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INTRODUCTION

These lectures will focus on those properties of maximal monotone oper-
ators which are valid in arbitrary real Banach spaces. Most applications (to
nonlinear partial differential equations, optimization, calculus of variations,
etc.) take place in reflexive spaces, in part because several key properties
have only been shown to hold in such spaces. (See, for instance, [6], [17] and
[28].) We will generally isolate the reflexivity hypothesis, hoping that by doing
so0, it will eventually be possible to decide their validity without that hypoth-
esis. In Section 1 we define maximal monotone operators and prove some of
their main elementary properties. Section 2 is devoted to the prototypical
class of subdifferentials of convex functions. Gossez’s subclass of monotone
operators of type (D) is examined in Section 3 and Section 4 gives a brief
treatment of another subclass, the locally maximal monotone operators. We
have attempted to keep the exposition self-contained, using only standard
tools of elementary functional analysis. One exception is the application of
the Brouwer fixed—point theorem in the proof of the Debrunner—Flor theorem
(Lemma 1.7).

1. MONOTONE OPERATORS

DEFINITION 1.1. A set-valued map T from a Banach space E into the
subsets of its dual F* is said to be a monotone operator provided

(z*—y",z—y) >0 Vz,y€ FE and z* € T(z), y* € T(y).

*Lectures given at Prague/Paseky Summer School, Czech Republic, August 15-28, 1993.
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We do not require that T'(z) be nonempty. The domain (or effective domain)
of T is the set D(T') = {z € E: T(z) # 0}.

ExXAMPLSE 1.2. (a) The simplest examples of such operators are linear
and single-valued. For instance, if H is a real Hilbert space and T: H —
H* = H is a linear map, then T' is monotone if and only if it is, in the usual
sense, a positive operator: (T'(z),z) > 0 for all z.

(b) Let D be a nonempty subset of the real numbers R. A function
¢: D — R* = R defines a monotone operator if and only if ¢ is monotone
nondecreasing in the usual sense: That is,

[QD(tz) —(,D(tl)](tg _tl) 2 0 th,tz eD iff (,D(tl) S (,D(tz) whenever 1 < is.

(c) Examples of set—valued monotone functions from R to subsets of R are
easy to exhibit: For instance, let p(z) =0ifz <0, p(z) =1 if z > 0 and let
©(0) be any subset of [0, 1].

(d) Here is an important single—valued but nonlinear example: Let f be
a continuous real-valued function on E which is Gateaux differentiable (that
is, for each z € F the limit

i (z)(y) = lim flz+ty) - f(=)

t—0 t ?

yeE

exists and is a bounded linear functional of y). Such a function f is convex
if and only if the mapping z — df (z) is monotone. Indeed, suppose that f is
convex; then for 0 < ¢t < 1, convexity implies that

flz+t(y —;fL‘)) - f(=z) < (1= f(=z) ‘i‘tt.f(y) — f(=) = f(y) — f(=).

It follows that df (z)(y — z) < f(y) — f(z), for any z,y € E. Thus, ifz,y € E
and z* = df (z), y* = df (y), then

(z*,y —z) < f(y) — f(z) and — (¥*,y —z) = (y",z —y) < f(z) — f(y);

now add these two inequalities. A proof of the converse may be found in [18,
p.17] .

(e) The next example arises in fixed-point theory. Let C' be a bounded
closed convex nonempty subset of Hilbert space H and let U be a (generally
nonlinear) nonexpansive map of C into itself: |U(z)—U(y)|| < ||z —y|| for all
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z,y € C. Let I denote the identity map in H; then T'= I — U is monotone,
with D(T") = C. Indeed, for all z, y € C,

(T(z) —T(y),z—y)=(z—y— (U(z) —U(y)),z —y)
=llz—yl> = (U(z) - U(y),z — )
>llz—yl* = U@=) -UWI - llz -yl >0.

Note that 0 is in the range of T if and only if U has a fixed point in C; this
hints at the importance for applications of studying the ranges of monotone
operators.

(f) Again, in Hilbert space, let C be a nonempty closed convex set and let
P be the metric projection of H onto C; that is, P(z) is the unique element
of C which satisfies ||z — P(z)|| = inf{||z — y||: y € C}. We first prove the
fundamental fact that the mapping P satisfies (in fact, it is characterized by)
the following variational inequality: For all z € H, '

(zx — P(z),z— P(z)) <0 forallzeC. (1.1)

Indeed, if z € C and 0 < t < 1, then 2z, = tz + (1 — t)P(z) € C and hence
lz — P(z)|| < ||z — 2| = |[(z — P(z)) — t(z — P(z))||. Squaring both sides
of this inequality, expanding and then cancelling ||z — P(z)||?> on both sides
yields

0 < —2t(z — P(z),z — P(z)) + t*||z — P(z)|*.

If we then divide by ¢ and take the limit as ¢ — 0 we obtain (1.1). Moreover,
if y € H and we write down (1.1) again, using y in place of z, then take
z = P(y) in the first equation, z = P(z) in the second one and add the two,
we obtain

(z -y, P(z) — P(y)) 2 ||P(z) - P()|* forallz,y € H,  (12)

which shows that P is in monotone in a very strong sense. Note that P is an
example of a nonexpansive mapping in the sense of the previous example: We
always have the inequality (z — y, P(z) — P(y)) < ||z —y|| - ||P(z) — P(v)||, so
combined with the monotonicity inequality above, we have |P(z) — P(y)|| <
llz — y|| for all z,y € H.

(g) Here is a fundamental example of a set—valued monotone mapping, the
duality mapping from E into 2€°. For any = € E define

J(z) = {z" € B*: (z",z) = ||z - l|=[| and [|<*|| = [|]|}.
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By the Hahn-Banach theorem, J(z) is nonempty for each z, so D(J) = E.
Suppose that z* € J(z) and y* € J(y). Then

(¥ —y* z—y) = [l*]]> — (=", y) — (" z) + lly"||?
> llz*1* = llz* || - lyll = ™1l - llll + ly* )12
= [lz*|I> — 2llz*|| - ly*Il + lly* 11> = (lz* ]| = ly*1)?,

so this is also monotone in a rather strong sense.

In order to define maximal monotone operators we must consider their
graphs.

DEFINITION 1.3. A subset G of E x E* is said to be monotone provided
(z* — y*,z —y) > 0 whenever (z,z*), (y,y*) € G. A set—valued mapping
T: E — 2F" is a monotone operator if and only if its graph

GT)={(z,z") e ExX E*: z* € T(z)}

is a monotone set. A monotone set is said to be maximal monotone if it is
maximal in the family of monotone subsets of E x E*, ordered by inclusion.
An element (z,2*) € E x E* is said to be monotonically related to the subset
G provided

(z* —y*,z—y) >0 forall (y,¥*) € G.

We say that a monotone operator T is maximal monotone provided its graph
is a maximal monotone set.

The most frequently used form of the definition of maximality of T is the
following condition: Whenever (z,z*) € E x E* is monotonically related to
G(T), then z € D(T') and z* € T(x).

There is an obvious one-to-one correspondence between monotone sets and
monotone operators. An easy application of Zorn’s lemma shows that every
monotone operator T can be extended to a maximal monotone operator T, in
the sense that G(T) C G(T).

DEFINITION 1.4. If T: E — 2F" is a monotone operator, its inverse 7!
is the set valued mapping from E* to 2% defined by T7'(z*) = {z € E: z* €
T(z)}. Obviously,

G(T ') ={(z*,z) € E* x E: z* € T(z)},

which is (within a permutation) the same as the monotone set G(T'). In par-
ticular,then, 7! is maximal monotone if and only if T is maximal monotone.
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ExAMPLSE 1.5. (a) The monotone mapping ¢ defined in Example 1.2
(c) is maximal if and only if ¢(0) = [0,1]. More generally, it is easily seen
that a monotone nondecreasing function ¢ on R is maximal monotone if and
only if p(z) = [p(z7),(z*)] for each z € R (where, for instance, p(z~) =
limy - p(t)).

(b) Any positive linear operator T" on Hilbert space is maximal monotone.
Indeed, suppose (z,z*) € H x H is monotonically related to G(T"). Then, for
any z € H and A > 0 we have

0<(T(xx£Az) —z*,(z £ A2) —z) = £X(T(z) £ A\T'(2) — z*, 2)
= +NT(z) — z*, 2) + \(T(2), 2).

Dividing by A and then letting A — 0 shows that (T'(z) — z*,z) = 0 for all
z € H, hence that z* = T'(z).

EXERCISE 1.6. Prove that if T' is maximal monotone, then T'(z) is a con-
vex set, for every z € E.

A major goal of these lectures is to examine the consequences of maximal
monotonicity with regards to questions of convexity of D(T) and R(T) (or
convexity of their interiors or closures). Other basic questions involve condi-
tions under which D(T) = E or R(T') = E*, or whether these sets might be
dense in E or E*, respectively.

Perhaps the most fundamental result concerning monotone operators is
the extension theorem of Debrunner-Flor [5]. An easy consequence of the
following version of their theorem states that if 7" is maximal monotone and
if its range is contained in a weak* compact convex set C, then D(T) = E.
(Given zo € E, let ¢ (below) be the constant mapping ¢(z*) = =z, for all
z* € C, by the lemma, there exists z§ € C such that {(zo,z3)} U G(T) is
monotone; by maximality, z, € D(T).)

LEMMA 1.7. (Debrunner-Flor) Suppose that C is a weak* compact con-
vex subset of E*, that ¢: C — F is weak* to norm continuous and that M C
E x C is a monotone set. Then there exists z§ € C such that {(¢(z3),z5) UM
is a monotone set.

Proof. For each element (y,y*) € M let

Uly,y") ={z" € C: (z" —y", ¢(z") —y) < 0}
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Since z* — (z* — y*, ¢(z*) — y) is weak* continuous on the bounded set C,
each of these sets is relatively weak* open. If the conclusion of the lemma
fails, then C = U{U(y,y*): (y,y*) € M}. By compactness, there must
exist (y1,9%), (¥2,93), -+ (Yn,yp) in M such that C = UL {U(y: i)}
Let Bi,0s,...,0, be a partition of unity subordinate to this cover of C; that
is, each B3; is weak* continuous on C, 0 < 3; < 1, ¥3; = 1 and {z* €
C: Bi(z*) > 0} C U(y;,y;) for each 7. Let K = co{y;} C C and define the
weak* continuous map p of K into itself by

p(z*) = ZB;(z)y;, =" € K.

Note that K is a finite dimensional compact convex set which (since the weak™*
topology is the same as the norm topology in finite dimensional spaces) is
homeomorphic to a finite dimensional ball. Thus, the Brouwer fixed—point
theorem is applicable. (See [11] for several proofs of the latter.) It follows
that there exists z* € K such that p(z*) = 2*. We therefore have

0= (p(=") — ", 56, (") (35 — #(=")))
= (BB:(z")(yi — 27), BB;(2")(y; — #(2")))
= 2,;B8:(2") B (2" )(yi — 2", y; — $(27)).
Define o;; = (y; — 2*,y; — ¢(z*)). It is straightforward to verify that
aij + o = o oy + (Y7 — Y5y — ¥) < ot oy,
the inequality following from the monotonicity of M. Next, to simplify nota-
tion, let G;(2*) = B;. Note that for all 1, 7,

a%] + a_’]l a‘l] + a]l

BiBjau; + BiBiaj; = BiBi(———= )-

It follows that
0 = X8:iB;ai; = BBiB;( ) < BBiB;(

We claim that this inequality implies that §;8; = 0 for all 4,j. Indeed, for
every pair 4, j such that 8;3; > 0 we must have 2* € U(y;, y;)NU (y;,;), hence
both a; < 0 and aj; < 0 so that £8;8;(%4£%4) < 0, a contradiction. We
conclude that B; = 5;(2*) = 0 for all ¢, an impossibility, since £G;(z*) = 1. 1

)+ 6;B(———=

M M)

DEFINITION 1.8. A set—valued mapping T: E — 2F" is said to be locally
bounded at the point z € E provided there exists a neighborhood U of z such
that T'(U) is a bounded set.
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Note that this does not require that the point z actually be in D(T).
Thus, it is true (but not interesting) that T is locally bounded at each point
of E\ D(T).

There are at least four proofs (all based on the Baire category theorem)
that a maximal monotone operator T is locally bounded at the interior points
of D(T'). (See the discussion in [18, Sec. 2].) The first one was by Rockafellar
[22], who showed that much of it can be carried out in locally convex spaces.
His proof is the longest one, but it has the great advantage of simultaneously
proving that the interior of D(T') is convex. By specializing his proof to
Banach spaces (below), it is possible to shorten it considerably. We first make
some simple general observations about an arbitrary subset D C E, its convex
hull co D and its interior int D.

(i) Always, D C coD, so int D C int(coD). Suppose it is shown that
int(coD) € D. Since int(co D) is open, it is therefore a subset of int D
and hence int(co D) = int D, showing that int D is convex. (None of these
assertions assume that int D is nonempty!)

(ii) However, if int(co D) is nonempty and contained in D (so that int(co D) =
int D), then D = int(co D), hence is convex. [This follows from the fact that
for any convex set C' with interior we have C C intC, hence D C coD C
int(co D) therefore D C int(co D) = int D C D]

(iii) Another useful elementary fact is the following: If {C,} is an increasing
sequence of closed convex sets having nonempty interior, then int|JC, C
Uint C,, (and, in fact, equality holds). [Here is a proof, the reader might have
a simpler one: If z € int | C,,, then it is in some C,,, hence in the closure of
Uint C,. The latter is an open convex set, so if it doesn’t contain z, there
must exist a closed half-space H supporting its closure at z. Thus, intC,, C H
for each n, therefore C, = int C,, C H. This leads to the contradiction that
z €intJC, Cint H ]

NoOTATION. We will denote the closed unit ball in E [resp. in E*] by B
[resp. B*]. Thus, if r > 0, say, then

rB* = {z* € E*: ||z*|| < r}.

THEOREM 1.9. (Rockafellar) Suppose that T' is maximal monotone and
that int co D(T') is nonempty. Then int D(T') = int co D(T') (so int D(T) is

convex) and T is locally bounded at each point of int D(T'). Moreover, D(T') =
int D(T'), hence it is also convex.
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Proof. Let C = int co D(T'). For each n > 1 let
S, ={z €nB: T(z) NnB* # 0}.

Then S, C Sp4; and D(T) = U S, C UcoS,. Since the S,,’s are increasing,
this last union is convex, so it contains co D(T') and therefore contains C. As
an open subset of a Banach space, C has the Baire property and therefore
there exists an integer ng such that the closure (relative to C) of C Nco S,
has nonempty interior for all n > ny. In particular, the larger set int(co S,)
is nonempty for each such n. We have

int coD(T') C int U S, C U int(co S,,),

n>ng n>no
the last inclusion being a special case of the elementary fact (iii) described
above. We will show two things; first, that T is locally bounded at any point
in each set int(€0 S,) (n > ng) and second, that each such point is in D(T)
(which, as noted in (i) above, will imply that int D(T) is convex). For the first
step, then, suppose that z, € int(c6 S,,) (for a fixed n > ny). Assume without
loss of generality that n is sufficiently large that R(T) NnB* # () and for each
m > n let

M, ={(u,u") € ExX E*: ue D(T) and u* € T(u) NmB*};

this is a nonempty monotone subset of £ x mB*. Foreach m >nand z € F
define

Ap(z)={z* € E*: (2*—u*,z—u) >0 Vu€ D(T) and v* € T'(u) NmB*}.

Since A,,(z) is the set of all z* such that (z,z*) is monotonically related to
M,,, the Debrunner-Flor Lemma 1.7 guarantees that it is nonempty. For each
such m and every z € E we have A,,,;(z) C A, (z) and T'(z) C A,,(z). More-
over, as the intersection of weak*—closed half-spaces, each A,,(z) is weak*
closed. Suppose that u* € nB*;then S, C {z € E: |(u*,z)| < n?} and there-
fore €05, is contained in the same set. By hypothesis, there exists e > 0 such
that zo + 2¢B C €0 S,,. Now, choose any z € z, + ¢B and z* € A,(z). For all
u € S, and v* € T'(u) NnB* we must have

(z*,u — 1) < (u*,u— 1) < 2n?,

which shows that S, C {u € E: (z*,u — z) < 2n?} hence €0 S,, is contained
in this same (closed and convex) set. Thus,

To+2eB C S, C {u € E: (z*,u—1z) < 2n°}.
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Suppose that ||v|| < €, so that z +v € 7, + 2¢B C €0 S,. We then have
(z*,v) = (z*, (& +v) —x) < 2n*. Thus, ef|z*|| = sup{(z*,v): [lv|| <€} <2n?
which implies that ||z*|] < 2n?/e. We have shown, then, that if z € =, + €B
and z* € A,(z), then z* € %B*. -Since

T(zo+€B) = U{T(:v) z € zo+€eB} C U{An(a;) T € To+eB} C (2n*/e) B,

we see that T is locally bounded at z,. (Note that this part of the proof did
not require that 7' be maximal.)

To show that z, € D(T), note that A,(z,) C (2n?/e)B* and is weak*
closed, hence is weak* compact. For m > n we have A,,(zo) C A,(zo) and
therefore the sequence {4,,(zo)} is a decreasing family of nonempty weak*
compact sets. Let z5 € ;5 Am(z0). If u € D(T) and u* € T(u), then
lu*|| < m for some m > n. By definition of A,,(zo) we have (z} — u*, zo —
u) > 0. By maximality of T, this implies that = € T(z,) and therefore

COROLLARY 1.10. Suppose that E is reflexive and that T: E — 2F is
maximal monotone. Then int R(T') is convex. If int R(T) is nonempty, then
R(T) is convex.

Proof. Since T! is a maximal monotone operator from E* to 2F, by the
previous theorem, int D(T!) = int R(T') is convex.

That the first part of this corollary can fail in a nonreflexive space will be
shown by Example 2.21 (below).

DEFINITION 1.11. A subset A C E (not necessarily convex) which con-
tains the origin is said to be absorbing if E = U{AA : A > 0}. Esuivalently,
A is absorbing if for each z € F there exists ¢t > 0 such that tz € A. A point
z € A is called an absorbing point of A if the translate A — z is absorbing.

It is obvious that any interior point of a set is an absorbing point. If A,
is the union of the unit sphere and {0}, then A; is absorbing, even though
it has empty interior. A proof of the following theorem of J. Borwein and S.
Fitzpatrick [1] may be found in [18].

THEOREM 1.12. Suppose that T': E — 2F" is monotone and that z €
D(T). If z is an absorbing point of D(T') (in particular, if z € int D(T')), then
T is locally bounded at x.
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Note that the foregoing result does not require that D(T") be convex nor
that T be maximal. There are trivial examples which show that 0 can be
an absorbing point of D(T') but not an interior point (for instance, let T' be
the restriction of the duality mapping J to the set A; defined above). Even if
D(T) is convex and T is maximal monotone, D(T') can have empty interior, as
shown by the following example. (In this example, T is an unbounded linear
operator, hence it is not locally bounded at any point and therefore D(T') has
no absorbing points.)

EXAMPLE 1.13. In the Hilbert space £% let D = {z = (z,) € £*: (2"z,) €
¢%} and define Tz = (2"z,,), £ € D. Then D(T) = D is a proper dense linear
subspace of #2 and T is a positive operator, hence — by Example 1.5 (b) — it
is maximal monotone.

It is conceivable that for a maximal monotone T', any absorbing point of
D(T) is actually an interior point. That this is true if D(T') is assumed to be
convex is shown by combining Theorem 1.12 with the following result.

THEOREM 1.14. (Libor Vesely) Suppose that T' is maximal monotone and

that D(T) is convex. If z € D(T) and T is locally bounded at z, then
z € int D(T).

Proof. The first step doesn’t use the convexity hypothesis: Suppose that
T is a maximal monotone operator which is locally bounded at the point
z € D(T); thenz € D(T). Indeed, by hypothesis, there exists a neighborhood
U of z such that T'(U) is a bounded set. Choose a sequence {z,} C D(T)NU
such that z, — z and choose z;, € T'(z,). By weak™® compactness of bounded
subsets of E* there exists a subnet of {(z,,z})} — call it {(z4,z%)} — and

z* € E* such that =7 — z* (weak*). It follows that for all (y,y*) € G(T),
(" —y" @ —y) = lim(z;, —y", 20 —y) 2 0;

by maximal monotonicity, z* € T(z), so £ € D(T). Next, if z is in the
boundary of the closed convex set D(T'), then T is not locally bounded at
z: Suppose there were a neighborhood U of z such that T'(U) were bounded.
By the Bishop—Phelps theorem there would exist a point z € U N W and
a nonzero element w* € E* which supported D(T') at z; that is, (w*,2) =
sup(z*, D(T')). Now, T would also be locally bounded at z € U, so by the

first step, z € D(T') and we could choose z* € T'(z). For any (y,y*) € G(T)
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and any A > 0 we would have
(" + M~y z—y) = (" —y",z—y) + Mw",z—y) 2 0.

By the maximality of T' this would imply that z* + Aw* € T'(z) for each A > 0,

which shows that T'(z) is not bounded, a contradiction. Since z ¢ bdry D(T),
it must be in int T} By local boundedness, we can choose an open set
U such that z € U C int D(T) and T(U) is bounded. Thus, T is locally
bounded at every point of U, which — by the first step proved above — implies

that U C D(T) and therefore z € int D(T'). 1

Note that this result, combined with Theorem 1.9, implies that for any
maximal monotone T, if int D(T') is nonempty, then it is precisely the set

of points in D(T') where T is locally bounded. It remains open as to what

happens if int D(T') is empty and D(T') is not convex.

EXERCISE 1.15. Prove that if T is maximal monotone, then for all z €
int D(T') the set T'(z) is weak* compact and convex.

DEFINITION 1.16. Let X and Y be Hausdorff spaces and suppose that
T: X — 2Y is a set-valued mapping. We say that T is upper semicontinuous
at the point z € X if the following holds: For every open set U C Y such that
T'(z) C U there exists an open subset V of X such that z € V and T'(V) C U.
Upper semicontinuity on a set is defined in the obvious way.

EXERCISE 1.17. Prove that if T: E — 2F" is maximal monotone, then it
is norm—to~weak* upper semicontinuous on int D(T').

The following “fixed—point” result, which will be useful to us in Section 3,
illustrates both the utility of the upper semicontinuity property as well as the

strength of the Debrunner-Flor Lemma 1.7. It is a special case of Theorem 4
of [4].

LEMMA 1.18. Suppose that E is a reflexive Banach space and that K is
a nonempty compact convex subset of E. Let R: K — 2% be an upper
semicontinuous mapping such that R(u) is nonempty, closed and convex, for
each u € K. Then there exists ug € K such that ug € R(uyg).

Proof. Suppose there were no such point; then 0 ¢ u—R(u) for each u € K.
By the separation theorem applied to the compact convex set u — R(u) and 0,
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for each u there would exist z* € E*, ||z*|| = 1, and § > 0 such that (z*,v) > ¢
for each v € u — R(u). For each z* € E*, define

W(z*)={ue K: (z*,v) >0 Vveu—R(u)}.

For each ||z*|| = 1 let U(z*) = {v € E: (z*,v) > 0}, sou € W(z*) if and only
ifu € K and u — R(u) C U(z*). Now, if u € K, then our supposition implies
that there exists ||z*|] = 1 and § > 0 such that u— R(u)+dB C U(z*). Upper
semicontinuity of R (hence of —R) at u implies that for some 0 < € < 6/2 we
will have —R(y) C —R(u) + £B whenever y € (u+ eB) N K. It follows that
for all such y, we have

) )
y—R(y) Cu+ EB — R(u) + EB c U(z"),

that is, (u + eB) N K C W(z*). This shows that every point u € K is in the
interior of some W (z*), so that the sets {int W(z*)} form an open cover of
K. As in the proof of Lemma 1.7, there is a finite subcover {int W (z})}7.,
of K and a continuous partition of unity {8, Bs, ... , 8.} subordinate to this
cover. Define
r(z) = Zﬂj(m)m;‘, z € K.

This is a continuous map from K into E* and for allu € K and v € u—R(u) we
have (r(u),v) = 3 B;(u){z},v) > 0 (since B;(u) > 0 implies that u € W(z;)
hence that (zj,v) > 0). In Lemma 1.7 let $ = —r, reverse the roles of F
and E* (reflexivity permits this) and let M be the monotone set K x {0} to
obtain uy € K such that —(r(ue),uo —u) > 0 for all v € K. In particular,
this is true if u = vy where v, is any element of R(up); that is, the element
v = ug — Vg € up — R(uyg) satisfies (r(up),v) < 0, in contradiction to the fact

" that (r(uo),v) > 0, completing the proof. |

2. SUBDIFFERENTIALS OF CONVEX FUNCTIONS

This section introduces what is perhaps the most basic class of maximal
monotone operators. We assume that the reader has some familiarity with
real-valued convex functions. (A good reference for their elementary prop-
erties is [20].) Their use in optimization and convex analysis is most simply
handled by introducing the seeming complication of admitting extended real-
valued functions, that is, functions with values in R U {oco}.

DEFINITION 2.1. Let X be a Hausdorff space and let f: X — RU {oo}.
The effective domain of f is the set dom(f) = {z € X: f(z) < co}. Recall
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that f is lower semicontinuous provided {z € X: f(z) < r} is closed in X
for every 7 € R. This is equivalent to saying that the epigraph of f

epi(f) = {(z,r) € X xR: r > f(z)}
is closed in X x R. Equivalently, f is lower semicontinuous provided
f(z) < liminf f(z.)

whenever z € X and (z,) is a net in X converging to z. We say that f is
proper if dom(f) # 0.

Note that if f is defined on a Banach space E and is convex, then so is
dom(f). Also, a function f is convex if and only if epi(f) is convex. This last
fact is important; it implies that certain properties of lower semicontinuous
convex functions can be deduced from properties of these (rather special)
closed convex subsets of £ x R. One can view this as saying that the study of
lower semicontinuous convex functions is a special case of the study of closed
convex sets.

EXAMPLSE 2.2. (a) Let C be a nonempty convex subset of E; then the
indicator function é¢, defined by

0 ifzeC,
oo otherwise,

bc(z) = {
is a proper convex function which is lower semicontinuous if and only if C' is
closed.

This example is one reason for introducing extended real-valued functions,
since it makes it possible to deduce certain properties of a closed convex set
from properties of its lower semicontinuous convex indicator function. Thus,
one can cite this example to support the view that the study of closed convex
sets is a special case of the study of lower semicontinuous convex functions.
It’s all a matter of which approach is more convenient, the geometrical or the
analytical. It is useful to be able to switch easily from one to the other.

(b) Let A be any nonempty subset of E* such that the weak* closed convex
hull of A is not all of E* (or, more simply, let A be a weak* closed convex
proper subset of E*) and define the support function o4 of A by

oa(z) = sup{(z*,z): z*€ A}, z€E.
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This is easily seen to be a proper lower semicontinuous convex function.

(c) If f is a continuous convex function defined on a nonempty closed
convex set C, extend f to be oo at the points of E \ C; the resulting function
is a proper lower semicontinuous convex function.

The next proposition uses completeness of E to describe a set where a
lower semicontinuous convex function is necessarily continuous.

PROPOSITION 2.3. Suppose that f is a proper lower semicontinuous con-
vex function on a Banach space E and that D = intdom(f) is nonempty;
then f is continuous on D.

Proof. We need only show that f is locally bounded in D, since this implies
that it is locally Lipschitzian in D (see [18, Prop. 1.6]). First, note that if
f is bounded above (by M, say) in B(z;d) C D for some § > 0, then it is
bounded below in B(z; ). Indeed, if y is in B(z;d), then so is 2z — y and

f(@) < 217) + F(2z )] < 5[(0) + M),

so f(y) > 2f(z) — M for all y € B(z;6). Thus, to show that f is locally
bounded in D, it suffices to show that it is locally bounded above in D. For
eachn > 1, let D, = {z € D: f(z) < n}. The sets D, are closed and
D = UD,; since D is a Baire space, for some n we must have U = int D,
nonempty. We know that f is bounded above by n in U; without loss of
generality, we can assume that B(0;§) C U for some 6 > 0. If y is in D,
with y # 0, then there exists p > 1 such that z = py € D and hence (letting
0 < XA=p"! <1), the set

V =Xz + (1= A)B(0;8) =y + (1 — \)B(0;)

is a neighborhood of y in D. For any point v = (1 - A)z + Az € V (where
z € B(0;4)) we have
f0) <A =Xn+Af(2),

so f is bounded above in V and the proof is complete. N

EXAMPLSE 2.4. (a) The function f defined by

> ifz e (0,00),
oo ifz € (—00,0]
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shows that f can be continuous at a boundary point z of dom(f) where
f(z) = oo. (Recall that the neighborhoods of co in (—o00, 00] are all the sets
(a,00], a € R)

(b) Suppose that C is nonempty closed and convex; then the lower semi-
continuous convex indicator function ¢ is continuous at z € C if and only
if z € int C. Thus, if int C = (), then ¢ is not continuous at any point of
C= dom(éc) '

DEFINITION 2.5. Recall that if F is a Banach space, then so is E x R,
under any norm which restricts to give the original topology on the subspace
E, for instance, |[(z,7)| = [|z|| + |r]. Recall, also, that (E x R)* can be
identified with E* x R, using the pairing

((iE*,’I‘*), (IIJ,’I‘)) = (m*,$) +r*er

Remark 2.6. If a proper lower semicontinuous convex function f is con-
tinuous at some point zo € dom(f), then dom(f) has nonempty interior and
epi(f) has nonempty interior in F x R. (Indeed, f(z) = oo outside of dom(f),
so zo cannot be a boundary point of the latter. Moreover, there exists an
open neighborhood U of z, in dom(f) in which f(z) < f(zo) + 1, so the open
product set U x {r: r > f(xo) + 1} is contained in epi(f).)

DEFINITION 2.7. If z € dom(f), define the subdifferential mapping df by
8f(z) = {z" € B*: (s",y—1) < f(y) — f(z) for all y € E}
—{z" € B": (z",y) < f(s+1) — f(z) for all y € B},

while 0f(z) = 0 if z € E\ dom(f). It may also be empty at points of dom(f),
as shown in the first example below.

It is easy to see that Jf is a monotone operator: If z* € Jf(z) and
y* € 3f(y), then

(z*,y—z) < f(y) — f(z) and — (y*,y—2)=(y",z—y) < f(z) — f(y);

now add these two inequalities.

It is not obvious that 0f is maximal monotone; in fact, it is not even
obvious that it is nontrivial (i.e., that D(0f) # 0.) Much of the rest of this
section is devoted to establishing these properties.
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DEFINITION 2.8. Ifz € dom(f) we define its right-hand directional deriva-
tive d* f(z) by

4" f(@)) = Jim ¢ [f(z + ty) - f(@)], ye B.

It follows from the convexity of f that this limit always exists (see [18]).
Note that d* f(z)(y) = oo if z +ty € E \ dom(f) for all ¢ > 0. (It is also
‘possible to have d* f(z)(y) = —oo; consider, for instance, d*f(0)(1) when
f(z) = —x'/2? for z > 0, = oo elsewhere.) We have the following important
relationship: For any point z € dom(f),

z* € 0f(z) if and only if (z*,y) < d*f(z)(y) forall y € E.

It follows from this that for the example given above (f(z) = —+/z for z > 0),
it must be true that df(0) = 0. In the first example below, one sees that it is
possible to have df(z) = 0 for a dense set of points z € dom(f).

EXAMPLSE 2.9. (a) Let C be the closed (in fact, compact) convex subset
of £2? defined by

C={zel: |z,]<27", n=123, ...}

and define f on C by f(z) = X[—(2™™ + z,)'/?]. Since each of the functions
T — —(27" + x,)'/? is continuous, convex and bounded in absolute value by
2(-n+1)/2  the series converges uniformly, so f is continuous and convex. We
claim that 0f(z) = 0 for any z € C such that z,, > —27" for infinitely many
n. Indeed, let e, denote the n-th unit vector in £%. If z* € 8f(z) (so that, as
noted above, z* < d* f(z)), then for all n such that z, > —27", we have

2| < (2, en) < d* F(3)(en) = —(1/2)(27" + )12,

an impossibility which implies that f(z) = 0. Note that if we make the usual
extension (setting f(z) = oo for z € £2\ C), then f is lower semicontinuous,
but not continuous at any point of C (= bdry C).

(b) Let C be a nonempty closed convex subset of E; then for any z € C,
the subdifferential ¢ (z) of the indicator function d¢ is the cone with vertex
0 of all z* € E* which “support” C at z, that is, which satisfy

(z*,z) = sup{(z*,y): y € C} =oc(z*).

(Indeed, z* € 9dc(z) if and only if (z*,y — z) < dc(y) — dc(x), while z*
attains its supremum on C at z if and only if the left hand side of this latter
inequality is at most 0, while the right side is always greater or equal to 0.)
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The following notion of an approximate subdifferential is useful in many
parts of convex analysis.

DEFINITION 2.10. Let f be a proper convex lower semicontinuous function
and suppose z € dom(f). For any € > 0 define the e-subdifferential 0, f (z) by

O.f(z) ={z*: (z*,y) < f(z+y) — f(z) +eforally € E}.

It follows easily from the definition that 9, f(z) convex and weak* closed. That
fact that it is nonempty for every x € dom(f) follows from the convexity of
epi(f) and the separation theorem (in E x R) (see [18, Prop. 3.14]).

The basic maximality technique which was used in proving the Bishop-
Phelps theorem [18] was applied in E x R by Brgndsted and Rockafellar to
prove the following fundamental lemma, which shows, among other things,
that 0f is nontrivial.

LEMMA 2.11. Suppose that f is a convex proper lower semicontinuous
function on the Banach space E. Then given any point zo € dom(f), € > 0,
X > 0 and any functional =3 € 0. f(zo), there exist z € dom(f) and z* € E*
such that

2 €0f(2), lle—wzoll S5 and a* -5l <

In particular, the domain of 8f is dense in dom(f), so D(0f) = dom(f) is
convex.

The next result can be looked at in two ways. On the one hand, it is simply
a verification that (under a certain hypothesis), the subdifferential operation
is additive. (We use the usual vector sum of sets.) On the other hand, it
will be seen later as a verification in a special case that the sum of maximal
monotone operators is again maximal monotone.

THEOREM 2.12. Suppose that f and g are convex proper lower semi-
continuous functions on the Banach space E and that there is a point in
dom(f) Ndom(g) where one of them, say f, is continuous. Then

Af +9)(z) = 0f(z) + bg(z), =z € D(8f) N D(dyg).

Remark. It is immediate from the definitions that for z € dom(f + g)
(which is identical to dom(f) N dom(g)), one must have

9f(z) + dg(z) C 8(f + g)(z).
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This inclusion can be proper. To see this, let E = R?, let f denote the
indicator function §c and let g = §;,, where C is the epigraph of the quadratic
function y = z% and L is the z-axis. Obviously, C and L intersect only at the
origin 0 and it is easily verified that f(0) = R~ e, where e is the vector (0, 1),
and dg(0) = Re, while

a(f +9)(0) = R # 3f(0) + 9g(0).

Proof. Suppose that z§ € d(f + g)(zo). In order to simplify the argument,
we can replace f and g by the functions

fi(@) = f(z +20) — (o) — (z5,2) and gi(z) = g(z +20) — 9(20), = € E;

it is readily verified from the definitions that if z§ € d(f + g)(zo), then 0 €
O(f1 +91)(0) and if 0 € 9f,(0) + 9g:(0), then z € df(zo) + dg(zo). Without
loss of generality, then, we assume that zo = 0, z; = 0, f(0) = 0 and ¢g(0) = 0.
We want to conclude that 0 is in the sum 9f(0) 4+ dg(0), under the hypothesis
that 0 € 9(f + ¢g)(0). This last means that

(f+9)(z)>(f+9)(0)=0 forall ze€E. (2.1)

We now apply the separation theorem in E x R to the two closed convex sets
Ci = epi(f) and Cy; = {(z,7): < —g(z)}; this is possible because f has
a point of continuity in dom(f) N dom(g) and hence — recall Remark 2.6 —
C) has nonempty interior. Moreover, it follows from (2.1) that C, misses the
interior of C; = {(z,7): r > f(z)}. Since (0,0) is common to both sets, it
is contained in any separating hyperplane. Thus, there exists a functional
(z*,7*) € E* x R, (0,0) # (z*,7*), such that

(z;z)+r*-r>0 if r> f(z) and (z*,z)+7r*-7<0 if r<—g(z).

Since 1 > f(0) = 0 we see immediately that 7* > 0. To see that r* # 0, (that
is, that the separating hyperplane is not “vertical”), we argue by contradiction:
If r* = 0, then we must have z* # 0; also (z*,z) > 0 for all z € dom(f) and
(z*,z) < 0 for all z € dom(g). This says that z* separates these two sets.
This is impossible; by the continuity hypothesis, their intersection contains
an interior point of dom(f). Without loss of generality, then, we can assume
that r* = 1 and hence, for any z € E,

(—z*,2—0) < f(z) — f(0) and (z*,z—0) < g(z)— g(0),

that is, 0 = —z* + z* € 9f(0) + dg(0), which completes the proof. o
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The next two lemmas lead easily to S. Simons’ recent proof [25], [27] of
Rockafellar’s maximal monotonicity theorem for subdifferentials.

LEMMA 2.13. Suppose that f is a lower semicontinuous proper convex
function on E. If a, 3 > 0, o € E and f(z¢) < infg f + af, then there exist
z € E and z* € 0f(z) such that ||z — zo|| < B and ||z*| < a.

Proof. Choose € > 0 such that f(z,) — infg f < € < af and then choose
A such that €¢/8 < A < a. It follows that 0 € J.f(zo) so by the Brgndsted-
Rockafellar Lemma 2.11, there exist z € dom(f) and z* € df(z) such that
lz*]| <K A< aand ||z —zo]| < e/A<B. |

LEMMA 2.14. With f as in the previous lemma, suppose that z € E (not
necessarily in dom(f)) and that infg f < f(z). Then there exist z € dom(f)
and z* € 0f(z) such that

f(z) < f(z) and (z*,z—2z)>0.
Proof. Fix A € R such that infg f < X\ < f(z) and let
A—f(y)

K =su g T
Pver vt Ty —al
We first show that 0 < K < oco. To that end, let F = {y € E: f(y) < A},
so F is closed, nonempty and z ¢ F. Since dom(f) # 0, one can apply the
separation theorem in £ X R to find u* € E* and r € R such that f > u* + .
Suppose that y € E and that y # z. If y € F, then

A=fly) < A= (uhy) —r <A = (' z) — 7|+ (v 2 ),

henee A=) _ A= (wrya) =
—J\Y —(u',z) -1 *
< .
el = dst@e,m) ]
If y¢ F, then 1\"%3%% < 0. In either case, there is an upper bound for Tl—;ﬁy"l,

so K < oo. To see that K > 0, pick any y € E such that f(y) < A. Since
A < f(z), we have y # z and K > ?I_;gglll>0'
Suppose, now, that 0 < € < 1, so that (1 — €)K < K and hence, by

definition of K, there exists zo € F such that z, # z and
A — f(zo)

> (1 —eK.
Teo—a > 1 7¢
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For z € E, let N(z) = K||z—z||; we have shown that (1—€)N(zo)+ f(z0) < A,
that is, (N + f)(zo) < A+ eN(y). We claim that A < infg(N + f). Indeed, if
z = z, then we have A\ < f(z) = (N + f)(z), while if z # z, then ’?l;f(:“) <K,

from which it follows that A < (N + f)(z). Thus, we have shown that there
is a point =y € E, 2y # z, such that

(N + f)(zo) < infg(N + f) + eK||zo — z||.

We now apply Lemma 2.13 to N + f, with 8 = ||zy — z|| and @ = eK. Thus,
there exists z € dom(N + f) = dom(f) and w* € I(N + f)(z) such that
|z — zo|| < ||z — zol| and ||w*|| < eK. It follows that ||z — z|| > 0. From the
sum formula (Theorem 2.12),

(N + f)(z) = ON(2) + 0f(2),

so there exist y* € ON(z) and z* € Jf(z) such that w* = y* + 2*. Since
y* € ON(z), we must have (y*,z —z) > N(z) — N(z) = K||z — z||. Thus

(2*7"1:_2) = (y*,Z—JI)—F <w*a$ -—Z)
2 K|z — =z — [lw] - lz — 2]
> (1—-¢€)K|z—z| > 0.

Since z* € 0f(z), we have f(z) > f(2) + (¢*,2 — z) > f(z), which completes
the proof.

THEOREM 2.15. (Rockafellar) If f is a proper lower semicontinuous con-
vex function on a Banach space FE, then its subdifferential 0f is a maximal
monotone operator.

Proof. Suppose that z € E, that z* € E* and that z* ¢ 9f(z). Thus,
0 ¢ d(f — z*)(z), which implies that infg(f — z*) < (f — z*)(z). By Lemma
2.14 there exists z € dom(f — z*) = dom(f) and 2* € d(f — z*)(z) such that
(2*,z — z) < 0. Thus, there exists y* € df(z) such that z* = y* — z*, so that
(yv* —z*,z—z) <0. 1

EXAMPLE 2.16. In a Banach space E define j(z) = (1/2)|z||?; this is
clearly continuous and convex. The monotone duality mapping J is actually
the subdifferential of j, and hence is maximal monotone.
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Proof. Tt is readily computed that d*j(z)(y) = ||z - d*||z||(y). If z = 0,
then d*j(0)(y) = 0 for all y, hence is linear and therefore 95(0) = {0}.
Suppose, then, that z # 0. We know (from the remark following Definition
2.8) that z* € 9j(z) ifand only if z* < d*j(z), that is, if and only if | z||~'z* <
d*||z||, which is equivalent to y* = |z||"'z* € 9|z, that is, if and only if
(y*,y — z) < |lyl| — llz|| for all y € E. If, in this last inequality, we take
y = z+ 2 ||z|| < 1 and apply the triangle inequality, we conclude that
ly*|| < 1. If we take y = 0, we conclude that ||z|| < (y*,z) < ||lv*| - ||z, so
lly*|l = 1 and (y*,z) = ||z|, which is equivalent to what we want to prove.
The converse is easy: If ||y*]| = 1 and (y*,z) = ||z||, then for all y in E, we
necessarily have (y*,y — z) < |ly|| — ||z||, so y* € d||z||. §

There are other interesting and useful properties of the duality mapping
J. For instance, it is immediate from the original definition that it satisfies
J(—z) = —=J(z) and J(Az) = AJ(z) for A > 0. Since it is the subdifferential of
the function %||z|?, it is not surprising that it reflects properties of the norm.

PROPOSITION 2.17. (a) The norm in E is Gateaux differentiable (at non-
zero points) if and only if J is single valued.

(b) The mapping J is “one-to-one” (that is, J(z) N J(y) = 0 whenever
z # y) if and only if the norm in E is strictly convex; that is, ||z + y|| < 2
whenever ||z|| = 1, ||lyll =1 and z # y.

(c) Surjectivity of J is equivalent to reflexivity of E.

Proof. Parts (a) and (b) are straightforward exercises. Part (c) is an easy
consequence of R. C. James’ deep result that a Banach space F is reflexive if
(and only if) each functional in E* attains its supremum on the unit ball of E
at some point. Indeed, if J is surjective and z* € E*, then there exists z €
such that z* € J(z), hence (z*, ”z—”) = ||lz*|| = sup{(z*,y): ||ly|| < 1}, showing
T* attains its supremum on the unit ball at l_l_iﬂ [ |

DEFINITION 2.18. If S and T are monotone operators and z € D(S) N
D(T), we define

(S+T)z)=8(z)+T(z) ={z"+y": "€ S(z), y € T(z)},
while (S + T')(z) = 0 otherwise.

It is immediate that S + T is also a monotone operator and that — by
definition - D(S + T') = D(S) N D(T).
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The following theorem of Rockafellar [21] is basic to many applications of
maximal monotone operators.

THEOREM 2.19. (Rockafellar) Suppose that E is reflexive, that S and T
are maximal monotone operators on E and that D(T) Nint D(S) # 0. Then
S + T is maximal.

We refer to [21] for the proof of this theorem (see, also, [3]), which relies
partly on the fact that any reflexive space can be renormed so that both it
and its dual norm are Gateaux differentiable (at nonzero points) [7]. Since
maximal monotonicity does not depend on which norm defines the topology
of E, this guarantees that the duality mapping J can be assumed to be single-
valued, one-to—one and onto, a useful step in the proof.

The situation is wide open in arbitrary Banach spaces.

PROBLEM 2.20. Suppose that E is a nonreflexive Banach space and that
S and T are maximal monotone operators such that D(T) N int D(S) # 0;
is S + T necessarily maximal? What about the special case when S is the
subdifferential of the indicator function d; of a closed convex set C for which
int C N D(T) # 07

Remark. The answer to the first question is affirmative when D(S) = FE =
D(T); this was pointed out to us by Martin Heisler. One can use the local
boundedness of S and T and weak* compactness to prove that the graph of
G(S +T) is closed in the norm x weak* topology in F x E*; Lemma 2.2 of
[9] then applies to show that S + T is maximal.

Rockafellar [21, Theorem 3] has shown that the answer to the second ques-
tion is affirmative for certain single-valued monotone operators 7'.

The answer to the first question is also affirmative whenever S = df and
T = 0g, where f and g are proper lower semicontinuous convex functions; this
is a consequence of Theorem 2.12 (that the subdifferential of the sum of two
convex functions is the sum of their subdifferentials). Indeed, if int D(T') # 0,
then [since int dom(dg) C int dom(g) and g is continuous on int dom(g)] we
conclude that g is continous at some point of D(S)ND(T) C dom(f)Ndom(g),
so Theorem 2.12 implies that S+ T = 9(f + g) and Theorem 2.15 implies
that the latter is maximal monotone. The remark following the statement of
Theorem 2.12 shows that, even in a two dimensional Banach space, maximality
of a sum can fail if D(S) Nint D(T') is empty; in that example, the graph of
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Of + Og is a proper subset of the graph of the maximal monotone operator
o(f +g).

The foregoing discussion is an example of how subdifferentials fulfill their
role as prototypes when considering general questions about maximal mono-
tone operators. Whenever a property is valid for subdifferentials in arbitrary
Banach spaces there is some hope that it also holds for all maximal mono-
tone operators. On the other hand, of course, if it fails for subdifferentials on
nonreflexive spaces, the situation is obviously hopeless. The following exam-
ple illustrates this with respect to the first assertion in Corollary 1.10 (that
int R(T') is convex when F is reflexive).

EXERCISE 2.21. (Simon Fitzpatrick) There exists a continuous convex
function f on the Banach space ¢y such that the interior of R(Of) is not
convex.

Proof. With the usual supremum norm on ¢, define g(z) = ||z|| and
h(z) = ||z — e1]|, where e; = (1,0,0,...), and let f = g + h. Since g and
h are continous and convex, we have df(z) = dg(z) + 0h(z) for each = € ¢y
It is straightforward to compute that Og(z) is either B* if z = 0, or is con-
tained in the set F' of all finitely nonzero sequences in ¢; otherwise. It is also
easy to see that 0h(z) = 0g(z — e;) for each z. It follows (letting e} denote
the corresponding element of ¢,) that 8f(0) = —e}+ B* and 9f(e;) = e} + B*,
while 0f(z) is contained in F if £ # 0,e;. Since int R(3f) D int B* + e}, if it
were convex, it would contain 0 = 7(e} — e}) and hence a neighborhood U of
0. But, for any A > 0, the element (0, %, &, 2,...) is not in F, has distance
from +e} equal to 1+ 3 > 1 and (for sufficiently small X) isin U. 1

Another place one looks for prototypical properties is in Hilbert space
(see, for instance, [2]), where things are made much easier by the fact that
the duality mapping J is replaced by the identity mapping.

We conclude this section with a look at an additional property which
characterizes subdifferentials within the class of maximal monotone operators.
Details may be found, for instance, in [18].

DEFINITION 2.22. A set-valued map T': E — 27" is said to be n -cyclically
monotone provided

2: (mz,mk-—mk_ﬁ 2()

1<k<n
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whenever n > 2 and =z, Z1, T3, ... Tn € E, T, = zo, and z; € T(zy),
k=1,2,3,...,n Wesay that T is cyclically monotone if it is n-cyclically
monotone for every n. Clearly, a 2-cyclically monotone operator is monotone.

EXAMPLSE 2.23. (a) The linear map in R? defined by T'(z1, ) = (22, —21)
is positive, hence maximal monotone, but it is not 3-cyclically monotone: Look
at the points (1,1), (0,1) and (1,0).

(b) Let f be a proper lower semicontinuous convex function; then 9f is
cyclically monotone.

The final theorem of this section shows that this is the only such example
[23].

THEOREM 2.24. (Rockafellar) If T: E — 27" is maximal monotone and
cyclically monotone, with D(T') # 0, then there exists a proper convex lower
semicontinuous function f on E such that T = 0f.

3. GOSSEZ’S MONOTONE OPERATORS OF TYPE (D)

In 1971, J.-P. Gossez [12] introduced the class of monotone operators
of “dense type” in order to extend to nonreflexive spaces some of the basic
known results about maximal monotone operators on reflexive spaces. He
subsequently modified his definition [14], [16] to the one given below. One
first identifies a Banach space E with its canonically embedded image E in
E**. Having done this, it is natural to consider the graph G(T') of a monotone
operator T to be a subset of E** x E*.

DEFINITION 3.1. A monotone operator T: E — 2F" is said to of type
(D) provided it satisfies the following property: If (z**,z*) € E** x E* is
monotonically related to G(T'), then there exists a net (z,,2z%) € G(T) such
that z, — z** in the o(z**,z*) topology, (z,) is bounded and z¥ — z* in
norm.

In using this definition it is convenient to extend T to a mapping T: E** —
2E" as follows: We let T be the map whose graph G(T) C E** x E* consists
of all elements (z**,z*) € E** x E* which are monotonically related to G(T).

The map T need not be monotone [15]. However, T is monotone of type
(D), then T is maximal monotone. Indeed, suppose that (z**,z*) is mono-
tonically related to G(T); it is then obviously monotonically related to G(T),
hence is in G(T'). It only remains to show that T is monotone. Suppose that
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(z**,z*), (y**,y*) € G(T). By hypothesis, there exists a net (z4,z%) € G(T)
as above, hence

0 S (y** . ﬁa,y* _ w;) — (y** _ m**’y* — m*) + (z** — é‘:a,y* - w*)

+ (Y™ — Za, 2" — ).

Taking limits, we see that (y** — z**,y* — z*) > 0.

A word about terminology: When T is monotone of type (D), then any
element of G(T) is the limit of a certain net in G(T), so we can consider the
latter as being dense in the former, hence Gossez’s earlier “dense type” and
the later use of “type (D)”.

ExXAMPLSE 3.2. (a) Define T: R\{0} - R by T'(z) =0 for all z # 0. It is
easily verified that G(T) = R x {0} C R?, hence is maximal monotone, while
T is monotone of type (D) (but not maximal).

(b) Suppose that E is reflexive. If T' is maximal monotone, then T =
T, hence T is trivially maximal monotone of type (D), that is, in reflexive
spaces, the maximal monotone operators coincide with the maximal monotone
operators of type (D).

(c) If f is a proper lower semicontinuous convex function on F, then Of is
maximal monotone of type (D) [12]. (This is not obvious. In essence, it uses
the first step of Rockafellar’s original proof [23] of the maximal monotonicity

of 0f.)

The fundamental fact about maximal monotone operators of type (D) is
contained in Theorem 3.6 (below). In order to formulate it, we need to recall
a few facts about convex functions and their Fenchel duals.

DEFINITION 3.3. If f is a proper convex lower semicontinuous function on
E, then the function f* defined on E* by

f*(z") = sup{(z", ) — f(z)}, =" €E"

is proper, convex and weak* lower semicontinuous on E*. One defines f** =
(f*)* on E** analogously.

EXERCISES 3.4. (a) If we let j(z) = 1|z|?, then j*(z*) = %||z*||* and
j**(z**) — %”12**”2-

(b) If f is convex proper and lower semicontinuous, and € > 0, then 9, f
can be characterized as follows: z* € 0, f(z) if and only if f(z) + f*(z*) <
(z*,z) + €. (Here, we take 8yf = 0f.)
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The following theorem, which is a very special case of a result of F. Browder
[4, Theorem 10], provides a crucial step in proving Theorem 3.6 (below).

THEOREM 3.5. Suppose that F is a finite dimensional Banach space with
unit ball B and duality map J. Fix r > 0 and let A denote the restriction
of —J torB. If T: rB — 2F" is monotone, then there exists (z,z*) € G(A)
such that G(T') U {(z,z*)} is monotone, that is, there exists x € rB and
z* € —J(z) C rB* such that (z* — y*,z — y) > 0 for all (y,y*) € G(T).

Proof. For each € > 0 and finite subset G C G(T), let
Hec ={(z,z") € G(A): (z"—y",z—y) 2 —€¢ V(y,y") € G}
and
H = {(z,z*) € G(A): (z,z*) is monotonically related to G(T)}.

We will have proved the theorem if we show that the set H is nonempty. It
is straightforward to verify that H = N{H.g: € > 0, G finite, G C G(T)}.
Moreover, from the compactness of B x rB* and the definition of J, it follows
that each H, ¢ is compact. The intersection of any finite number of these sets
contains a set of the same form, so to show that the family has the finite
intersection property it suffices to show that each of them is nonempty; it will
then follow by compactness that H is nonempty. Fix € and G. To show that
H, ; is nonempty, we define, for each z € rB,

S(z)={z"€rB": (z"-y",z—y)>—¢ VY(y,y") €G}
and for z* € rB*,
S Hz*)={rxerB: (z*—y*,z—y) > —€ V(y,y*) € G}.

Each set S(z) is a finite intersection of relatively open subsets of 7B*, hence
is relatively open and each set S~!(z*) is convex. Moreover, each of the latter
sets is nonempty: This is an application of Lemma 1.7, using the monotonicity
of G, reversing the roles played there by E and E* and letting ¢: rB — rB*
be the constant map with value z*. It follows that the sets {S(z)} form an
open cover of the compact set rB*, hence there exist {z;,z,,...,z,} C rB
such that rB* = UJj_, S(z;). As in the proof of Lemma 1.7, there exists a
partition of unity {8, 0:,...,0.} subordinate to this covering. Define the
continuous mapping p: rB* — rB by p(z*) = 37, B;(z*)z;. We claim that
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z* € S(p(z*)) for all z* € rB*. Indeed, for every j such that g;(z*) > 0
we have z* € S(z;), that is, z; € S~!(z*). Since the latter is convex and
since p(z*) is a convex combination of z;’s, it follows that p(z*) € S~(z*),
which is equivalent to z* € S(p(z*)). Next, define the set—valued mapping
R: rB* — 28" by R(z*) = —J(p(z*)). Since p is continuous and J is upper
semicontinuous (Exercise 1.17 and Example 2.16), R is upper semicontinuous.
Let K = rB*; by Lemma 1.18 there exists z§j € rB* such that zj € R(z}),
that is, 25 € —J(p(z3)) and, of course, 5 € S(p(zy)). Letting z, = p(z}),
this means that zj € (—J)(zo) N S(z¢) C H g, which completes the proof. 1

Note that since 85*: E* — 2P its inverse (95*)~! is a mapping from E**
to 2F7.

THEOREM 3.6. (Gossez) If T is maximal monotone of type (D), then for
all A\ > 0, R(T + A\(85*)7") = E*.

Proof. Since T is of type (D) if and only if the same is true of A\™'T — z*
for each A > 0 and z* € E*, we need only show that 0 € R(T + (85*)7').
Let F denote the directed family of all finite dimensional subspaces F' C FE
such that D(T) N F # 0, partially ordered by inclusion. For each such F,
let ip: F' — E denote the natural injection, with adjoint i}.: E* — F* (the
restriction mapping to F'). Suppose, now that F' € F and that r > 0. Apply
Theorem 3.5 to F, F*, i+Tir and K, = {z € F: |z|| < r}, as follows:
Let G be the graph in K, x F* of the restriction to K, of the monotone
operator i5Tir. (We assume that r is sufficiently large that K, N D(T) # (.)
Let A: K, — F* be —i;Jir. Thus, there exists an element of G(A) -
call it (z,,,—=} ) — which is montonely related to G; that is, ||z, || < r,
z; € ipJ(z,,) (this uses Jir = J in F) and (—z% —y*z, —y) >0
whenever |jy|| < r and y* € i3 Tip(y). '

Suppose, now, that both o and Fj are sufficiently large so that there exists
Yo € Fo with ||yo]| < ro and yg € i, Tip, (o). Fix F D Fy; for each 7 > ry we
will show that the following set H, is bounded: Define H, to be the set of all
(., z% ) € F x F* such that

F,r
*

x:‘,r € Z*FJ(zFr) and <_I:,, — Y, Tp,. — y) >0

whehever
lyll <r and y* € ixTir(y).
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For any such (z,_,z*

rrs Ty ) We have

1 1
SNz, |+ 5l

:-‘,.”2 = (x:‘rawp,r) < ("I":«,,.ay0> - (y;’mF,r> + (y87y0>

< 27 - lyoll + llwg Il - e, Ml + (Y55 vo)-

The subset of the plane where a positive quadratic function is dominated by a
linear function is necessarily bounded, so there exists an upper bound on each
of the sets {||z,, ||} and {|[z} |I}. That is, each of the sets H, is bounded.
Moreover, each of them is closed (in the product of the norm topologies),
since iy Jir is easily seen to have closed graph and the function (z,,,z} ) —
(=2} —y*,z,,—Y) is continuous, for each (y,y*) € F x F*. Clearly, H, D H,.
whenever 7' > r > 0, so for increasing r, the H,’s form a decreasing family of
nonempty compact sets and they therefore have nonempty intersection. This

shows that there exists z,. € F and z] € 1, Jz, such that
(2% —y",z, —y) >0 whenever y € F, and y* € i;Tir(y). (1)

Note that any Hahn-Banach extension of z} from F' to all of F is in J(z ),
so we can assume that z* € J(z,.) C E*. Since the nets (z,.) and (z%) are
bounded, and since we can regard the z_’s as elements of E**, we see that
there exists a subnet (call it (z,,z%)) in E** x E* converging to an element
(z**,z*) € E** x E* in the o(E**, E*) X o(E*, E) topology. We want to show
that (z**, —z*) is monotonically related to G(T') C E** x E*, that is,

(z** —g,—z" —y*) > 0 whenever (y,y*) € G(T). (2)

To see this, note that (using the weak* lower semicontinuity of both 7* and
3)
(z7,2%) < j™(2™) + " (") < liminf[j(z,) + j*(z})] = liminf(z},2,), (3)

while (1) implies that, for all (y,y*) € G(T),

limsup(z},z.) < (¥",y) + (z*,9) — (=™, ¥"); - (4)

together, these yield (2). Since T is assumed to be of type (D), there exists
a net (Yo, —y5) in G(T') such that (y,) is bounded, converges to z** in the
o(E**, E*) topology and |ly% — z*|| — 0. This fact, applied to (4), shows that

limsup(z},z.) < (z**,z") + (=™, %) — (™, z") = (z**, z*).
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Now, from (3),
(z*,z*) < 7" (™) + 7" (z") < liminf(z},z,.) < limsup(w:,wp) < (z*™,z"),

which shows that z** € 95*(z*). Thus, —z* € T(z**) and z* € d(j*) "' (z**),
which completes the proof. |

COROLLARY 3.7. IfE is reflexive and T: E — 2F" is maximal monotone,
then R(T + \J) = E* for every A > 0.

Proof. Tt follows directly from the definitions that for a reflexive space E,
one has §(j*)~! = J and, as has been noted earlier, T' = T', so the corollary
is immediate. [

THEOREM 3.8. If T' is of maximal monotone of type (D), then R(T) is
convex.

Before proving this, we need the fact that if T is maximal monotone of
type (D) and z* € co R(T'), then there exists z € E such that

sup (Y™ —2,z" —y*) < o0.
(y**.y*)€G(T)

This follows in a straightforward way from the following lemma and the defi-
nition of type (D). Note that if T is of type (D), then R(T) C R(T).

LEMMA 3.9. Suppose that E and F are linear spaces in duality and that
T: E — 2F is monotone. If z* € co R(T), then there exists z € co D(T') such
that '

sup (y* —z*,z—y) < 0.
(v,y*)€G(T)

Proof. Suppose that z* = " t;z} where t; > 0, > t; = 1 and z} € R(T),
so there exist z; € E such that =} € T(z;). Take z = ) t;z;; then for any
(y,y") € G(T),

(" —a% e —y) = (" = D_tal, D tims —y) = D _tit; (" — i, 35— )
i,j
= ztitj(y* -5,z — Y) +Ztitj($; — T}, %5 — Y)
— v

S Ztﬂf](x; - xf,xj — y) = tht1<$; - :z:;,.'z:j - 113,;),
i,J i<j

which proves the lemma, since the last term does not depend on y or y*. §
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Proof of Theorem 8.8. Note that it suffices to show that co R(T") C R(T),
since this implies that o R(T) C R(T) C © R(T). Suppose, then, that z* €
co R(T). By Theorem 3.6, for each A > 0 there exists y; € E*, z3* € j*(v3})
and z; € T(z}*) such that z* = Ay} + 2. By the foregoing remark, there

exists z € E such that

*

(x,\* - f",‘l‘c* - Z;) = ’\<:L‘;* - "i" y;)
is bounded above for all A > 0. It follows that for some M > 0 (and all A > 0),
Mlyal® < M1+ AMlyall* = 2Ma%", y3) < M+2My5, 7) < M+2) 3l [l

From this we see that Ay} — 0 as A — 0; indeed, if there were a sequence A, —
0 such that ||A,y} || were bounded away from 0, then we would necessarily
have ||y} || = oo and dividing both sides of the inequality above by A,y ||
would lead to a contradiction. Thus, z* — 2§ = Ay} — 0; since z; € R(T),

this shows that z* € R(T) C R(T). (Since R(T) C R(T), their closures are in
fact equal.) 1

COROLLARY 3.10. IfE isreflexiveand T': E — 2F" is maximal monotone,
then both R(T) and D(T') are convex.

Proof. By Example 3.2(b), if T' is maximal monotone, then it is maximal
monotone of type (D), so it follows from Theorem 3.8 that R(T") is convex.
By applying this result to the maximal monotone operator 7! we obtain
convexity of R(T-') = D(T). 1

DEFINITION 3.11. Anoperator T': E — 2F is said to be coercive provided
D(T) is bounded or there exists a function ¢: Rt — R such that ¢(r) — oo
when r — oo and (z*,z) > ¢(||z]|) - ||z| for each (z,z*) € G(T).

Remark. 1t is easily verified that if D(T') is unbounded, then T is coercive
if and only if for every M > 0 there exists 7 > 0 such that

*

(z*, )

[l

Indeed, if this holds, take ¢(r) = inf{"l”l*T’”wz: lz|| > r and z* € T'(z)}.

> M whenever ||z|| >r and z* € T(z).
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EXAMPLSE 3.12. (a) The duality mapping J is an obvious example of a
coercive operator, since (z*,z) = ||z||*> whenever z* € J(z).

(b) If T is a positive linear operator and A > 0, then T + AJ is coercive:
If z € E and z* € (T + AJ)(z), then z* = T(z) + A\z* for some z* € J(z)
and hence (z*,z) = (T(z),z) + A(2*,z) > A||z||*>. From the Remark following
Problem 2.20, it follows that T+ AJ is also maximal monotone.

(c) Recall that a function ¢: R — R is a monotone operator if and only if it
is nondecreasing. It is easily seen that ¢ is coercive if and only if p(t) — +oo
as t — £oo0.

EXERCISE 3.13. Show that if T is coercive, then so is T: E** — 2E,

THEOREM 3.14. (Gossez) Suppose that T is a coercive maximal mono-
tone operator of type (D). Then R(T) = E* and hence R(T) = E*.

Proof. It is clear from the definition of type (D) that one always has
R(T) = R(T). Suppose, then, that z* € E*. By Theorem 3.6, for each A > 0
there exist y; € E*, z}* € 85*(y}) and 2} € T(z}*) such that z* = Ay} + 23.

We have
(z3r, 2%) = May, yx) + (23, 23) = Az |® + (257, 25).

Since (Exercise 3.13) T is coercive, if {||z3*||} were unbounded as A — 0, the
right side of ( ) ( >

* 93;*,"1:* * ‘Tf\*:z;
would be unbounded, an impossibility. Thus, the bounded net {z}*} has a
subnet (call it {z}*}) converging in the o(E**, E*) topology to an element
z** € E*. We will show that z* € T(z**) by showing that (z**,z*) is
monotonically related to G(T'). Suppose, then, that (u,u*) € G(T'). Since
z} = z* — Ay}, we have

0< () — 4,2} —u*) = (2} — 4,2" —u*) — Mz} — 4,y}).

Recall that z3* € 95*(y}) implies boundedness of ||y}|| = ||z}*||, so the second
term on the right converges to 0 as A — 0, yielding 0 < (z** — 4,z* —u*). 1

COROLLARY 3.15. If FE is reflexive and T is a coercive maximal monotone
operator on E, then R(T) = E*.
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Proof. Simply use the fact that reflexivity implies that T =T. 1

The fact (Proposition 2.17(c)) that E is reflexive if R(J) = E* shows that
one cannot omit reflexivity from this result.

In order that R(T) be convex it is not necessary for T' to be maximal
monotone of type (D). This was shown by Gossez [13], [14] with the help of
the following example.

EXAMPLE 3.16. Let A be defined on the nonreflexive space ¢; as follows:
For each z = (z;) € 41, let {A(z),} be the £, sequence defined by

(Az), = — ka + ka.

k<n k>n

It is not hard to verify that A is bounded, linear and antisymmetric (that is,
(Az,y) = —(Ay, z) for all z,y € ¢;) hence is monotone, satisfying (Az,z) =0
for all z. This latter means that, in particular, A is a positive operator,
hence it is maximal monotone. The range R(A) of A is a linear subspace
(hence is convex and has convex closure) which is properly contained in the
proper closed subspace c of £, consisting of all convergent sequences. (Indeed,

lim, 00 (AZ)n = — Y e ; Tk-)

Gossez [13] uses the operator A by showing that there exists A > 0 such
that R(A+ AJ) is not dense in £¢,,. This shows that A+ AJ is not of type (D),
in view of Theorem 3.14 and the fact that A + AJ is maximal monotone and
coercive (Example 3.12(b)). Thus not all maximal monotone operators (not
even the coercive ones) are of type (D). Subsequently, he showed [14] that the
fact that R(A + A\J) is not dense in £, implies that its closure is not convex,
that is, there exists a coercive maximal monotone operator 1" on £¢; such that

R(T) is not convex.

4. LOCALLY MAXIMAL MONOTONE OPERATORS

As we have seen, some of the nice properties of maximal monotone opera-
tors on reflexive spaces fail to hold in general, but are valid for the subclass of
maximal monotone operators of type (D). In this section we introduce another
subclass which shares some of the same properties.

DEFINITION 4.1. A set-valued mapping T: E — 2F" is said to be locally
maximal monotone if, for each norm-open convex subset U C E* which in-
tersects R(T'), the restriction of the inverse operator 7! to U is maximal
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monotone in U. The latter means that the graph G((T')|y) CU x E is a
maximal monotone subset of U x E.

The “working definition” of this property is the following: If U is an
open convex subset of E* which intersects R(T) and if (z,2*) € E x U is
montonically related to each (y,y*) € G(T) N (E x U), then (z,z*) € G(T).
It is clear (take U = E*) that every locally maximal monotone operator is
maximal monotone. ‘

The locally maximal monotone operators were introduced in [9] because
they are the precise class for which a certain approximation scheme is valid.
While their exact position within the class of all maximal monotone operators
is still unclear, some important properties are known.

PROPOSITION 4.2. (i) If T is locally maximal fnonotone, then R(T) is
convex.

(ii) If f is a proper lower semicontinuous convex function on E, then Of is
locally maximal monotone.

The proof for (i) may be found in [9]. Property (ii), which is a nontrivial
extension of Rockafellar’s maximality theorem (Theorem 2.15), was proved by
S. Simons [26]; see, also, [27]. In order to see that maximal monotone operators
in reflexive spaces are locally maximal monotone, we first reformulate the
definition.

PROPOSITION 4.3. A monotone operator T on E is locally maximal mono-
tone if and only if it satisfies the following condition: For any weak* closed
convex and bounded subset C' of E* such that R(T) Nint C # 0 and for each
z € E and z* € int C with z* ¢ T(z), there exists z € E and z* € T(z) NC
such that (z* — 2*,z — z) < 0.

Proof. In one direction, if T is locally maximal monotone and C is given,
let U = intC. In the other direction, if U is open and convex in E*, if
v € Fand z € E with v*€T(u)NU and z* € U but z* ¢ T(z), then
there exists € > 0 such that u* + eB* C U and z* + eB* C U. By convexity,
C = [u*,z*] + eB* is a weak* closed, convex and bounded subset of U which
can be used to verify that U has the required property. 1

The only use of reflexivity in the next proposition is an application of
Theorem 2.19 (on the sum of two maximal monotone operators in a reflexive
space).
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PROPOSITION 4.4. If E is reflexive and T is maximal monotone on E,
then it is locally maximal monotone.

Proof. Suppose that C is weak* closed and convex and that int CNR(T) #
(. Suppose also that z* € int C but z* ¢ T(z). Let T} denote the inverse !
of T and let T, = 9é¢c. Since int D(T3) = int C, these are maximal monotone
operators from E* into E for which D(T}) Nint D(T;) # 0; by Theorem
2.19, their sum T; + T3 is ma.ximal monotone. Now z* ¢ T'(z) implies that
z ¢ Ti(z*), and since Ty(z*) = {0}, we see that z ¢ Ti(z*) + T>(z*). By
maximality of T} + T3, there exists z* € D(Ty) N D(Tz) = R(T) N C and
z € (T} + T3)(2*) such that (z* — z*,z — z) < 0. We can write z = u + v,
where u € T;(2*) (that is, 2* € T(u)) and v € Ty(z*). The latter means that
(z* — w*,v) > 0 for all w* € C. We have thus produced z* € T'(u) N C such
that

0> (z*—2"z—u) — (z" —2z*,v) > (2" — 2",z — u),

showing that T satisfies the condition in Proposition 4.3 and is therefore locally
maximal monotone. 1

Recall Gossez’s Example 3.15 of the linear maximal monotone operator
A: £y — L. Tts interest in this context is the fact that, even though R(A)
is linear (hence convex), A is not locally maximal monotone, so not every
maximal monotone operator is locally maximal monotone.

EXAMPLE 4.5. The operator A is not locally maximal monotone.

Proof. Let e = (1,0,0,...), considered as an element of either ¢; or /.,

and let
/11011 ,
z = —5,2—3,2—4,2—5,... € £

Some computations using the definition show that (Az); = } while for n > 2,
(Az), = % + 55 + 535+. Moreover, e — Ae = (1,1,1,...) and |le — Az||, = 2,
so if U is the open unit ball in 4., then 2* =e— Az € U. Let z = e — 2. If
u € £; and Au € U, then lim,,_, |(Au)n| = | > pe; x| < 1 and hence

(z* — Az,u) = (e — Ae,u) zuk<1

while

(.’L‘*’x) = (6,6) - (AZ,B) - (e,z) = 1—(Az)1 — 2z = 1_%+%> 1.
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Thus, z* # Az even though
(z* — Au,z —u) = (z*,z) — (Au, z) — (z*,u) = (z*,z) + (Az,u) — (z",u) >0

whenever Au € U, contradicting the definition of locally maximal mono-
tone. §

We still do not know whether the class of maximal monotone operators
of type (D) is actually different from the class of locally maximal monotone
operators. To see that for coercive operators, the former class is contained in
the latter, we need two preliminary results. The proof of the following identity
consists of an elementary but tedious computation.

PROPOSITION 4.6. Ifu,v,z € E, u*,v*,z* € E* and X € [0, 1], then

M+ (1= —z*,  u+ (1 —-A)v—z)
=XMu' —z"u—z)+ (1 - A){v* —z",v — )

=21 -2 {u* —v*u—v)

LEMMA 4.7. Suppose that T is a maximal monotone operator, that U is
an open subset of E* and that 2* € U \ T(z) is such that (z* — z*,2 —2) > 0
for all z* € T(z) NU. Then there exist b € E, b* € U and r > 0 such that for
allz» € T(z)NU,
(z* =b"z—b) >

Proof. Since T is maximal monotone there exists y* € T(y) such that
(y*—2*,y—2) < 0. Let 1 > XA > 0 be such that b* := Az*+ (1 —X)y* € U and
let b= Az + (1 - A)y. Then, using the identity (4.1), for all z* € T'(z) N U we
have

(IL" —b*,.'l,‘—-b) = A(:l,‘* _2*79:—2) +(1 —/\)(2,‘* —ytax_y>
— A1 =) —y" 2 —y)
>-A1=2){z"-y",z—y) >0

so we may set 7 = —A(1 = A)(z* —y*,z—y)>0. 1§

THEOREM 4.8. Suppose that T is a maximal monotone operator such that

either (i) R(T) = E* or (ii) R(T) = E* and T is coercive. Then T is locally
maximal monotone.
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Proof. Suppose, first, that R(T) = E*, that U C E* is open and convex
and that z € E, z* € U are such that (z* —z*,2 —z) > 0 for all z € E such
that z* € T(z) NU. If z* ¢ T(z), then there would exist b € E, b* € U and
r > 0 as in Lemma 4.7. Since b* € R(T') by hypothesis, there exists ¢ € E
such that b* € T(z) NU and hence by Lemma 4.7, (b* —b*,z —b) >r >0, a
contradiction.

Suppose, next, that R(T') is dense in E* and that T is coercive. If T
were not locally maximal monotone, we could find an open convex subset
U C E* with UN R(T) # 0 and elements z € E and z* € U\T'(z) such that
(z* —z*,z—x) > 0 whenever z € F and z* € T(z) NU. Choose b, b* and r as
in Lemma 4.7. Since R(T) is dense in E*, we can find z,, € E and z;, € T(z,)
such that ||b* — zX|| — 0. But then for all sufficiently large n, we would have
z; € U and hence

r <z — b,z — b) < ||z, — b*|ll|lzn — b,

which would imply that ||z, — b|| = oo. Coercivity would then imply that
|zx]| = oo, again a contradiction. §

COROLLARY 4.9. If T is maximal monotone, coercive and of type (D),
then it is locally maximal monotone.

Proof. Recall that by Theorem 3.14, the fact that 7" is coercive and max-

imal monotone of type (D) implies that R(T) = E*. 1

Recall Problem 2.20: If E is a nonreflexive Banach space and S and T are
maximal monotone operators such that D(T') Nint D(S) # 0; is S + T neces-
sarily maximal? What about the special case when S is the subdifferential of
the indicator function dc of a closed convex set C for which int CND(T) # 07

It is not unreasonable to ask whether these questions have affirmative
answers when the maximal monotone operators are of type (D), or are locally
maximal monotone.

ADDED IN PROOF: For the most recent results on Problem 2.20 (as well as a
detailed treatment of many aspects of monotone operators on general Banach
spaces) see the forthcoming monograph ”Minimax and Monotonicity” by S.
Simons (in preparation).
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