhood disjoint with F). Set F = {a € X,a = (a)rer,a0 = 1/n,a; =
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1 exactly for n naturall,a; = 0 elsewhere }. Obviously F' and F are dis-
joint. We claim:

CLAIM: F is norm closed.

Proof of Claim. Let a € X \ F, then

(i) if ar # 0,1 for I > 0 the situation is very simple, we find a norm
neighborhood of « disjoint with F;
(ii) if ag # 0,1/n similarly;

(iii) for ag = 0 we have two cases:

case (1): when a; = 1 for infinitely many indexes - the 1/2 norm neigh-
borhood of « is disjoint with F;

case (2): when a; = 1 for n indexes - the 1/2n norm neighborhood of « is
disjoint with F;

(iv) for ag = 1/n we have three cases:

case (1): when a; = 1 for infinitely many indexes - 1/2 norm neighbor-
hoodof « is disjoint with F;

case (2): when a; = 1 for n indexes - impossible for o € X \ F;

case (3): when a; = 1 for m # n indexes - |1/n — 1/m|/2 norm neighbor-
hood of « is disjoint with F.

The claim is proved. [

It remains to prove that each pointwisely open set U containing norm
closed set F meets each norm open set U containing pointwisely closed set F.

Let such U is given, we construct o, € F such that each norm neighbor-
hood U of o, meets U. We construct by induction:

(1) We take a; € F with the value 1 on the index set A; = {1}. In U
the point a; has a pointwise neighborhood U; controlling ’ones’ on the
index set A; and controlling ’zeroes’ on an index set B;.

(n) For n > 1 we take o, € F with exactly n values 1 on the index set
A, CN A, CA,, B,_1NA, =0. InU the point o, has a pointwise
neighborhood U, controlling ’ones’ on the index set A,, and controlling
‘zeroes’ on an index set B,, B,_; C B,,.

(w) We take o, € F with the value 1 exactly on the index set A, = J,,cy 4n-
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We see that any e-norm neighborhood U of o, meets the pointwise neigh-
borhood U, (for 1/n < €) in the point & = (1/n,... the rest like o, ...). It
means that U meets U. :

The theorem is proved. |
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