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The Johnson-Lindenstrauss space is a Banach space containing an uncom-
plemented copy of ¢, the quotient by which is a non-separable Hilbert space.
This serves as a counterexample for many questions [3]. We are indebted to
the organizers for suggesting that we talk about this space. This has forced
us to think about the general problem of whether every copy of ¢, in a given
Banach space is complemented. First, a positive result. Say that a topological
space has the Veech property if every separable subset is metrizable.

THEOREM. (Sobczyk’s Theorem) (i) Let K be a compact Veech space.
Then every isometric copy of ¢y in C(K) is complemented.

(ii) Let X be a Banach space whose dual ball, equipped with the weak*
topology, has the Veech property. Then every isomorphic copy of ¢y in X is
complemented.

The isometry requirement in (i) can be relaxed a little; it suffices to assume
that each coordinate functional (on the copy of ¢p) is an extreme point of the
dual ball. Since the dual ball of a separable space is weak* metrizable,c, is
complemented in any separable superspace. This is what Sobczyk [20] origi-
nally proved, with a simpler proof given later by Veech [21], [15, Proposition
2.4]. Rosenthal observed in [21] that the same proof yields the stronger re-
sult (ii), and that weakly compactly generated spaces satisfy this hypothesis.
Note that the property in (ii) passes to subspaces, since the Veech property
obviously passes to continuous images.

So a Banach space containing an uncomplemented copy of ¢, cannot be
separable. Here we study 3 such examples. The first is £, a result first proved
explicitly by Phillips [19] and implicitly by Nakamura and Kakutani [16, §7]
with a simpler proof being given by Whitley ([22] or [15, Theorem 2.2]). We
give another simple proof here, and show how it leads to two further examples:
a certain C(K) space, and the Johnson-Lindenstrauss space.
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ExXAMPLE 1. In £, the subspace ¢, is not complemented.

Proof. Like several known proofs, we begin with the fact that there is an
uncountable family {INV, : v € '} of infinite subsets of the natural numbers
such that the intersection of any two of them is finite [16]. Denote by X, the
characteristic function of INV,, and let X be the closed linear span of ¢, U {X,, :
v € I'}. We will show that ¢y is not complemented in X; this clearly implies
that cq is not complemented in /.

For any finite linear combination z = Y_;_; A\;X,,, it is easy to find some
Yy € ¢o (in fact, with finite support) such that ||z — y|| = max?; |\;|. This
implies that the quotient X/c, is isometric to ¢o(I'). Now note that X* is
weak* separable (since X C £), whereas ¢p(I')* is not (any countable subset
of £,(T") has countable support and so is contained in a weak* closed separable
subspace). Thus ¢y(I') cannot be isomorphic to any subspace of X. In par-
ticular X is not isomorphic to ¢y(I') @ ¢y and ¢, is not complemented in X.

Recall that a topological space is said to be scattered if every subset has
an isolated point. We write K' for the derived set of K, i.e. the set of non-
isolated points, and K™ for the n'* derived set; thus K(*) = K" etc. It is well
known (see e.g. the survey [24]) that C(K) is an Asplund space if and only if
K is scattered. Throughout, K is compact.

EXAMPLE 2. There is an Asplund C(K) space containing an uncomple-
mented copy of ¢y. Furthermore K is separable and C(K) is Lipschitz home-
omorphic to ¢o(I") (for some uncountable set I') even though neither of these
Banach spaces is isomorphic to any subspace of the other. Also C(K) admits
an equivalent Fréchet smooth norm.

Proof. We simply look at the previous example in more detail. Let A =
X + Rl be the sum of X and the constant functions. Then A is clearly a
subalgebra of £.,; by the Stone-Weierstral Theorem it must be isomorphic to
some C'(K) space. Of course A contains an uncomplemented copy of ¢y. This
space was first defined by Johnson and Lindenstrauss [13, Example 2], and
later studied further by Aharoni and Lindenstrauss [1].

Since being Asplund is a 3-space property, C(K) must be an Asplund
space. An easier way to see this is to identify K directly. It is not hard to
see that K is homeomorphic to the one-point compactification of the disjoint
union NUT', topologized as follows:
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e For every n € N, any set containing n is a neighborhood of n.

e For every v € T, a set S is a neighborhood of v if (and only if) v € S
and N, \S is finite.

It is obvious that K is scattered and separable. Since the subset I' is
not separable, K cannot be metrizable. This is perhaps the simplest known
example of a separable compact Hausdorff space which is not metrizable.

There are several ways to see that C(K) is not isomorphic to any subspace
of ¢o(T'). The following seems to be the most elementary. A simple direct
argument shows that c¢o(I") satisfies the hypothesis of Sobczyk’s Theorem. In
particular, ¢y is complemented in any Banach space isomorphic to a subspace
of ¢o(I"). However c; is not complemented in C(K). So neither of C(K) or
¢o(T") is isomorphic to any subspace of the other.

It is shown in [1] that C(K) is Lipschitz homeomorphic to co(I'). A Fréchet
smooth norm for C(K) was first given explicitly in [13], with a construction
similar to that given below in Example 3. 1§

More generally, if K is any compact Hausdorff space whose n* derived set
K™ is empty for some finite n, it is shown in [8, Theorem 3] that C(K) is
Lipschitz homeomorphic to ¢o(I') for some I', and in [7] that there is a Fréchet
smooth norm for C(K). However there are C(K) Asplund spaces which do
not admit even a Gateaux smooth norm [10].

The class just described contains all known examples of Banach spaces
which are Lipschitz equivalent but not isomorphic. In particular, there is still
no known example of two non-isomorphic separable Banach spaces being Lip-
schitz equivalent. It is possible to prove that if K is scattered, then C(K)
is cp-saturated, i.e. that every infinite-dimensional subspace contains an iso-
morphic copy of ¢q [18]. It has been conjectured that whenever two Banach
spaces are Lipschitz homeomorphic, then they have the same separable sub-
spaces. This is true in the reflexive case: more generally, if X and Y are
Lipschitz homeomorphic, then every separable subspace of X is isomorphic to
a subspace of Y** [11].

There is not enough space here to say much about this subject, for which
we refer to the ground-breaking paper [11] or the survey [23]. Of course,
reflexivity is preserved by Lipschitz homeomorphisms. We mention just one
more typical result: for 1 < p < oo, any Banach space Lipschitz equivalent to
¢, is actually isomorphic to £,. This has recently been proved also for uniform
homeomorphisms [14]. For p = 1 the problem remains open.
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It is high time to introduce the few elementary facts about WCG spaces
which we need. None of them are deep; it is worth emphasizing that we do not
need to know anything about projections in WCG spaces, or injections into
¢o(T"). First of all, a Banach space is said to be weakly compactly generated
(WCG) if it contains a weakly compact set whose linear span is dense. The
most natural examples are reflexive spaces, separable spaces, the spaces ¢o(I")
and the spaces L, (1) for p a o-finite measure. The following well known result
is often proved using barycentres. The argument here does not require any
knowledge of measure theory.

THEOREM. If K is a weakly compact subset of the Banach space X, then
the restriction map R : X* — C(K) is weak* to weak continuous. If K
generates X, then R is injective.

Proof. [12, proof of Theorem 4] Recall that u(X*, X), the Mackey* topol-
ogy on X*, is the topology of uniform convergence on weakly compact sub-
sets of X.This is a natural topology to work with in WCG spaces. Since R
is Mackey* to norm continuous, it is continuous in the corresponding weak
topologies. But the dual of X* under u(X*, X) is just X, so R is weak* to
weak continuous. Clearly R is injective if K generates X. |

The bulk of the next result was first proved in [2].

COROLLARY. For any Banach space X, the following are equivalent:

(i) X is weakly compactly generated.

(ii) There is a Banach space Y, and an injective weak* to weak continuous
linear mapping T : X* - Y.

(iii) The unit ball of X*, equipped with the weak* topology, is affinely home-
omorphic to a weakly compact subset of a Banach space.

In particular, WCG spaces satisfy the hypotheses of Sobczyk’s Theorem.

Proof. The preceding theorem shows that (i) implies (ii). For the converse,
note that the adjoint 7* : Y* — X is weak* to weak continuous and has dense
range. The equivalence of (ii) and (iii) should be clear. The final assertion
follows from the well known easy exercise that every weakly compact subset
of a separable space is (weakly) metrizable. N

For spaces of continuous functions, the word “affinely” in Corollary 1 is
redundant.



THE JOHNSON-LINDENSTRAUSS SPACE 189

COROLLARY. [2] A C(K) space is WCG if and only if K is homeomorphic
to a weakly compact subset of a Banach space.

Proof. (If) [12, Theorem 4] Suppose that K is a weakly compact subset of
some Banach space X, and write U for the unit ball of X*. In the notation of
the preceding theorem, L = R(U) is a weakly compact subset of C'(K) which
separates the points of K.

Routine arguments show that L™, the set of n-fold products of elements
of L, is a weakly compact subset of C(K). (Use Lebesgue’s Theorem to show
that a bounded pointwise convergent sequence is weakly convergent.) If we
assume that L is contained in the unit ball of C(K), then {1}UU;2, L™ will
be a weakly compact set, whose linear span is a subalgebra of C(K). By the
Stone-Weierstral Theorem, C(K) is WCG.

(Only if) If C(K) is WCG, Corollary 1 tells us that the unit ball of C(K)*,
equipped with the weak* topology, is homeomorphic to a weakly compact
subset of a Banach space. But K embeds therein. i

This can be used to give an alternative proof that Example 2 is not WCG.

Let us say that X is an extension of Y by Z if X contains (a subspace
isomorphic to) Y and X/Y = Z. The extension is said to be non-trivial if
Y is not complemented in X. Note that the space C(K) of Example 2 is
an extension of the separable space ¢, by the WCG space ¢o(I"). Thus being
WCG is not a 3-space property. It is proved in [4] that any extension of a
separable dual space by a WCG space is already WCG. So it is not surprising
that the non-dual space cq should appear as the subspace in a counterexample
for the 3-space problem.

It is also proved in [4] that if every extension of Y by a reflexive space is
WCG, then every extension of Y by a WCG space is WCG. With hindsight,
we may confidently predict that there is an extension of ¢y by a reflexive
space which is not WCG. In fact, Example 2 can be modified to yield such
an example: this is the Johnson-Lindenstrauss space. The first step of their
construction is a special case of the result just stated.

LEMMA. Suppose that there is a non-WCG extension of some Banach
space Y by co(I'). Then there is a non-WCG extension of Y by £,(T).

Proof. Suppose that Y is a subspace of X and that X/Y = ¢y(I"). Let U
denote the £5(I') unit ball in ¢o(T"). Put V={z € X : |z| < L,z +Y € U},
and denote by Xy the linear span of V', equipped with the norm whose unit
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ball is V. Since the intersection V NY is simply the unit ball of Y, we see
that Y is a subspace of Xy. Clearly Xy /Y = £,(T"). Since V is bounded, the
inclusion mapping Xy — X is continuous; it obviously has dense range. Thus
if X is not WCG, Xy cannot be either. [

EXAMPLE 3. ([13]) There is a Banach space JL containing an uncomple-
mented copy of ¢y, for which the quotient is a non-separable Hilbert space.
It follows that JL™ is WCG, although JL is not. Furthermore,JL" is weak*
separable, although its unit ball is not. Also, JL admits an equivalent Fréchet
smooth norm.

Proof. We follow the notation of Examples 1 and 2. Applying the Lemma
to the latter gives us a non-WCG extension of ¢y by £5(T"), which we denote
by JL. Clearly ¢y is not complemented in JL since JL is not isomorphic to
the WCG space ¢y @ £>(I"). It follows from the lifting property of ¢; that
JL* = 4, @ £,(T). Thus JL™ is WCG.

The inclusion mapping JL — £, is continuous, so JL* is weak* separable.
(A word of caution here: if X is a Banach space, E is a dense subspace, and
E* is weak* separable, we cannot always conclude that X* is weak* separable
[9, Example 1.1].) It can also be shown that no non-separable subspace Y
of JL is isomorphic to any subspace of 4,,. More precisely [13, p.223], if ¥V
contains ¢y, then for any sequence (f,) C JL* and any € > 0, thereisanz € Y
with ||z|| > 1 —¢ and |f,(z)| < ¢ for all n. As observed in [6], this implies that
the unit ball of JL* is not weak* separable; see the following Proposition.

To continue, let us study the weak* topology more closely. Since the linear
span of all the vectors e, and X, is dense in JL, a bounded net (y,,z,) in
2, @ £5(T") converges weak™ to (y, z) if and only if y,(n) — y(n) for each n and
Yonen, Ya(n) + za(7) = Xhen, y(n) + 2(7) for each v € I'. In particular the
net (e,)nen, in £; converges weak™ to e, in £,(I"). This proves again that JL*
really is weak* separable.

Now we exhibit a Fréchet smooth norm on JL. If on ¢;, we denote by || - ||,
and || - ||> the natural and £, norms respectively, then

Gy, )11 = llylls + (llyllF + llyl3 + [121%)*

defines a locally uniformly convex dual norm on ¢; & ¢,(T°). |

We remark that the index 2 in the construction of JL is not important.
For 1 < p < 0o, we can construct a non-WCG extension of ¢, by £,(I'). The
choice p = oo returns us to Example 2. The choice p = 1 is not interesting
because ¢;(I') is not WCG when I is uncountable.



THE JOHNSON-LINDENSTRAUSS SPACE 191

PROPOSITION. [6] The unit ball of a dual space X* is weak* separable if
and only if X is isometric to a subspace of {,. A dual space X* is itself weak*
separable if and only if there is an injective operator T : X — {o.

Proof. (If) In both cases, consider the transpose of the given mapping
X > l.

(Only if) Choose a sequence (f,) which is weak* dense in the dual ball
(respectively, which is bounded and separates points of X'). Define T : X — £,

by Tz = (fn(z)). 1

Historically, JL was the first example of a non-WCG space with WCG dual.
The first counterexample to the 3-space problem for WCG spaces was D|0, 1],
the space of continuous functions on the “split interval” space [5, Example
2]. In this example, the subspace is C[0,1] and the quotient space is ¢o(T).
This Banach space is not weakly Lindelof (since the uncountable collection
of characteristic functions X(; is closed and discrete in the weak topology)
and hence it is not WCG. In fact the existence of a Banach space with these
properties can easily be deduced from (the historically later) Example 2. Let
Y be any Banach space containing a complemented copy of ¢y, in particular
C[0,1]. Then X = (Y/cy) ® C(K) is a non-trivial extension of Y by ¢o(I').

It is natural to attempt to apply the Johnson-Lindenstrauss modification
to D[0,1], as well to Example 2. This leads to a Banach space X containing
an uncomplemented copy of C' = C[0,1] such that X/C is a non-separable
Hilbert space. This can also be deduced by applying the argument of the
previous paragraph to JL. In effect, we have a commutative diagram here:
starting with Example 2, these two processes can be applied in either order.

There is even a non-trivial extension of D[0,1] by ¢(T") (or £,(I") for 1 <
p < 00) since DJ0, 1] contains a complemented copy of ¢q [17].
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