Norm and Pointwise Topologies Need not to be Binormal

PAVEL PYRIH *

Faculty of Mathematics and Physics, Charles University, Sokolovská 83, CZ - 186 75
Prague, Czech Republic

(Research paper presented by J.M.F. Castillo)

AMS Subject Class. (1991): 54A10, 26A34, 31C40

Received December 4, 1997

1. Introduction

Let $m(\Gamma)$ denotes the space of all bounded functions on the ordinal Γ . The pointwise topology on $m(\Gamma)$ is the topology of coordinate convergence in the $m(\Gamma)$, we use U pointwisely open, F pointwisely closed ... with respect to this topology and we use \mathcal{U} norm open, \mathcal{F} norm closed ... with respect to the norm topology on $m(\Gamma)$.

Let $m_0(\Gamma)$ denotes the subspace of functions $\alpha(n) \in m(\Gamma)$ that converge to 0 for n approaching Γ , i.e. for each $\varepsilon > 0$ there exists $\Lambda < \Gamma$ such that $|\alpha(n)| < \varepsilon$ for $n > \Lambda$. The space $m_0(\Gamma)$ inherit both pointwise and norm topologies from $m(\Gamma)$.

We say that topologies blue and green on a space X are binormal if for each pair of disjoint subsets F and \mathcal{F} of X, F blue closed, \mathcal{F} green closed, there are disjoint subsets G and \mathcal{G} of X, G blue open, \mathcal{G} green open, such that $\mathcal{F} \subset G$, $F \subset \mathcal{G}$ ([2], [1, p. 85]).

2. Result

THEOREM 2.1. Let $X = m(\Gamma)$ for $\Gamma \ge \omega$ or $X = m_0(\Gamma)$ for $\Gamma > \omega$. Then the norm and the pointwise topologies on the space X are not binormal.

Proof. Set $F = \{\alpha \in X, \alpha = (a_I)_{I \in \Gamma}, a_0 = 0, a_I \in \{0, 1\}\}$. We see that F is pointwisely closed (for $\alpha \in X \setminus F$ we find a pointwisely open neighborhood disjoint with F). Set $\mathcal{F} = \{\alpha \in X, \alpha = (a_I)_{I \in \Gamma}, a_0 = 1/n, a_I = 1/n\}$

^{*}Research supported by the grant No. GAUK 303-10/6196 of Charles University.

P. PYRIH

1 exactly for n natural $I, a_I = 0$ elsewhere $\}$. Obviously F and \mathcal{F} are disjoint. We claim:

CLAIM: \mathcal{F} is norm closed.

Proof of Claim. Let $\alpha \in X \setminus \mathcal{F}$, then

- (i) if $a_I \neq 0, 1$ for I > 0 the situation is very simple, we find a norm neighborhood of α disjoint with \mathcal{F} ;
- (ii) if $a_0 \neq 0, 1/n$ similarly;
- (iii) for $a_0 = 0$ we have two cases:
 - case (1): when $a_I = 1$ for infinitely many indexes the 1/2 norm neighborhood of α is disjoint with \mathcal{F} ;
 - case (2): when $a_I = 1$ for n indexes the 1/2n norm neighborhood of α is disjoint with \mathcal{F} ;
- (iv) for $a_0 = 1/n$ we have three cases:
 - case (1): when $a_I = 1$ for infinitely many indexes 1/2 norm neighborhood of α is disjoint with \mathcal{F} ;
 - case (2): when $a_I = 1$ for n indexes impossible for $\alpha \in X \setminus \mathcal{F}$;
 - case (3): when $a_I = 1$ for $m \neq n$ indexes |1/n 1/m|/2 norm neighborhood of α is disjoint with \mathcal{F} .

The claim is proved.

It remains to prove that each pointwisely open set U containing norm closed set \mathcal{F} meets each norm open set \mathcal{U} containing pointwisely closed set F.

Let such U is given, we construct $\alpha_{\omega} \in F$ such that each norm neighborhood \mathcal{U} of α_{ω} meets U. We construct by induction:

- (1) We take $\alpha_1 \in \mathcal{F}$ with the value 1 on the index set $A_1 = \{1\}$. In U the point α_1 has a pointwise neighborhood U_1 controlling 'ones' on the index set A_1 and controlling 'zeroes' on an index set B_1 .
- (n) For n > 1 we take $\alpha_n \in \mathcal{F}$ with exactly n values 1 on the index set $A_n \subset \mathbb{N}$, $A_{n-1} \subset A_n$, $B_{n-1} \cap A_n = \emptyset$. In U the point α_n has a pointwise neighborhood U_n controlling 'ones' on the index set A_n and controlling 'zeroes' on an index set B_n , $B_{n-1} \subset B_n$.
- (ω) We take $\alpha_{\omega} \in F$ with the value 1 exactly on the index set $A_{\omega} = \bigcup_{n \in \mathbb{N}} A_n$.

We see that any ε -norm neighborhood \mathcal{U} of α_{ω} meets the pointwise neighborhood U_n (for $1/n < \varepsilon$) in the point $\alpha = (1/n, \ldots$ the rest like $\alpha_{\omega} \ldots$). It means that U meets \mathcal{U} .

The theorem is proved.

REFERENCES

[1] LUKEŠ, J., MALÝ, J., ZAJÍČEK, L., "Fine Topology Methods in Real Analysis and Potential Theory", Lecture Notes in Mathematics 1189, Springer-Verlag, Berlin, 1986.

[2] Kelly, J.C., Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-89.