On Weakly Uniformly Convex Spaces According to Calder

PIER LUIGI PAPINI

Dipartimento di Matematica, Università di Bologna, Piazza Porta S. Donato, 5, 40127-Bologna, Italy

AMS Subject Class. (1991): 46B20

1. Weak forms of strict and uniform convexity Appearing in the literature

Throughout this paper, X denotes a normed linear space, of dimension at least 2, over the real field \mathbb{R} . U(X) denotes the unit (closed) ball of X, and $\Sigma(X)$ its unit sphere; we shall also denote these sets simply by U and Σ when no confusion can arise.

Given x and y in X, we denote by $[x, y]^d$ the "metric segment" determined by x and y:

$$[x,y]^d = \{z \in X : ||x-z|| + ||z-y|| = ||x-y||\}.$$

We define, for X given, the following functions: for $x, y \in U$, we set

$$(1.2) \quad \delta^*(x,y) = \sup\{1 - \|w\| \colon w \in [x,y]^d\} = 1 - \inf\{\|w\| \colon w \in [x,y]^d\}.$$

Moreover, for $\epsilon \in [0, 2]$, we set:

(1.3)
$$\delta^*(\epsilon) = \inf\{\delta^*(x,y) \colon x,y \in \Sigma; \ \|x-y\| \ge \epsilon\};$$

(1.4)
$$\delta_1^*(\epsilon) = \inf\{\delta^*(x,y) : x, y \in U; \ \|x - y\| \ge \epsilon\};$$

(1.5)
$$\delta_2^*(\epsilon) = \inf\{\delta^*(x,y) \colon x,y \in \Sigma; \ \|x-y\| = \epsilon\};$$

(1.6)
$$\delta_3^*(\epsilon) = \inf\{\delta^*(x,y) \colon x,y \in U; \ \|x-y\| = \epsilon\}.$$

Note that for any pair $x, y \in U$:

$$0 < \delta^*(x, y) < 1$$

and that

$$0 < \delta^*(\epsilon) = 1 - \sup\{\{\inf \|w\| : w \in [x, y]^d\} : x, y \in \Sigma; \|x - y\| \ge \epsilon\} \le 1.$$

Similar relations hold for the other three functions now defined.

The following definition was introduced in [1]. Say that X is "weakly uniformly convex" if the following property holds:

(C)
$$\delta^*(\epsilon) > 0$$
 for all $\epsilon \in (0, 2]$.

We shall say that X is weakly d-uniformly convex, (W_dUC) for short, when it satisfies (C).

Also, it was shown in [1], Theorem 3.2, that X satisfies (C) if and only if

(C#) for $\epsilon > 0$ there exists $\delta > 0$ such that if $||x|| = ||y|| = 1 + \delta$ and $||x - y|| \ge \epsilon$, then there exists $w \in [x, y]^d$ such that ||w|| < 1.

Successively, in [2], the same property was considered but with a slightly different definition, obtained by changing (C) into

(C')
$$\delta_1^*(\epsilon) > 0$$
 for all $\epsilon \in (0, 2]$.

In [3] similar notions were introduced in the more general context of metric spaces, together with the similar "non-uniform" definitions (these properties were called there "uniform M-convexity" and "strict M-convexity"; the prefix M stands for Menger, who first considered, in 1928, the property d(x,z) + d(z,y) = d(x,y)). Such definitions were made precise in [6], where it was indicated that most "results" in [3] were not clear or correct. We note in passing that also a proposition indicated in [6] (Theorem 2) is wrong, namely the proposition saying that any closed set A is "d-convex"; i.e., $x,y \in A$ implies $[x,y]^d \in A$: in fact, we see that this is not true by simply considering as A a set like $\{x,y\}$ with $x \neq y$.

The definitions of [3] are the following.

The space X is "strictly M-convex" if the following condition holds:

(Ch*) for every triplet x, y, t in X all different, r > 0, $||x-t|| \le r$ and $||y-t|| \le r$, there exists $z \in [x, y]^d$, z different from x, y, t, such that ||z - t|| < r.

The space X is "uniformly M-convex" if the following condition holds:

(Ch) for every pair of positive numbers ϵ, r , there corresponds a positive number δ such that for every triplet x, y, t in X all different and satisfying $||x-y|| \ge \epsilon$, $||x-t|| < r + \delta$, $||y-t|| < r + \delta$, there exists $z \in [x,y]^d$ such that ||z-t|| < r.

After a translation and a change of scale (with a proof similar to that of the equivalence between (C) and $(C^{\#})$), it is possible to see that the conditions (Ch) and (C') are equivalent.

The above notions have been quoted very seldom in the literature: we only recall that in [5], 5.15, it was noted that (C) does not imply "weakly normal structure" for the space.

We recall that the term weakly uniformly convex space appears in general in the literature to denote a different notion, obtained by considering functionals in X^* (see e.g. [4]).

2. Some equivalences

We shall see that the above "different" definitions (and some related ones) agree. We start with a simple lemma.

LEMMA 2.1. If
$$[x', y'] \subset [x, y]$$
, then $[x', y']^d \subset [x, y]^d$.

Proof. Let
$$z \in [x', y']^d$$
, so $||z - x'|| + ||z - y'|| = ||x' - y'||$; then

$$||z - x|| + ||z - y|| \le ||z - x'|| + ||x - x'|| + ||z - y'|| + ||y - y'||$$

$$= ||x - x'|| + ||x' - y'|| + ||y' - y|| = ||x - y||,$$

so
$$z \in [x, y]^d$$
.

Note that $\delta^*(0) = \delta_1^*(0) = \delta_2^*(0) = \delta_3^*(0) = 0$; $\delta^*(2) = \delta_1^*(2) = \delta_2^*(2) = \delta_3^*(2) = 1$. The following inequalities are trivially true, in any space, for every $\epsilon \in [0, 2]$:

$$\delta_1^*(\epsilon) \le \delta^*(\epsilon)$$

$$\delta_3^*(\epsilon) \le \delta_2^*(\epsilon)$$

We shall now prove the following.

THEOREM 2.2. In any space X, we have, for every $\epsilon \in [0, 2]$:

(2.1)
$$\delta^*(\epsilon) = \delta_2^*(\epsilon);$$

(2.2)
$$\delta_1^*(\epsilon) = \delta_3^*(\epsilon).$$

Proof. The proof will be achieved by showing that, for every $\epsilon \in [0, 2]$, we have:

- a) $\delta_2^*(\epsilon) \leq \delta^*(\epsilon)$;
- b) $\delta_3^*(\epsilon) \leq \delta_1^*(\epsilon)$.

We prove a). Take $x,y\in\Sigma$; $\|x-y\|\geq\epsilon$, $0<\epsilon<2$. Let Y be the two-dimensional subspace of X generated by x and y. Take a functional $f\in Y^*$ such that $\|f\|=1$ and f(x-y)=0: let f(x)=f(y)=a>0; f(z)=1 for some $z\in\Sigma(Y)$. We can find x',y' in $\Sigma(Y)$ such that: f(x'-y')=0; $y'-x'=\lambda(y-x)$ for some $\lambda>0$; $\|x'-y'\|=\epsilon$: in fact, this is trivially true if a=1, otherwise it is enough to move the line passing through x and y along the direction of z. Let f(x')=f(y')=b ($a\leq b\leq 1$). Now take x''=(a/b)y', y''=(a/b)y': we have f(x'')=f(y'')=a. Moreover $\|x''\|\leq 1$, $\|y''\|\leq 1$ imply $[x'',y'']\subset[x,y]$.

Now, for any $\eta > 0$, we can choose u' in $[x', y']^d$ (but not necessarily in Y) such that ||x' - u'|| + ||u' - y'|| = ||x' - y'|| and $||u'|| < 1 - \delta^*(x', y') + \eta \le 1 - \delta^*_2(\epsilon) + \eta$.

But then, for u = (a/b)u' we have:

$$||x'' - u|| + ||u - y''|| = (a/b)||x' - u'|| + (a/b)||u' - y'|| = (a/b)||x' - y'|| = ||x'' - y''||,$$

so $u \in [x'', y'']^d$, and then also $u \in [x, y]^d$ (see Lemma 2.1). Therefore $\delta^*(x, y) \ge 1 - ||u|| \ge 1 - ||u'|| > \delta_2^*(\epsilon) - \eta$. Since $\eta > 0$ is arbitrary, this implies $\delta^*(x, y) \ge \delta_2^*(\epsilon)$: since this is true for all $x, y \in \Sigma$, $||x - y|| \ge \epsilon$, this proves a).

b) Let $x,y\in U$; $\|x-y\|\geq \epsilon,\ 0<\epsilon<2$. We can take x' on the segment joining x and y so that $\|x'-y\|=\epsilon$. For any $\eta>0$, there exists $u\in [x',y]^d$ such that $\|u\|<1-\delta^*(x',y)+\eta$. But then (by Lemma 2.1) also $u\in [x,y]^d$, so $\delta^*(x,y)=1-\inf\{\|v\|;v\in [x,y]^d\}\geq 1-\|u\|>\delta^*(x',y)-\eta\geq \delta_3^*(\epsilon)-\eta$. Since $\eta>0$ is arbitrary, this implies $\delta^*(x,y)\geq \delta_3^*(\epsilon)$ for all $x,y\in U$; $\|x-y\|\geq \epsilon$: thus b) is proved.

THEOREM 2.3. For any space X, we have, for every $\epsilon \in [0, 2]$:

(2.3)
$$\delta^*(\epsilon) \le \frac{2}{\epsilon} \delta_1^*(\epsilon)$$

Proof. Take $x, y \in U$; $||x-y|| \ge \epsilon > 0$. We want to show that $\delta^*(x,y) \ge \frac{\epsilon}{2}\delta^*(\epsilon)$. Assume that $0 < ||x|| \le ||y|| \le 1$; $||x|| \cdot ||y|| < 1$ (otherwise there is nothing to prove). Let $||x-y|| \ge \epsilon > 0$, then take w on the line joining 0 and y, such that ||w-x|| = ||w-y|| = s (of course $\epsilon/2 \le s < 1$). Then set $x' = \frac{x-w}{s}$, $y' = \frac{y-w}{s}$; we have ||x'|| = ||y'|| = 1; $||x'-y'|| = \frac{||x-y||}{s} > \epsilon$; so, given $\eta > 0$, there exists $k' \in [x', y']^d$ such that $||k'|| < 1 - \delta^*(\epsilon) + \eta$. If we set

k = w + sk', then we obtain: ||k - x|| + ||k - y|| = ||w + sk' - x|| + ||w + sk' - y|| = ||sk' - sx'|| + ||sk' - sy'|| = s(||k' - x'|| + ||k' - y'||) = s||x' - y'|| = ||x - y||, so $k \in [x, y]^d$;

moreover $||k|| \le ||w|| + ||sk'|| < 1 - s + s(1 - \delta^*(\epsilon) + \eta) = 1 - s\delta^*(\epsilon) + s\eta$, so $(s \ge \epsilon/2)$ we obtain $\delta^*(x, y) \ge 1 - ||k|| > \frac{\epsilon}{2}(\delta^*(\epsilon) - \eta)$. Since $\eta > 0$ is arbitrary, this concludes the proof.

COROLLARY 2.4. A space X is (W_dUC) if and only if one of the following four properties is satisfied:

- (C) $\delta^*(\epsilon) > 0$ for all $\epsilon \in (0, 2]$;
- (C') $\delta_1^*(\epsilon) > 0$ for all $\epsilon \in (0, 2]$;
- (C") $\delta_2^*(\epsilon) > 0$ for all $\epsilon \in (0, 2]$;
- (C''') $\delta_3^*(\epsilon) > 0$ for all $\epsilon \in (0, 2]$.

Consider now the following definition. We say that X is weakly d-strictly convex, (W_dSC) for short, when

(C*) $\delta^*(x,y) > 0$ for every pair x,y in $\Sigma, x \neq y$.

Concerning this property the following simple remark applies. It is possible to see that (Ch*) is equivalent to

 (C'^*) $\delta^*(x,y) > 0$ for every pair x, y in $U, x \neq y$.

It is also clear that (C'^*) implies (C^*) , but clearly also the converse is true. In fact, let (C^*) hold, and take x, y in $U, x \neq y$: if ||x|| = ||y|| = 1, then $\delta^*(x, y) > 0$ because of (C^*) ; otherwise, all points in the open segment (x, y) have a norm smaller than 1. So we have:

COROLLARY 2.5. Property (W_dSC) can be defined by any of the (equivalent) properties (C*), (C'*), (Ch*).

REFERENCES

- [1] CALDER, J.R., A property of ℓ_p spaces, *Proc. Amer. Math. Soc.*, 17 (1966), 202-206.
- [2] Calder, J.R., Concerning weakly uniformly convex spaces, J. London Math. Soc., 2 (1) (1969), 116–118.
- [3] CHATTERJEE, D., M-convexity and best approximation, Publ. Inst. Math. (Beograd) (N.S.), 28 (42) (1980), 43-50.
- [4] DAY, M.M., "Normed Linear Spaces", Springer Verlag, Berlin, 1973.

- [5] LANDES, T., Normal structure and hereditariness property, in "Functional Analysis and Approximation", (P.L. Papini ed.), Bagni di Lucca 1988, Pitagora ed., Bologna, 1989, 196-218.
 [6] NARANG, T.D., Some remarks on M-convexity and best approximation, Publ.
- Inst. Math. (Beograd) (N.S.), 37 (51) (1985), 85-88.