On Operators T such that Weyl's Theorem holds for f(T)

CHRISTOPH SCHMOEGER

Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany e-mail: christoph.schmoeger@math.uni-karlsruhe.de

(Research paper presented by M. González)

AMS Subject Class. (1991): 47A10, 47A35, 47A53

Received July 18, 1997

1. Introduction and notations

Throughout this paper let X be an infinite dimensional complex Banach space and let $\mathcal{L}(X)$ denote the Banach algebra of all bounded linear operators on X. For $T \in \mathcal{L}(X)$ let $\sigma(T)$ denote the spectrum of T. We denote by $\pi_{00}(T)$ the set of isolated points of $\sigma(T)$ which are eigenvalues of finite multiplicity. Let N(T) and T(X) denote the kernel and the range of T, respectively. An operator $T \in \mathcal{L}(X)$ is called Fredholm operator if dim N(T) and codim T(X) are finite. The index of a Fredholm operator T is defined by

$$\operatorname{ind}(T) = \dim N(T) - \operatorname{codim} T(X).$$

A Fredholm operator T with ind (T) = 0 is called a Weyl operator. The Weyl spectrum of $T \in \mathcal{L}(X)$ is defined to be

$$\sigma_W(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not a Weyl operator} \}$$

It is well known that $\sigma_W(T)$ is non empty and compact (see [1], [3], [9]). Following L.A. Coburn [3], we say that Weyl's theorem holds for $T \in \mathcal{L}(X)$ if

$$\sigma_W(T) = \sigma(T) \setminus \pi_{00}(T).$$

There are several classes of operators, including normal and hyponormal operators on a Hilbert space, for which Weyl's theorem holds (see e.g. [1], [3], [9]).

For an operator T in $\mathcal{L}(X)$ we will use the following notations:

$$\Phi(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is a Fredholm operator} \}$$

and

$$\mathcal{H}(T) = \{ f : \Delta(f) \to \mathbb{C} : \Delta(f) \text{ is open, } \Delta(f) \subseteq \sigma(T), f \text{ is holomorphic} \}.$$

For $f \in \mathcal{H}(T)$ the operator f(T) is defined by the well-known analytic calculus (see [5]).

In [11] we have introduced (in the more general context of Fredholm elements in Banach algebras) the following class:

$$\mathcal{W}(X) = \{ T \in \mathcal{L}(X) : \operatorname{ind}(T - \lambda I) \le 0 \text{ for all } \lambda \in \Phi(T)$$

$$or \operatorname{ind}(T - \lambda I) \ge 0 \text{ for all } \lambda \in \Phi(T) \}.$$

An operator $T \in \mathcal{L}(X)$ is called isoloid if isolated points of $\sigma(T)$ are eigenvalues of T.

The main result of this paper reads now as follows:

THEOREM 1. Let $T \in \mathcal{L}(X)$ be an isoloid operator and let Weyl's theorem hold for T. The following assertions are equivalent:

- (a) $T \in \mathcal{W}(X)$.
- (b) For each $f \in \mathcal{H}(T)$, Weyl's theorem holds for f(T).
- (c) For each polynomial p, Weyl's theorem holds for p(T).

The proof of Theorem 1 will be given in Section 3.

If X is a Hilbert space then $T \in \mathcal{L}(X)$ is called hyponormal if $T^*T \geq TT^*$. Let T be hyponormal. Then it is easy to see that $T - \lambda I$ is hyponormal for each $\lambda \in \mathbb{C}$ and that $\operatorname{ind}(T - \lambda I) \leq 0$ for each $\lambda \in \Phi(T)$. Thus each hyponormal operator belongs to $\mathcal{W}(X)$. We have already mentioned that Weyl's theorem holds for hyponormal operators. Furthermore, it is known that hyponormal operators are isoloid (see [12]).

The following corollary is therefore an immediate consequence of Theorem 1 (cf. [7, Theorem 2]).

COROLLARY 1. If T is hyponormal and $f \in \mathcal{H}(T)$ then Weyl's theorem holds for f(T).

Remark. Corollary 1 answers an old question of K.K. Oberai [10] (see also [8, Theorem 3.3]):

If T is hyponormal then does Weyl's theorem hold for T^2 ?

Example. If U is the unilateral shift on l_2 define $T: l_2 \oplus l_2 \to l_2 \oplus l_2$ by

$$T = \left(\begin{array}{cc} U + I & 0 \\ 0 & U^* - I \end{array}\right)$$

Then we have (see [8, Example 3.4])

$$\sigma(T) = \sigma_W(T)$$
 , $\pi_{00}(T) = \emptyset$,

T is isoloid, Weyl's theorem holds for T, $1 \notin \sigma_W(T^2)$, $1 \in \sigma(T^2)$ and $1 \notin \sigma_W(T^2) \cup \pi_{00}(T^2)$. Thus Weyl's theorem does not hold for T^2 .

2. The spectral mapping theorem for $\sigma_W(T)$

In this section we show that for $T \in \mathcal{L}(X)$ we have

$$f(\sigma_W(T)) = \sigma_W(f(T))$$
 for all $f \in \mathcal{H}(T) \iff T \in \mathcal{W}(X)$.

This characterisation will be used in Section 3 for the proof of Theorem 1.

The Weyl spectrum satisfies the one-way spectral mapping theorem ([4, Theorem 2]):

$$(1) f \in \mathcal{H}(T) \Longrightarrow \sigma_W(f(T)) \subseteq f(\sigma_W(T)).$$

The example 3.3 in [1] shows that this inclusion may be proper.

In [11] we have shown the following theorem in the more general context of Fredholm elements in Banach algebras. For the convenience of the reader we give a proof.

THEOREM 2. For $T \in \mathcal{L}(X)$ the following assertions are equivalent:

- (a) $T \in \mathcal{W}(X)$.
- (b) $\sigma_W(f(T)) = f(\sigma_W(T))$ for each $f \in \mathcal{H}(T)$.
- (c) $\sigma_W(p(T)) = p(\sigma_W(T))$ for each polynomial p.

For the proof of Theorem 2 we need the following proposition.

PROPOSITION 1. Let $T, S \in \mathcal{L}(X)$

(a) If T and S are Fredholm operators then TS is a Fredholm operator and

$$\operatorname{ind}(TS) = \operatorname{ind}(T) + \operatorname{ind}(S).$$

(b) If TS = ST then

TS is Fredholm \iff T and S are Fredholm.

Proof. (a) [5, Satz 71.3]. (b) [5, Problems 3 and 4 in §82]. ■

Proof of Theorem 2. (a) \Longrightarrow (b): Suppose that $f \in \mathcal{H}(T)$ and $\lambda \in \mathbb{C}$. Let $g(z) = f(z) - \lambda$.

Assume first that g is not identically 0 in any component of its domain containing $\sigma(T)$. Let c_1, \ldots, c_n denote the zeros of g in $\sigma(T)$, with multiplicities k_1, \ldots, k_n . Define p by $p(z) = \prod_{j=1}^n (z - c_j)^{k_j}$ and write g(z) = p(z)h(z), where $h \in \mathcal{H}(T)$ has no zeros in $\sigma(T)$. Then we have

$$q(T) = f(T) - \lambda I = p(T)h(T)$$
 with $h(T)$ invertible.

Now suppose that $\lambda \notin \sigma_W(f(T))$. Thus g(T) is a Weyl operator. Proposition 1 then gives

$$c_1, c_2, \ldots, c_n \in \Phi(T)$$

and

$$0 = \operatorname{ind}(g(T)) = \operatorname{ind}(p(T)) + \underbrace{\operatorname{ind}(h(T))}_{=0}$$
$$= \sum_{j=1}^{n} k_{j} \operatorname{ind}(T - c_{j}I) .$$

Since $T \in \mathcal{W}(X)$, we derive $\operatorname{ind}(T - c_j I) = 0$ for $j = 1, \ldots, n$, thus $c_j \notin \sigma_W(T)$ $(j = 1, \ldots, n)$ and therefore $\lambda \notin f(\sigma_W(T))$. Hence we have shown that $f(\sigma_W(T)) \subseteq \sigma_W(f(T))$. By (1) we get

$$f(\sigma_W(T)) = \sigma_W(f(T))$$
.

In the general case, g is defined on an open set $V = V_1 \cup V_2$ with V_1, V_2 open, $V_1 \cap V_2 = \emptyset$, $g \equiv 0$ on V_1 and g is not identically 0 in any component of V_2 . Thus $\sigma(T) = \sigma_1 \cup \sigma_2$ with σ_i compact and $\sigma_i \subseteq V_i$ (i = 1, 2). Let P be the spectral projection associated with σ_2 . Take $X_1 = N(P)$, $X_2 = P(X)$ and $T_i = T\big|_{X_i}$ for i = 1, 2. By [5, Theorem 100.1], we get $X = X_1 \oplus X_2$, $T_i(X_i) \subseteq X_i$ and $\sigma(T_i) = \sigma_i$ (i = 1, 2). Since $g \equiv 0$ on σ_1 , $g(T_1) = 0$, thus

$$(2) g(T) = 0 \oplus g(T_2)$$

and

$$g(T) = g(T)P = Pg(T) .$$

Further we have

P is a Weyl operator

$$\iff$$
 dim $X_1 < \infty$

(4) $\iff \sigma_1$ is finite and consists of eigenvalues of T of finite multiplicity

$$\iff \sigma_W(T) \cap V_1 = \emptyset .$$

Since $\operatorname{codim} P(X) = \dim N(P)$, we get from (2), (3), (4) and Proposition 1 that

g(T) is a Weyl operator $\iff P$ and $g(T_2)$ are Weyl operators.

Thus the previous arguments imply that

$$\lambda \in f(\sigma_W(T)) \iff \lambda \in \sigma_W(f(T))$$
.

(b) \Rightarrow (c) : Clear.

(c) \Rightarrow (a): Assume to the contrary that $T \notin \mathcal{W}(X)$. Then there are $\lambda_1, \lambda_2 \in \Phi(T)$ with

ind
$$(T - \lambda_1 I) > 0$$
 and ind $(T - \lambda_2 I) < 0$.

Put $k := \operatorname{ind} (T - \lambda_1 I)$ and $m := -\operatorname{ind} (T - \lambda_2 I)$.

Put $p(\lambda) := (\lambda - \lambda_1)^m (\lambda - \lambda_2)^k$. Proposition 1 gives that p(T) is a Fredholm operator with

$$ind (p(T)) = mk + k(-m) = 0,$$

thus $0 \notin \sigma_W(p(T))$. Since $\lambda_1 \in \sigma_W(T)$ we get $0 = p(\lambda_1) \in p(\sigma_W(T)) = \sigma_W(p(T))$, a contradiction.

Remark. If T is a hyponormal operator on a Hilbert space X, then $T \in \mathcal{W}(X)$ (see Section 1). Thus Theorem 2 is a generalisation of [7, Theorem 1].

THEOREM 3. Let $T \in \mathcal{L}(X)$. If $f \in \mathcal{H}(T)$ is injective on $\sigma_W(T)$ then

$$\sigma_W(f(T)) = f(\sigma_W(T)).$$

Proof. By (2), we only have to show that $f(\sigma_W(T)) \subseteq \sigma_W(f(T))$. Let $\mu_0 \in f(\sigma_W(T))$. Put $\lambda_0 \in \sigma_W(T)$ with $f(\lambda_0) = \mu_0$. Define $g \in \mathcal{H}(T)$ by

$$g(\lambda) = \begin{cases} \frac{f(\lambda) - f(\lambda_0)}{\lambda - \lambda_0}, & \text{for } \lambda \neq \lambda_0 \\ f'(\lambda_0), & \text{for } \lambda = \lambda_0 \end{cases} (\lambda \in \triangle(f)).$$

Since f is injective on $\sigma_W(T)$, g does not vanish on $\sigma_W(T)$ hence $0 \notin g(\sigma_W(T))$. Thus by (2), $0 \notin \sigma_W(g(T))$. This shows that g(T) is a Weyl operator. Since $g(T)(T-\lambda_0 I) = f(T) - \mu_0 I$ and $T-\lambda_0 I$ is not a Weyl operator, we derive from Proposition 1 that $f(T) - \mu_0 I$ is not a Weyl operator. Thus $\mu_0 \in \sigma_W(f(T))$.

3. The Proof of Theorem 1.

Before proving Theorem 1 we deal with some preliminary results.

PROPOSITION 2. Let $T \in \mathcal{L}(X)$ be isoloid. If $f \in \mathcal{H}(T)$ then

(5)
$$\sigma(f(T)) \setminus \pi_{00}(f(T)) = f(\sigma(T) \setminus \pi_{00}(T)).$$

Proof. The assertion is a modification of [10, Lemma 1 and Proposition 1], see also [7, (2.1)].

Let $T \in \mathcal{L}(X)$ be isoloid and let Weyl's theorem hold for T . It follows from (5) that

(6)
$$\sigma(f(T)) \setminus \pi_{00}(f(T)) = f(\sigma_W(T))$$

for each $f \in \mathcal{H}(T)$.

The next theorem is an immediate consequence of (6).

THEOREM 4. Let T be isoloid and suppose that Weyl's theorem holds for T. If $f \in \mathcal{H}(T)$ then

Weyl's theorem holds for $f(T) \iff \sigma_W(f(T)) = f(\sigma_W(T))$.

Theorem 3 and Theorem 4 have the following corollary.

COROLLARY 2. If $T \in \mathcal{L}(X)$ is isoloid and if Weyl's theorem holds for T, then Weyl's theorem holds for f(T) whenever $f \in \mathcal{H}(T)$ is injective on $\sigma_W(T)$.

The proof of Theorem 1 is now very short: use Theorem 2 and Theorem 4.

ACKNOWLEDGEMENTS

The author thanks the referee, whose suggestions led to an improvement of the paper.

REFERENCES

- [1] BERBERIAN, S.K., The Weyl spectrum of an operator, *Indiana Univ. Math.* J., 20 (1970), 529-544.
- [2] BONSALL, F.F. AND DUNCAN, J.J., "Complete Normed Algebras", Springer, 1973.
- [3] COBURN, L.A., Weyl's theorem for nonnormal operators, Michigan Math. J., 13 (1966), 285-288.
- [4] GRAMSCH, B. AND LAY, D., Spectral mapping theorems for essential spectra, *Math. Ann.*, **192** (1971), 17-32.
- [5] HEUSER, H., "Funktionalanalysis", 2nd ed., Teubner, 1986.
- [6] LEE, W.Y. AND LEE, H.Y., On Weyl's theorem, *Math. Japonica*, **39** (3) (1994), 545-548.
- [7] LEE, W.Y. AND LEE, S.H., A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J., 38 (1996), 61-64.
- [8] LEE, W.Y. AND LEE, S.H., On Weyl's theorem, II, *Math. Japonica*, **43** (3) (1996), 549-553.
- [9] OBERAI, K.K., On the Weyl spectrum, Illinois J. Math., 18 (1974), 208-212.
- [10] OBERAI, K.K., On the Weyl spectrum, II, Illinois J. Math., 21 (1977), 84-90.
- [11] SCHMOEGER, CH., Ascent, descent and the Atkinson region in Banach algebras, II, Ricerche Mat., Vol. XLII (1993), 249-264.
- [12] STAMPFLI, J.G., Hyponormal operators, Pacific J. Math., 12 (1962), 1453– 1458.