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1. INTRODUCTION

Against tradition for Banach spacers, linear maps in this paper have not
to be assumed continuous: they are (usually) not. More yet: when a map is
bounded we shall say so explicitly. If with such a map F the expression

1@y, 2)llF = lly + Fzl + [|2]

becomes (equivalent to) a norm has to be carefully considered. Actually, the
preceding map ||-|| is not a norm and we shall be lucky enough if it is equivalent
to a norm. So, the reader should not assume that the topologies involved are
locally convex at all. All expressions not explicitly explained have been taken
from [2].

2. THE KALTON - PECK FIT

The direct sum Y @ Z of two Banach spaces Y and Z is the algebraic
product Y x Z endowed with the norm ||(y, z)|| = |ly|| + ||z]|. It is a part of
the syllabus that ¥ and Z, identified with the subspaces {(y,0) : y € Y’} and
{(0,2): z € Z} are closed subspaces of Y ) Z such that Y + Z =Y x Z and
Y N Z = {0}, precisely what makes Y complemented in Y & Z.

When some element is modified above then the whole structure collapses
and Y ceases to be complemented in Y @ Z. The usual reason for this to
happen is that the alleged complement of Y, i.e. {(0,2) : z € Z}, is not closed
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in Y @ Z (and therefore it is not Z). There are other possibilities: that the
norm itself be twisted by some (homogeneous) map F': Z — Y, in the sense:

Iy, 2)llr = lly + Fz|l + |l]I;

or that {(y,0) : y € Y} is no longer a copy of Y.

These were the ways explored by Kalton [9], Kalton and Peck [10] and Ribe
[16], originating the theory of twisted sums. A twisted sum (by opposition
to direct sum) of Y and Z is a topological vector space X admitting ¥ as a
(nonnecessarily complemented) subspace in such a way that the corresponding
quotient X /Y is isomorphic to Z.

Just to keep up spirits let us display a twisted sum. Consider a dense
hyperplane H on an infinite dimensional Banach space X. Algebraically the
space X is nothing but < u > x H, and nevertheless the norm on < v > xH is
not the product norm; it has been “twisted” in the following sense: although
the natural imbedding < u > x H is continuous, the projection p(Au,h) = Au
is not. For the same reason, the quotient norm

]l = inf{||h + Aul|: A € R}

that makes H a Banach space is not the norm of H.

That everything here can be straightened is also clear. Indeed, there is a
continuous projection onto < u >, which has the form p(Au,h) = Au + Lh
for some linear map L: H — R. Maybe it is not excessively awkward to
mention now, as a warning, that this map L has to be obtained through the
Hahn-Banach theorem, either directly or as a closed complement of < u >.
To do so also amends the norm: ||[Au + h|| is (equivalent to) the product norm
|Au + Lh|| + ||h||. Threfore, one can think of the norm of X as the product
norm “twisted” by some linear map L: Z — R

Assume that both the subspace Y and the quotient space Z have been fixed.
Which maps F': Z — Y are suitable as “twisters” for the product norm? This
question is actually three questions: When gives the map || - ||r: Y X Z = R
defined as

1(y, 2)llr = lly + Fz|| + |||l

a reasonable vector topology on Y x Z (taking as closed unit ball the set of
all points (y,z) with ||(y,2)||r < 1)? When is || - || equivalent to a norm?.
When is itself a norm?

The first question finds an answer in Kalton and Peck’s theory of quasi-
linear maps (see [10]), which shall be explained next; the second question was
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solved in [1] (see also [4]) and we shall see how this question leads to the
definition of O-linear map; the third question was solved by D. Yost (see [1]
and [4]).

He has bought a large map representing the sea,

Without the least vestige of land:

And the crew were much pleased when they found out it to be
A map they could all understand.

3. THE ENFLO - LINDENSTRAUSS - PISIER FIT.

It was shown in [10] that twisted sums of Y and Z are in correspondence
with quasi-linear maps F' : Z — Y. These are homogeneous maps verifying
that for some constant K > 0 and all points z,y € Z

I1F(y + ) — Fy — Fz|| < K(|lyll + ll<)-

Given a quasi-linear map F, the formula ||(y, 2)||r = |ly + Fz| + ||z|| defines
a quasi-norm on Y X Z, that becomes in this way a twisted sum of Y and Z
denoted by Y Z; in particular, Y is isometric to the subspace Yy = {(y,0) :
y€Y}of Y @ Z and Z to the corresponding quotient. Moreover, all twisted
sums can be obtained in this manner. No, there is no simple way to make that
expression a norm (even K = 1 would produce a quasi-norm with constant 2).
Although the quasi-norm || || is, sometimes, equivalent to a normon Y x Z, it
cannot always be “straightened” to be made equivalent to the product norm.
Things could go worse since it may even happen that it cannot be even made
equivalent to a norm whatsoever.

Thus, one of the unexpected results of the theory is that twisted sums of
Banach spaces need not be locally convez; this was shown by Kalton, Ribe and
Roberts (see [11], [16]) who independently produced an example of a twisted
sum of R and I; where R is not complemented.

Kalton’s analysis turned to properties of the Banach spaces Y and Z mak-
ing all their twisted sums locally convex; he obtained [9] that If Y and Z are
B-convez, every twisted sum of Y and Z is locally convez. Let us ask instead:
when is a given twisted sum of Y and Z locally convex? This question is better
considered if one undoes all the way, back to the cornerstone of three-space
problems, the paper [8] of Enflo, Lindenstrauss and Pisier.

To obtain a solution to Palais problem, i.e., a non-Hilbert space which we
shall call ELP admitting a subspace isometric to [ in such a way that ELP/I,
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is also isometric to Iy, they proceed as follows. Let h(n) be the Hilbert space of
dimension n. They consider homogeneous maps f: h(n) — h(n?) having the
property that whenever zi,... ,z, is a finite set of points such that >z, =0

then
1Y fzll <D Nl

With such a map at hand they endow the product space h(n?) x h(n) with
the norm having as unit ball the closed convex hull of all points (f(z),z)
with ||z]] < 1 and (z,0) with ||z|]] < 1. It turns out that h(n?) is isometric
to {(z,0): ||z|]] < 1} while the corresponding quotient space is isometric to
h(n). With a proper choice of the maps f,, (necessary to make the projection
constants onto h(n?) increase with n) they construct the norm || - ||, on the
product space h(n?) x h(n) as indicated. Let us denote ELP(n) this finite
dimensional resultant Banach space. The space ELP = l,(ELP(n)) contains
an uncomplemented isometric copy of the Hilbert space l5(h(n?)) such that
ELP/ly(h(n?)) is isometric to the Hilbert space I5(h(n)).

SNARKED SUMS. Let F': Z — Y be a quasi-linear map; the Snarked sum of
Y and Z defined by F', which we denote YSrZ , is the product space Y x Z
endowed with the norm || - ||s having as unit ball the set:

C = conv {(y,0): [lyll <1} U{(F(2),2): [zl <1},

or, in other words, the convex hull of the unit ball of || - ||r. It is therefore
clear that Y @ Z is locally convex if and only if coincides with Y SrZ. This
coincidence means that for some constant K one has ||+ ||s < |- |lr < K| - ||s-

Therefore, if (y,0) € C, i.e., if for some finite set (z;) of elements of Z and
some finite set (y;) of elements of Y (all having norm lesser than or equal to
1) one has

y= Z)\iyi + Z.UjFZj
0= Z/.Lij,

whith S + X = 1, A > 0 and s > 0, then iyl = [[(3,0)]| < K. This
means that || 3 Ny + > p;Fz;]| < K, and therefore || Y p;Fz;|| < K + 1. By
homogeneity, what has been proved is that F' verifies the following property
that we called '

O-LINEARITY: For some constant K (F) and every finite set (z;) of elements
of Z such that }° 2; = 0 one has

1D Fzll < K(F) Y Nzl
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Therefore: A twisted sum Y @ Z is locally convez if and only if F is
0-linear.

This was charming, no doubt: but they shortly found out
That the Captain they trusted so well

Had only one notion for crossing the ocean,

And that was to tingle his bell.

4. THE RIBE FIT

Snarked sums are charming, no doubt: but one shortly finds out that a
Snarked sum of Y and Z may not be a twisted sum of Y and Z. To verify
this, let Y5 = {(y,0): y € Y}, who should be a copy of Y. It is easy to verify
that Z is isometric to (Y .S5Z)/Y,. But, contrarily to twisted sums (where
Y, is isometric to Y'), it may happen that Y} is not isomorphic to Y.

The subspace Yy is K-isomorphic to Y if and only if || - ||r and
Il - |ls are K -equivalent.

Once the surprise passes by, one realizes that one of the implications is obvious
since Y is isometric to Yy in || - ||r. And, conversely, if one assumes that Yj
is K-isomorphic to Y then we shall prove that F is 0-linear with constant K;
being thus Y @y Z locally convex and isomorphic to YSrZ.

To verify that F' is O-linear, let z,... , 2, be a finite set of elements of Z
such that Y 2; = 0. Let us call d = 3 ||z||. The points (F(d~'z;),d '2)
belong to d7!||z]| C. Thus

n

(zn:F d_ Z, Z d_ 21 d_lzi) € C
i=1

i=1

Since the subspace {(y,0): y € Y} of Y @y Z is isometric to Y, one has

n n

I iF(d-lzi)ll =1 F(d2),0)[lr < K3 F(d7'2),0)]lc < K,

i=1 i=1

that by homogeneity yields

IS Fa)) < K.

i=1
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But the principal failing ocurred in the sailing,

And the Bellman, perplezed and distressed,

Said he had hoped, at least, when the wind blew due East
That the ship would not travel due west!

5. THE “A LA HELLY” FIT

The principal failing that occurred in the chapter preceding should not dis-
tract ourselves from the interesting fact that duality theory exists for Snarked
sums: after all they are Banach spaces. And more yet: the norm in (Y.SpZ )*
need not definition.

lull = sup |u(y, 2)].
ll(w,2)lI<1

The only thing open to reflection is the form of the duality. On the one hand,
(Y SrZ)* has to be a Snarked sum of Z* and Y*, which identifies 4 with some
couple (z*,y*). Duality then has to be:

<(2%,9"), (¥, 2) >=y"(y) + 2"(2) + Tw(y, 2)
where T'w designs something linear that “twists” the product-like action
y"(y) +27(2).

We determine the nature of Tw. Knowing u on points (y,0) and (Fz,z)
determines its behaviour over C and thus on all Y .S rZ.
Since p admits restriction to Y*, x4 should act on Yj as y* :

<(2%,y"), (,0) >=y"(y) + Tw(y, 2) = y*(y)
which implies Tw(y,0) = 0. Thus, T'w can be interpreted a linear map on Z :
z = Tw(0, z).
This is not everything Tw does: since p is continuous

lull = sup |u(y,2)| < oo

(y.2)€

and it is enough to calculate this supremum on points (y,0) and (Fz, z). What
happens on points (y,0) is so boring that we only look at points (F'z, z) :

sup |y*(Fz) + 2*(z) + Tw(Fz,z)| < oo,

llzll<1
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which implies, since z* is continuous, that

Sup ly*(Fz) + Tw(Fz,2)| < o,
z[|<1

or else

sup |y*(Fz) + Tw(0, 2)| < oo.

lfzll<1
All together now: Tw is an element of Z' at finite distance of y*F. This is a
nice identification of the elements y € (Y SpZ)* as: p = (2*,y*) where

y" =plYo
2t =y"F - Tw.

See [1] for a far reaching approach to this topic.

The Bellman looked uffish, and wrinkled his brow.
“If only you’d spoken before!

It’s excessively awkward to mention 1t now,

With the Snark, so to speak, at the door!

6. THE HUNTING

Duality theory begins with the Hahn-Banach theorem. This asserts that
given a Snarked sum RS Z induced by a 0-linear map F': Z — R the identity
of R can be continuously extended to a functional

L:RS:Z 5 R

Since L(A, z) = L(A,0) + L(0, z) = XA+ L(0, z), it is possible to define a linear
(not necessarily continuous) map [ : Z — R by {(z) = L(0, z). This makes L to
adopt the form L(), z) = A+1(z). Moreover, it is possible to define a linear (not
yet continuous) map T : RS pZ — R@ Z by means of T()\, z) = (A +1(2), z).
This map is continuous:

17X, 2| = A+ l2] + ||zl < NI, 2) e + izl < LI+ DI, 2) e

Since T is clearly surjective and injective (its inverse map is (A, z) = (A—lz,2) )
the open mapping theorem asserts that it is an isomorphism.

Thus the Hahn-Banach theorem can be read, in terms of Snarked sums,
as: every Snarked sum RS pZ is isomorphic to the direct sum R Z. But it
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is more interesting to go ahead and observe that although nor F' —the 0-linear
map that induces the Snarked sum— neither [ are continuous, their distance
(actually the distance to -1) in the classical norm is finite:

1Fz +lzl| < [|[Fz + izl + ||zl = [T70, 2)[|lr < 1T ]| l|]l-

Therefore, the following interpretation of the Hahn-Banach theorem is also
possible: Every O-linear map F : Z — R is at finite distance from some linear
map l: Z — R

The hunting of that linear map, which necessarily involves a proof of the
Hahn-Banach theorem, appears in [1]. Actually, this is one of the central
topics we are discussing: every time that the copy of Y in a snarked twisted
sum Y S»Z is complemented there is some linear map L : Z — Y at finite
distance from F' (the proof is a rewriting of what we did for R). When this
happens one says that the twisted sum Y @ Z splits.

Thus, the existence of a linear map at finite distance of a given O-linear
map F': Z — Y is equivalent to the fact that the copy of Y inside Y @ Z is
complemented. When such linear map exist, the hunting of a specimen is a
rewarding task.

They sought it with thimbles, they sought it with care;
They pursued it with forks and hope;

They threatened his life with a railway-share;

They charmed it with smiles and soap.

7. THE SOBCZYK - LINDENSTRAUSS FIT

Two such situations are presented now.

The first one we would like to mention is Sobczyk’s theorem: ¢q is comple-
mented in every separable space X containing it. Therefore, from the snarked
point of view, this can be read as: every O-linear map F' : Z — ¢y from a
separable space into ¢, is at finite distance from some linear map [ : Z — ¢o
(observe that X is separable if and only if X/cy = Z is separable).

The second is due to Lindenstrauss, who proved [14] that every Snarked
twisted sum of a space complemented in its bidual and a £;-space splits.
Again, this means that every O-linear map F : £, — Y from a £;-space into a
space Y complemented in its bidual is at finite distance from some linear map
[: £, -Y.
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The hunting of the suitable linear map for these two cases can be followed
at [1].

But if ever I meet with a Boojum, that day,
In a moment (of this I am sure),

I shall softly and suddenly vanish away-
And the notion I cannot endure!

8. THE KALTON - ROBERTS FIT

If one looks for linear maps at finite distance one may find O-linear maps
at finite distance. This is the question of when all twisted sums of two given
Banach spaces are Snarked sums, and is also interesting. Unfortunately, it
is not easy to construct quasi-linear or 0-linear maps (it is not easy even to
construct linear or bounded maps!). A quasi-linear not 0-linear map F : [; —
R was constructed by Ribe [16]. A method to construct quasi-linear maps
between certain sequence spaces was given in [10]. A general method appears
in [3]. Since Kalton [9] showed that Twisted sums of B-convex Banach spaces
are locally convez, then an appeal to the statement al the end of section 3
shows: A quasi-linear map acting between B-convex Banach spaces is O-linear.

On the other hand, B-convex Banach spaces are not the border: Kalton
and Roberts [13] proved: a twisted sum of R and a £.,-space is locally convez,
which yields: A quasi-linear map from a £.-space into R is 0-linear.

However, direct proofs for those results would be welcome.

Taking three as the subject to reason about-

A convenient number to state-

We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight

9. THE DIEROLF - DfAZ - DOMANSKI - FERNANDEZ FIT

Taking three as the subject to reason about, recall that a property P is
said to be a three-space property if whenever 0 =Y — X — Z — 0 is a short
exact sequence where Y and Z have P then also X has P. The following
problems were apparently open:

PRrROBLEM 1. Is “being isomorphic to a dual space” a three-space property?
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PROBLEM 2. Is “being complemented in its bidual” a three-space pro-
perty?

An example in [7] solves in the negative both questions in the setting of Fréchet
spaces: it is constructed an exact sequence 0 Y — F — [; — 0 where Y is a
Fréchet Montel space (hence reflexive) and where F' is not complemented in its
bidual (hence, not a dual space). Moreover, they show that if 0 - Y* =+ X —
R — 0 is an exact sequence of Banach spaces with R reflexive and Y* a dual
space then X is also a dual space and the sequence is a dual sequence. This last
result refers to a question attributed to Vogt [17]: if 0 = Y* - X —» Z* = 0
18 an ezact sequence, has it to be a dual sequence?

Two partial results, in a sense dual one of the other, are: An ezact sequence
0—-Y*—= X = R — 0 where R is reflexive is a dual sequence; and: An ezact
sequence 0 - R — X* — Z — 0, where R is reflexive, is a dual sequence.

Problems 1, 2 and Vogt’s question have been answered in the negative also
in the Banach space setting (see [1] for full details and proofs). Indeed, There
ezrists an exact sequence 0 — ly — D — W* — 0 where D is not isomorphic
to a dual space. Also, There exists an ezact sequence 0 Y - X —» Z* — 0
where Y is complemented in its bidual and X is not.

A partial positive answer to problem 2 can be obtained when the reflexive
space is placed at the end of the sequence (see also [7]). If0 - Y — X —
R — 0 is an exact sequence with R reflezive and Y complemented in its bidual
then X is complemented in its bidual.

The paper [1] displays a rather interesting nonlinear duality theory in
which, however, there remain several intriguing conundrums to guess.

In the midst of the words he was trying to say,
in the midst of his laughter and glee,

He had softly and suddenly vanished away-
For the Snark was a Boojum, you see.

10. THE ORLICZ FIT

One is perhaps tempted to believe that locally convex twisted sums and
Snarked sums are different names for the same thing. In a sense, that is
true. Nevertheless, between Kalton and Peck solution [10] to Palais problem
and that of Enflo, Lindenstrauss and Pisier [8] the differences are not small
change. Kalton and Peck show that the map F : [, — [, given by a suitable
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extension of the following map defined over the finite sequences
F(z) = Zzi log |z;| — (Zm,) log | szl

is quasi-linear and is not at finite distance from linear maps. Since Hilbert
spaces are B-convex, the twisted sum I, @[, is locally convex (hence a
Snarked sum). The solution of Enflo, Lindenstrauss and Pisier has been al-
ready shown: it is a true Snarked sum.

Now, the vectors (0,e,) span in [y @r > a copy of the Orlicz space Iy,
where M(z) = zlog z. In particular, that sequence does not satisfy an upper
2-estimate (it is not weakly 2-summable, if one prefers). However, the space
ELP constructed as an [,-sum of finite dimensional spaces verifies that every
weakly null sequence contains a weakly 2-summable subsequence (see [5]; and
also [6]). In the terms of [6], ELP is in the class W, while I, @ l> is not. It
was Raquel Gonzalo who observed these facts.
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