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1. SOME REMARKS ON REGULARIZATION OF KEPLERIAN SYSTEMS

The process of transforming singular differential equations into regular
ones is known as regularization. We are specially concerned with the treat-
ment of certain systems of differential equations arising in Analytical Dy-
namics, in such a way that, accordingly, the regularized equations of motion
will be free of singularities. On the other hand, in any case one must dis-
tinguish between singularities of a differential equation and singularities of
its solutions, bearing in mind the feature that singularities of a differential
equation do not necessarily entail singularities of the solutions. Thus, regu-
larity of differential equations is more important than the regularity of their
solutions. Consequently the purpose of regularization is not to obtain reg-
ular functions (in particular, solutions to differential equations) but regular
differential equations. In addition to this, from the viewpoint of Numerical
Analysis of differential problems, regularized equations usually allow one to
employ a larger step—size during the numerical integration.

In the special case of the pure Kepler problem (that is, the two—body
problem in the absence of any perturbation), the classical equations of mo-
tion derived from Newton’s laws are nonlinear and unstable in the sense of
Ljapunov. Unlike the case of Newtonian equations, the harmonic oscillator is
stable (say, every solution of the regularized differential equations is stable.)
Moreover, by application of certain transformations introducing redundant
variables (see below), the spatial Kepler problem is equivalent to a linear and
stable differential system corresponding to four harmonic oscillators.
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Many regularization methods do not lead to linear differential equations.
In our turn, we take our cue from certain classical, analytical treatments as
usually applied to the stationary two—body problem, namely: on the stage of
extended—phase—space Hamiltonian Mechanics (Stiefel & Scheifele 1971, §30),
one often considers regularization by the method of linearization in combining
(weakly) canonical transformations to sets of redundant dependent variables
and reparametrizations of motion in terms of other independent variables
instead of physical time (Stiefel & Scheifele 1971, §34 and §37), so as to
create second—order linear differential equations of motion (with constant co-
efficients) for the spatial-like variables. Thus, the physical time is taken as
an additional coordinate of the moving mass, and is dealt with on an equal
footing as the other geometrical position coordinates.

To this end, one considers the framework of Linear and Regular Celes-
tial Mechanics to bring the equations of motion governing Keplerian systems
into linear form by giving them the form corresponding to a 4-dimensional
harmonic oscillator. A well-known reference for the subject of linearization
of gravitational systems is the book by Stiefel & Scheifele (1971). Recently,
Deprit et al. (1994) have systematized and clarified the approach to the ana-
lytical treatment of linearizing transformations and put the question in a more
rigorous mathematical context.

In this respect, the application of sets of redundant variables should not
be contemplated as a handicap. As stated in Stiefel & Scheifele (1971, §16, p.
76),

“in the age of high speed automatic computation the number of
differential equations is not as important as the stability and the
numerical behaviour of the differential equations at hand. The
attempt to reduce the number of differential equations may lead to
instability, whereas redundant equations are often well behaved.”

Burdet (1969) considered the linearization of the Kepler problem in focal
variables. The focal method was developed in terms of four coordinates (the
direction cosines of the position vector and the inverse of the distance), the
independent variable being proportional to the true anomaly. These coordi-
nates can be interpreted as homogeneous Cartesian coordinates in a projective
space, and were made canonical by Ferrdndiz, in completing the coordinates
with the respective conjugate momenta (Ferrdndiz 1988 and 1991, and refer-
ences therein; Deprit et al. 1994, §84.4), so as to obtain a set of eight redun-
dant variables of focal type, the so—called BF variables, in terms of which the
final equations of motion are similar to those proposed by Burdet. To sum up:
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the BF wvariables reduce the pure, stationary Kepler problem to four uncoupled
and unperturbed harmonic oscillators.

Operating on the extended phase space, in the present paper we intend to
investigate the analytical behaviour of an enlarged BF-type mapping when
applied to a certain perturbed two—body problem with a time-dependent Ke-
plerian parameter u(t). To be more precise, we study the regularization of
the equations of motion issued from the Hamiltonian of a perturbed Gylden
system under the effect of a time-dependent Maneff-like disturbing function
(see Sections 2 and 3 below). An appropriate combination of transformations,
both of the dependent and independent variables, along with the introduc-
tion of first-integrals and (geometrical and dynamical) constraints into the
equations, will allow us to regularize the second—-order differential equations
of motion obtained from the first-order canonical system generated by the
said Hamiltonian.

For this purpose, we take advantage of a slight modification of the ap-
proach due to Ferrdndiz & Ferndndez-Ferreirds (1991): our version of the
BF-mapping includes time ¢, and we will follow their focal method canonical
treatment. If Burdet—Ferrandiz focal-type variables are used, and a true-like
anomaly is adopted as the new independent variable, we arrive at regularized
equations of motion resembling those of the harmonic oscillator type.

2. ON THE MANEFF PERTURBING POTENTIAL

During the last years, several authors (Diacu 1993, 1996; Mioc & Stoica
1995) have devoted some attention to diverse aspects concerning Keplerian—
like dynamical systems under the perturbation effects due to the Maneff po-
tential (Maneff 1930, Bertrand 1921).

Within the framework of Classical Analytical Mechanics, the Maneff model
of gravitational potential constitutes a nonrelativistic modification of New-
ton’s gravitational law which can be successfully used to accurately account
for the motion of the apse line (say, the secular motion of the pericentre) of
some celestial bodies, at least in the Solar System (e. g. the advance of the
perihelion of the inner planets, or the motion of the perigee of the Moon).
Precedents in the use of this kind of gravitational model in the study of or-
bital motion under conservative central force laws can even be traced back to
Newton’s Principia, while investigating the precession of the Moon’s perigee.
Some considerations on the first treatments of the apsidal precession problem
are found in the recent contribution by Valluri, Wilson and Harper (1997).
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Newton’s treatment concerning the apsidal motion of the lunar orbit and
Clairaut’s analysis of the same problem are also examined by Aoki (1992).

On the other hand, considered as related to a Coulombic law of force, the
Maneff model can also be applied in Atomic Physics. Nevertheless, in the
present paper we shall leave the three-body problem aside, and will restrict
ourselves to dealing with the macroscopic two-body problem as contemplated
in Classical Celestial Mechanics.

Mioc & Stoica (1995) have discussed regularization of the equations of rela-
tive motion of a stationary Kepler problem perturbed by the Maneff potential.
After formulation in plane polar coordinates, in their study they have followed
and extended Mangad’s (1967) approach to regularization of the pure Kepler
problem by means of regularizing transformations of the independent vari-
able, and then they have analytically solved the regularized equations of the
system for different choices of initial conditions. In most cases, their solutions
to the said regularized equations of motion still retain the original singularity.
As a final comment on this treatment, let us add that the associated energy
integral plays a central role in these articles. On the contrary, no use is made
of the first—integral of the angular momentum.

For the sake of definiteness, let us state that we concentrate on the so-
called Gylden systems, that is, two—body problems with a time-varying Ke-
plerian parameter u(t) (see, e.g. Deprit 1983). On such systems, we su-
perimpose time—dependent perturbing effects emanating from a Maneff-type
nonrelativistic gravitational potential, and we study the derivation of regu-
larized equations of motion for the resulting dynamical system formulated in
homogeneous canonical formalism, although linearization cannot be assured.
Our considerations and results, which are independent of the energy of the
system, are uniformly valid for any type of two-body orbit.

As presented here, our treatment of the problem has some theoretical sig-
nificance in itself. Possible future applications might be found in the study of
the dynamics of close binary systems and other questions in Stellar Dynam-
ics. In particular, we have in mind a simplified model for the investigation
of orbital motion in the plane of the equator of the primary under certain
assumptions on variability of x4 .

3. HAMILTONIAN FORMULATION OF THE MODEL

From the outset, we coordinatize an extended, 8—dimensional phase space
by the enlarged canonicalset (r, 8, v,t; R, ©, N, T) of the Hill-Whittaker
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polar nodal variables, where r is the modulus of the two—body relative position
vector, 0 expresses the argument of latitude of the moving mass, and v denotes
the argument of longitude of the ascending node; the canonical momentum R
represents the radial velocity of the orbiting mass, © designates the magni-
tude of the total angular momentum vector of the system, and N is the polar
component of the said angular momentum. Finally, ¢ stands for the physical
time and the momentum 7T (canonically conjugate to t) is the negative of the
total energy of the system. Notice that, in homogeneous canonical formalism,
time ¢ is introduced as an additional canonical coordinate. At a later stage
(Section 5, below), extended phase-space formulation will facilitate the intro-
duction of new independent variables other than f. Further particulars can
be found in Stiefel & Scheifele (1971), Chapter VIII (specially, §30 and §34),
and Chapter X, §37.

We shall deal with a perturbation formulated in these variables: the per-
turbing part will be proportional to the second power of the inverse of the
distance r, the coefficient being some sufficiently regular function of time.

In homogeneous canonical formulation, we consider a perturbed Gylden
system governed by the Hamiltonian

Hh = Hh (7'7 ) _at;Ra @a —aT;E) = HO - 2—j~2—/.112(t) +Ta (1)
_ . _ 1 2 o? u(t)
HO = HO (Tv [,l,(t),R,@) - 5 [R + ’7'2] —7‘_, (2)

where H, designates the Hamiltonian of a standard Gylden system (Deprit
1983), and u(t) stands for the time-dependent Keplerian parameter, under-
standing also that € = 3/C? is a measure of smallness, introduced to separate
the small terms according to their relative size. Here C' denotes the speed of
light.

According to some previous knowledge on exact BF-linearization of this
type of perturbation in the conservative case (Burdet 1969; Ferrindiz &
Ferndndez—Ferreirds 1991), the equations of motion for the stationary problem
can be exactly reduced to a set of second-order linear differential equations
with constant coefficients corresponding to four harmonic oscillations.

In extended Cartesian variables (X, X, Py, P), Hamiltonian (1) is ex-
pressed as

p(Xo) __&

1
HEH(XO’XaPmP)= §“P||2—_—_

; 272 p*(Xo) + Po, (3)
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where X = (X, X5, X3) denotes the position vector of the particle, 7 = || X ||
is the radial distance, and the vector P = (P, P, P3) contains the respective
conjugate momenta. To this set we have appended the pair of canonically
conjugate variables (Xo = ¢, P, = T'). As well known, the magnitude © of the
angular momentum will be given through the relation

0= || X x P|P?, (4)

where x stands for the usual cross product in space R3.
Notice that, in the present time-dependent case, the dynamical systems
under consideration still possesses the first—integral of the angular momentum.

4. A BF-TYPE TRANSFORMATION IN EXTENDED PHASE SPACE

In what follows we shall deal with a transformation of the dependent vari-
ables (that increases the dimension by two) and a regularizing change of the
time parameter, and their effect on Hamiltonian (3) and the corresponding
canonical equations of motion.

Inspired in Ferrdndiz & Ferndndez—Ferreirés (1991), we perform a modified
BF transformation (see also Deprit et al. 1994, §§4.4). The mapping is weakly
canonical (Deprit et al., 1994), increases the number of variables by two, and
introduces the set (IBO, w’$4ip0ap,p4) = (mO’ T1, T2, $3am4)p0aplap2)p3,p4) by
means of the equations:

Ty T4 .
Xi= 22 P=pimg— oz — =1,2,3
i T4 PiZy — T ”$"2 {(m |p) +$4p4} y 1499

Xo =1%o, Po=po,
where it is obvious that, for convenience in writing, we have employed the ab-
breviations ¢ = (21, z3,23), P = (p1,P2,P3), and (-.| -) denotes the standard,
Euclidean inner product in a real vector space R".

Hence, taking into account the following relations for the Euclidean norms
of vectors X and P,

IX)* =r* = ||=|*z7?,

P

2 —
Zp zi +zizi (z | p)” ||~ + 2izipille]

+ 2l|a:||‘2 [z2z3ps (z | p) || 7% — zipiz} (z | P) — zipizipa)
= |lplI*z} + zipillz|| 2 — 22 (z | p)* ||| 2
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after application of this transformation, the homogeneous Hamiltonian (3) is
converted into the function

4,2 2 4
= glolat+ gt~ 5 S o)
- Hﬁlzgﬂz(wo) +po, (5)
while
0’ = |lz|’|lp|* - (= | p)* = . (6)

5. REPARAMETRIZATION OF MOTION AND CANONICAL EQUATIONS

Thanks to the extended phase-space formulation, we make a change of
time parameter, from t to a new fictitious time s, by reparametrizing with the
help of a generalized Sundman transformation, the new independent variable
(proportional to a true-like anomaly) being defined by

t—ss: dtfds=f =|=z|*/2z? =r2. (7)

Bearing in mind the above relation (6), the new homogeneous Hamiltonian,
with the regularizing pseudo-time s as the independent variable, will adopt
the form

sy L1y 14, lzll € , [Edls
K=%Hf= e+ opim; — p (20) o ot (zo) + 2 P (8)

Next, as in Ferrdndiz & Fernidndez—Ferreirés 1991, pp. 5-6, use will be

made of the first-integrals and constraints

lz|* =1, (x|p)+zsps=0. (9)

The canonical equations of motion derived from X, namely

, _ dza 0K, _dp. _ OK

To = 4y T ope’ PeTds T oz,

can be written in the form

a=0,...,4, (10

TR " 2
Lo =Ty Ty = PaZy,
’ .
zi=pi_(w|p)$ia ’L=l,2,3,
'

Py = (du (z0) /dzo) [z3' +epu(mo)] ,  Ph = —p) 74 — p (o) 3 + 2pozy®,
p; = — Ipll* z: + (z | P) pi + 1 (z0) Tzl ' — 2pozizy” .
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6. SECOND—ORDER EQUATIONS FOR SPATIAL-LIKE VARIABLES

Finally, by forming the s—derivatives of the first five equations for the z/,
and taking into account the expressions for the p!, and the above notations
and constraints, we obtain a set of second—order differential equations for the
Tyt
:L‘:)I = _2"1’{1‘1"1 3a
z; +cz; =0, i=1,2,3 (three uncoupled harmonic oscillators),

T, + xy = p (o) + ep? (o) T4 .

Notice that these equations for the position-like variables are regular, their
form resembling that of harmonic equations. In particular, for a pure Gylden
system (say, € = 0) the equations of motion read

:z;',-' +c?z; =0, i=1,2,3 (three uncoupled harmonic oscillators),
T, + xy = p(x0) -

Consideration of solutious to the above equations under various special
laws of variation for p(t) and other developments will be communicated in a
future paper.
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