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1. INTRODUCTION AND NOTATIONS

Throughout this paper let X be an infinite dimensional complex Banach
space and let £(X) denote the Banach algebra of all bounded linear operators
on X. For T € L(X) let o(T) denote the spectrum of T'. We denote by moo(7T')
the set of isolated points of o(T") which are eigenvalues of finite multiplicity.
Let N(T) and T(X) denote the kernel and the range of T, respectively. An
operator T' € L(X) is called Fredholm operator if dim N(7T) and codim T'(X)
are finite. The index of a Fredholm operator T is defined by

ind (T) = dim N(T') — codim T'(X).
A Fredholm operator T' with ind (T') = 0 is called a Weyl operator.
The Weyl spectrum of T € £(X) is defined to be
ow(T)={A€C:T — Al isnota Weyl operator}

It is well known that ow (7") is non empty and compact (see [1], [3], [9]).
Following L.A. Coburn [3], we say that Weyl’s theorem holds for T' € L(X)
if
ow(T) = o(T) \ moo(T).
There are several classes of operators, including normal and hyponormal op-
erators on a Hilbert space, for which Weyl’s theorem holds (see e.g. [1], [3],

[9))-

For an operator T in £(X) we will use the following notations:

®(T) ={A € C:T — M is a Fredholm operator}
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and
H(T) ={f: A(f) = C: A(f) is open, A(f) C o(T), f is holomorphic}.

For f € H(T) the operator f(T) is defined by the well-known analytic calculus
(see [5]).

In [11] we have introduced (in the more general context of Fredholm ele-
ments in Banach algebras) the following class:

W(X)={T € £L(X): ind(T— ) <0 forall A € &(T)
or ind(T—A)>0 forall A€ &(T)}.

An operator T € L(X) is called isoloid if isolated points of o (T') are eigenvalues
of T.
The main result of this paper reads now as follows:

THEOREM 1. Let T € L(X) be an isoloid operator and let Weyl’s theorem
hold for T'. The following assertions are equivalent:

(a) T € W(X).
(b) For each f € H(T), Weyl’s theorem holds for f(T).
(c) For each polynomial p, Weyl’s theorem holds for p(T).

The proof of Theorem 1 will be given in Section 3.

If X is a Hilbert space then T' € £(X) is called hyponormal if T*T > TT*.
Let T be hyponormal. Then it is easy to see that T'— Al is hyponormal for each
A € C and that ind (T'— AI) <0 for each A € ®(T'). Thus each hyponormal
operator belongs to W(X). We have already mentioned that Wey!’s theorem
holds for hyponormal operators. Furthermore, it is known that hyponormal
operators are isoloid (see [12]).

The following corollary is therefore an immediate consequence of Theorem
1 (cf. [7, Theorem 2]).

COROLLARY 1. If T is hyponormal and f € H(T) then Weyl’s theorem
holds for f(T).

Remark. Corollary 1 answers an old question of K.K. Oberai [10] (see also
(8, Theorem 3.3)):

If T is hyponormal then does Weyl’s theorem hold for 7% ?
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EXAMPLE. If U is the unilateral shift on [, define T : I, ® 1l — I, &[5 by

T= ( U(JJFI U*O—I )
Then we have (see [8, Example 3.4])
o(T)=ow(T), m(T)=0,
T is isoloid, Weyl’s theorem holds for T, 1 ¢ ow(T?), 1 € o(T?) and
1 ¢ ow(T?) Umgo(T?). Thus Weyl’s theorem does not hold for T2.

2. THE SPECTRAL MAPPING THEOREM FOR o (T

In this section we show that for T' € £L(X) we have
flow(T)) = ow (F(T)) for all f € H(T) <= T € W(X).

This characterisation will be used in Section 3 for the proof of Theorem 1.
The Weyl spectrum satisfies the one-way spectral mapping theorem ([4,
Theorem 2)):

(1) f e H(T) = ow(f(T)) € f(ow(T)).

The example 3.3 in [1] shows that this inclusion may be proper.

In [11] we have shown the following theorem in the more general context
of Fredholm elements in Banach algebras. For the convenience of the reader
we give a proof.

THEOREM 2. For T € L(X) the following assertions are equivalent:

(a) T € W(X).

(b) ow(f(T)) = f(ow(T)) for each f € H(T).

(¢) ow(p(T)) = p(ow(T)) for each polynomial p.
For the proof of Theorem 2 we need the following proposition.
PropPOSITION 1. Let T, S € L(X)

(a) If T and S are Fredholm operators then T'S is a Fredholm operator and

ind (TS) = ind (T) + ind ().
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(b) If TS = ST then
TS is Fredholm <= T and S are Fredholm.

Proof. (a) [5, Satz 71.3]. (b) [5, Problems 3 and 4 in §82]. N

Proof of Theorem 2. (a) = (b): Suppose that f € H(T) and X € C. Let

9(z) = f(2) = A
Assume first that g is not identically 0 in any component of its domain
containing o(T'). Let cy,... ,c, denote the zeros of g in o(T'), with multiplic-

ities k1, ... ,kn. Define p by p(z) = II}_, (z — ¢;)* and write g(z) = p(2)h(2),
where h € H(T') has no zeros in ¢(T"). Then we have

9(T) = f(T) — M\ = p(T)h(T) with h(T) invertible.

Now suppose that A ¢ ow (f(T)). Thus g(T') is a Weyl operator. Proposition
1 then gives '
C1,C2y ... yCn € ®(T)

and

0 = ind(g(T)) = ind(p(T)) + ind(A(T))
=0

= > k;ind(T — ¢;I) .
j=1

Since T' € W(X), we derive ind(T — ¢;I) = 0 for j = 1,... ,n, thus ¢; ¢
ow(T) (j = 1,...,n) and therefore A ¢ f(ow(T)). Hence we have shown
that f(ow(T)) C ow(f(T)). By (1) we get

flow(T)) = ow (f(T)) .

In the general case, g is defined on an open set V = V; UV, with Vi, V; open,
ViNnV, =0, g = 0on V; and g is not identically 0 in any component of V;. Thus
o(T) = 0, Uoy with o; compact and o; CV; (1 = 1,2). Let P be the spectral
projection associated with o,. Take X; = N(P), X, = P(X) and T; = Tlx.-
for i = 1,2. By [5, Theorem 100.1], we get X = X; & X,, T;(X;) C X, and
o(T;) =0; (i =1,2). Since g =0 on 0;, g(Ty) =0, thus

(2) 9(T) = 0@ g(T3)
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and

3) 9(T) = g(T)P = Pg(T) .
Further we have

P is a Weyl! operator
<— dimX; < o
<= o0, is finite and consists of eigenvalues of T’
of finite multiplicity
= ow(T)NVi=0.
Since codim P(X) = dim N(P), we get from (2), (3), (4) and Proposition
1 that

9(T) is a Weyl operator <= P and ¢(T5) are Weyl operators.
Thus the previous arguments imply that
A€ flow(T)) <= A€ ow(f(T)) .

(b) = (c) : Clear.
(c) = (a) : Assume to the contrary that 7' ¢ W(X). Then there are A\;, A, €
&(T) with

ind (T — A\ J) > 0 and ind (T — A\I) < 0.
Put k :=ind (T — A1) and m := —ind (T — X, 1).
Put p(A) := (A = A1)™(X — \)*. Proposition 1 gives that p(T) is a Fredholm
operator with k

ind (p(T)) = mk + k(—m) =0,

thus 0 ¢ ow(p(T)). Since A\; € ow(T) we get 0 = p(A;) € plow(T)) =
ow (p(T)), a contradiction. |

Remark. If T is a hyponormal operator on a Hilbert space X, then T €
W(X) (see Section 1). Thus Theorem 2 is a generalisation of [7, Theorem 1].

THEOREM 3. Let T € L(X). If f € H(T) is injective on ow (T) then
ow (f(T)) = f(ow(T)).
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Proof. By (2), we only have to show that f(ow(T)) C ow(f(T)). Let
wo € flow(T)). Put Ao € ow(T') with f(Xo) = uo. Define g € H(T') by
f )‘))\ — §§A0)’ for A # Ao
900 = (A€ A()).
fl()‘O)’ for A =X

Since f is injective on ow (T'), g does not vanish on ow (T") hence 0 ¢ g(ow (T)).
Thus by (2), 0 ¢ ow(g(T)). This shows that g(T) is a Weyl operator. Since
9(TYT —XoI) = f(T)—pol and T— X1 is not a Weyl operator, we derive from
Proposition 1 that f(T) — ol is not a Weyl operator. Thus po € ow (f(T)).
] ,

3. THE PROOF OF THEOREM 1.
Before proving Theorem 1 we deal with some preliminary results.
PROPOSITION 2. Let T € L(X) be isoloid. If f € H(T') then
(5) a(f(T) \ moo(F(T)) = f(o(T) \ 700 (T))-

Proof. The assertion is a modification of [10, Lemma 1 and Proposition
1], see also [7, (2.1)]. 1

Let T € L(X) be isoloid and let Wey!l’s theorem hold for 7' . It follows
from (5) that

(6) o(f(T)) \ 7o (f(T)) = flow(T))

for each f € H(T).
The next theorem is an immediate consequence of (6).

THEOREM 4. Let T be isoloid and suppose that Weyl’s theorem holds for
T. If f € H(T) then

Weyl’s theorem holds for f(T) <= ow (f(T)) = f(ow(T)).

Theorem 3 and Theorem 4 have the following corollary.

COROLLARY 2. If T € L(X) is isoloid and if Weyl’s theorem holds for T,
then Weyl’s theorem holds for f(T') whenever f € H(T) is injective on ow (T).



WEYL’S THEOREM 33

The proof of Theorem 1 is now very short: use Theorem 2 and Theorem 4.
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