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Along this talk we plan to show examples and counterexamples related
to the coincidence of the space of n—Ilinear mappings and the space of n—
homogeneous polynomials constructed on a Banach or a Fréchet space. We
first recall, from a joint work with S. Dineen, the positive results that fix the
background for the examples.

Let E be an infinite dimensional Fréchet space. Denote by L(™E) the space
of n—Ilinear forms defined on E and by L,("FE) the subspace of symmetric
forms. L,("E) can be identified, via the Polarization Formula, to the space
of n—homogeneus polynomials on E. An n—homogeneous polynomial is the
restriction, to the diagonal of E™, of a symmetric n—Ilinear form.

We want to clarify the relationship between L("FE) and L,("E). On one
hand L,("E) is a canonically complemented subspace of L("E). On the other
hand L("F) is a complemented subspace of Ly("(E™)); the latter result is far
from being trivial, it is due to Bonet and Peris for n = 2 [1] and to Defant
and Maestre for n > 2 [2]. In particular, if E is isomorphic to its (cartesian)
square the spaces L("F) and L,("FE) contain each other as complemented sub-
spaces. This property implies that both spaces are very ‘alike’ and share many
topological properties but it is not enough to assure that they are isomorphic.

Concerning this point let us comment for a while the so called Schroeder-
Bernstein problem: Let X and Y be Banach spaces which contain each other
as complemented subspaces. Are they isomorphic? The answer is yes at least
in the following cases:

(S-B.1) One of the spaces, say X, is isomorphic to £,(X) for 1 < p < oo, or
p = 0. The proof is the celebrated Pelcynski’s decomposition method.

(S-B.2) Both spaces are isomorphic to their cartesian square. The proof is a
weak form of Pelcynski’s decomposition method.
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(S-B.3) The space X is isomorphic to its square and Y is isomorphic to Y2 x X.
It is proved in a similar way as (S-B.2). This condition arose in [4].

There is a recent and very important counterexample, due to Gowers [5],
for the Shroeder-Bernstein problem. Gowers constructs Banach spaces X and
Y such that X is isomorphic to X2, Y is isomorphic to Y3, and they contain
complementably each other, but they are not isomorphic.

In our particular case we proved [4] that L("E) is isomorphic to L,("E)
provided that F is isomorphic to its square. The main technical result is.

LEMMA 1. If E is isomorphic to its square then L(™E) is isomorphic to its
square and L,(™E) is isomorphic to L,("E)? x L("E).

As a consequence we obtain the following theorem.

THEOREM 1. If E is isomorphic to its square then L("E) is algebraically
isomorphic to L,("E), for every n. When both spaces are endowed, respec-
tively, with topologies 7 and Ty, the isomorphism is topological in each of the
following cases:

(i) 7, and 15 are compact open topologies.

(ii) 7 and 7, are the topologies of the uniform convergence on bounded sets.

(iii) 7, is the inductive dual topology (where L(™E) is considered as the dual
of the projective tensor product ®, .E) and T, is the topology induced
by the Nachbin ported topology, 7., which is defined on the space of
polynomials on E.

Moreover the projective tensor product ®, . E is isomorphic to the subspace
of symmetric tensors.

The first example arises to show that the hypothesis that E is isomorphic
to its square cannot be removed from the statement before.

ExaMPLE 1. Given 1 < p < oo we consider the following James space

k=1 [ nie1 p\ 1/p
Jp = ¢ (z;): sup  sup (Z ( Z w,-) ) < 00
' k

0=ng< - <ng j=0 \i=n;+1

The classical James space is J,. It was the first known Banach space non
isomorphic to its cartesian square. This is also true for every J,, 1 < p < oo,
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and it is deduced since the canonical embedding of J, in (J,,)" has codimension
one. It is known that J, is hereditarily £,, i.e. every closed subspace of J,
contains a copy of £,. Moreover it has the following property.

LEMMA 2. Every weakly null and normalized sequence of J, has a subse-
quence equivalent to the canonical basis of £,.

As a consequence of lemma 2 and Pitt’s Theorem, every continuous linear
operator from J, into (J,)' is compact if p > 2. It is then deduced that
the bidual of J,&,J, is (J,)"®x(J,)". Analogously the bidual of the subspace
Jp®; »J, of symmetric tensors is the space (J,)"®;.»(J,)" of symmetric tensors
of the biduals. Studying the canonical embeddings of the spaces into the
biduals yields the following conclusion.

THEOREM 2. The space L(*J,) is not isomorphic to any complemented
subspace of Ly(*J,) for p > 2.

The next example is a Fréchet space. It is also given to show the necessity
of the hypothesis of theorem 1.

EXAMPLE 2. Let us introduce some notation. If @ = () is an increasing
sequence of positive real numbers such that sup, log(n)/a, < co (respectively
lim, log(n)/a,=0), we define the power series space of infinite type (respec-
tively of finite type) Ao, () (respectively A;(a)) as the following Koéthe space:

(o]

Awo(@) = {(z:); (@)lle =) _ |z:l exp(kex) < oo, k € N},
i=1
respectively Ay (a) == {(@:); (z)lle = 3 |z:] exp(—au/k) < 0o, k € N}.
=1
Power series spaces were introduced by Grothendieck and have been thor-
oughly studied by several authors. The conditions relating (a,) with (logn)

are equivalent to the nuclearity of A,(a), 7 =1 or 7 = co. For these spaces
we obtain the following result.

THEOREM 3. A power series space E = A, (a), T = 1 or oo, is isomorphic
to its square if and only if L(*E) is isomorphic to a subspace of L,(*FE).

The last example shows that theorem 3 cannot be obtained for the class
of Banach spaces. We provide a Banach space X = C(f2) such that L(®X) is
isomorphic to L,(2X) but X is not isomorphic to its square.
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ExXAMPLE 3. (Semadeni) Let Q be the first uncountable ordinal. The space
of continuous functions C(2) is not isomorphic to its cartesian square [7].
Howewer its topological dual ¢, () is isomorphic to its square, moreover ev-
ery continuous linear mapping from C(Q2) into ¢,(f2) is compact; from these
properties it can be deduced that L(*C(f2)) is isomorphic to L,(2C(Q2)).

We finish this talk with some open problems which rise from the results
obtained so far.

QUESTION 1. Is L(%J;) isomorphic to L,(*J5)? (see Theorem 2).

QUESTION 2. Let E' be isomorphic to its square. Is L("E) isomorphic to
L,("E) for every n? (see Example 3).

QUESTION 3. (Jarchow) It follows from Theorem 1 that the space of con-
tinuous linear operators from ¢, into £,, considered as a space of infinite ma-
trices, is isomorphic to the subspace of symmetric matrices. Which is the
Banach-Mazur distance between both spaces?

I thank the Department of Mathematics; in particular, I am specially grate-
ful to Jesus Castillo, for inviting me to take part in this conference.
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