A non-Semiprime Associative Algebra with Zero Weak Radical

ABDELFATTAH HAILY

Département de Mathématiques, Faculté des Sciences, B.P. 20 El Jadida, Morocco

(Research paper presented by A. Rodríguez Palacios)

AMS Subject Class. (1991): 16N80, 17C17

Received November 11, 1996

1. Introduction

The weak radical, W-Rad(A) of a non-associative algebra A, has been introduced by A. Rodríguez Palacios in [3] in order to generalize the Johnson's uniqueness of norm theorem to general complete normed non-associative algebras. (See also [2] for another application of this notion). In [4], he showed that if A is a semiprime non-associative algebra with DCC on ideals, then W-Rad(A)=0. In the first part of this paper we give an example of a non-semiprime associative algebra A with DCC on ideals and W-Rad(A)=0. As a consequence, we shall see that, in the class of all associative algebras, the subclass $S=\{A:W-Rad(A)=0\}$ is not a semisimple class relative to a radical in the sense of Amitsur-Kurosh. In the second part of this paper, we shall establish the coincidence between the weak radical and the maximal nilpotent ideal in a finite dimensional Jordan algebra.

2. Preliminaries and notations

- (i) Let A be an associative algebra, we say that an element a of A is quasi-invertible (q.i.) in A if there exists an element b in A such that a+b=ab=ba. A subalgebra B of A is said to be full in A if every element of B q.i. in A is q.i. in B.
- (ii) Let A be a non-associative algebra over a field K and $\mathcal{L}_K(A)$ the (associative) K-algebra of the endomorphisms of the vector space A. For every $a \in A$, we denote by L_a and R_a the elements of $\mathcal{L}_K(A)$ defined by :

$$L_a: A \longrightarrow A$$
 $R_a: A \longrightarrow A$ $x \longmapsto ax,$ $x \longmapsto xa,$

called respectively the left and the right multiplication by a. The multiplication algebra, M(A) of A is defined to be the subalgebra of $\mathcal{L}_K(A)$ generated by the set $\{L_a, R_a : a \in A\}$. The full multiplication algebra, FM(A), of A is the smallest full subalgebra of $\mathcal{L}_K(A)$ containing the set $\{L_a, R_a : a \in A\}$.

(iii) The weak radical, W-Rad(A), of a non-associative algebra A, is the largest FM(A)-invariant subspace of $\{a \in A : L_a, R_a \in J(FM(A))\}$, where J(FM(A)) denotes the Jacobson radical of FM(A). Clearly W-Rad(A) is an ideal of A and, when A is a non-commutative Jordan algebra, W-Rad(A) is contained in the Jacobson-McCrimmon radical of A [3], but even in the associative case, this inclusion may be strict (see [4]).

In what follows the term ideal will always mean a two-sided ideal. An algebra is said to be having DCC (Descending Chain Condition) on ideals if every non empty set of ideals has a minimal element. An algebra A is said to be semiprime if for every nonzero ideal I of A we have $I^2 \neq 0$.

3. Counter-example in the case of associative algebras with DCC on ideals

The starting point of our counter-example is the Weyl algebra B over a field K, generated by two elements x and y such that yx - xy = 1. Every element f of B can be written $f = \sum_{k=0}^{n} a_k(x) y^k$, where the $a_k(x)$ are polynomials in K[x], moreover $fx - xf = \frac{\partial f}{\partial y}$, where $\frac{\partial f}{\partial y}$ denotes the partial differentiation of f with respect to g. It can be shown that if the characteristic of f is zero, then f is a simple algebra [5, Corollary 1.6.34].

We are now going to define a homomorphism $\rho: B \longrightarrow \mathcal{L}_K(B)$ and an antihomomorphism $\theta: B \longrightarrow \mathcal{L}_K(B)$ such that $\forall a, b \in B, \rho_a \circ \theta_b = \theta_b \circ \rho_a$. For this, it suffices to define ρ_x , ρ_y , θ_x and θ_y in $\mathcal{L}_K(B)$ such that the following equalities (1) and (2) hold:

$$[\rho_u, \rho_x] = [\theta_x, \theta_y] = 1_B, \tag{1}$$

(where 1_B denotes the identity operator on B), and:

$$[\rho_x, \theta_x] = [\rho_x, \theta_y] = [\rho_y, \theta_x] = [\rho_y, \theta_y] = 0, \tag{2}$$

where [u, v] denotes the commutator $u \circ v - v \circ u$ in $\mathcal{L}_K(B)$. If we take the values:

$$\left\{ \begin{array}{l} \rho_x = L_x \\ \rho_y = L_x - R_x + L_y - R_y \end{array} \right. \qquad \left. \begin{array}{l} \theta_x = L_x + R_y \\ \theta_y = -R_x - R_y \end{array} \right.$$

then using the fact that $[L_y, L_x] = [R_x, R_y] = 1_B$ and $[L_a, R_b] = 0$ for all $a, b \in B$, one can easily show that the equalities (1) and (2) are satisfied.

PROPOSITION 1. With the same notations as above and K of characteristic zero, let A be the vector space given by $A = B \times B$ and the multiplication defined in A by the rule:

$$(a,b)(c,d) = (ac, \rho_a(d) + \theta_c(b)).$$

Then:

- (i) A is an associative algebra and $J = \{O\} \times B$ is the unique ideal of A other than $\{0\}$ and A. J is also the Jacobson radical of A and is nilpotent of index two.
- (ii) There exists $u \in M(A)$ and $a \in J$ such that u is invertible in $\mathcal{L}_K(A)$ and $u^{-1} \circ L_a$ is not quasi-invertible in $\mathcal{L}_K(A)$.

In particular A is a non semiprime associative algebra with DCC on ideals and whose weak radical is zero.

Proof. (i) The fact that A is an associative algebra is easily proved since we have defined a B-B-bimodule structure over the vector space M = B by $a \circ m = \rho_a(m)$ and $m \circ a = \theta_a(m)$ for every $a \in B$ and $m \in M$. Thus the multiplication

$$(a,m)(b,n) = (ab, a \circ n + m \circ b)$$

defines an associative algebra structure in A (see[1]).

The subspace $J = \{0\} \times B$ is an ideal of A and $J^2 = 0$. We are now going to show that J is the unique proper and nonzero ideal of A. First, let I be a nonzero ideal contained in J, then $I = \{0\} \times L$ where L is a nonzero subspace of B. For every $b \in L$ we have:

(a)
$$(x,0)(0,b) = (0,\rho_x(b)) = (0,xb) \in I$$
, i.e. $xb \in L$.

- (b) $(0,b)(x,0) = (0,\theta_x(b)) = (0,xb+by) \in I$, i.e. $xb+by \in L$ and thus $by \in L$.
- (c) $(0,b)(y,0) = (0,\theta_y(b)) = (0,-bx-by) \in I$, i.e. $-bx-by \in L$ and thus $bx \in L$.
- (d) $(y,0)(0,b) = (0, \rho_y(b)) = (0, xb-bx+yb-by) \in I$, i.e $xb-bx+yb-by \in L$ and thus $yb \in L$.

Consequently $xb, yb, bx, by \in L$. Thus L is invariant under left and right multiplication by the generators of B and is therfore a nonzero ideal of B. Since B is simple, we obtain L = B, i.e. I = J. This implies that J is minimal. On the other hand the algebra isomorphism $A/J \cong B$ and the simplicity of B imply that J is a maximal ideal. Now let I be a proper and nonzero ideal of A. By the minimality of J either $I \cap J = 0$ or $I \cap J = J$. The first possibility cannot happen since it implies $I \oplus J = A$ (by the maximality of J), and then, writing (1,0) = i + j, with i in I and j in J, j would be a non-zero idempotent in J contradicting that $J^2 = 0$. So $I \cap J = J$ and $J \subset I$. Now, again by the maximality of J, we have finally that I = J. Now it is clear that J is the Jacobson radical of A.

(ii) Let $u = R_{(x,1)} - L_{(x,0)} \in M(A)$. Then for all $(a,b) \in A$:

$$u(a,b) = (a,b)(x,1) - (x,0)(a,b)$$

$$= (ax, \rho_a(1) + \theta_x(b)) - (xa, \rho_x(b))$$

$$= (ax, \rho_a(1) + xb + by) - (xa, xb)$$

$$= (ax - xa, by + \rho_a(1))$$

We are now going to show that u is bijective.

Injectivity: Let $(a, b) \in A$ such that u(a, b) = (0, 0). Then ax - xa = 0 and $by + \rho_a(1) = 0$. The first equation implies that $\partial a/\partial y = 0$, so $a = f(x) = \sum_{k=0}^{n} a_k x^k \in K[x]$. Therefore $\rho_a = \sum_{k=0}^{n} a_k L_{x^k}$, hence $\rho_a(1) = a$. The equality $by + \rho_a(1) = 0$ implies that by + a = 0 which is impossible unless a = b = 0.

Surjectivity: Let $(c,d) \in A$. Since the mapping $\partial/\partial y: B \longrightarrow B$ is surjective, there exists $a \in B$ such that $\partial a/\partial y = ax - xa = c$. On the other hand we have $B = K[x] \oplus By$ as vector spaces. So $a = a_1 + a_2y$ and $d = d_1 + d_2y$, where $a_1, d_1 \in K[x]$. Let $h = d_1 + a_2y$ and compute $u(h, d_2) = (hx - xh, \rho_h(1) + d_2y)$. We have $h - a = d_1 - a_1 \in K[x]$, so $hx - xh = \frac{\partial h}{\partial y} = \frac{\partial a}{\partial y} = c$. Since ρ is a homomorphism, we have $\rho_h = \rho_{d_1} + \rho_{a_2y}$ and $\rho_{a_2y} = \rho_{a_2} \circ \rho_y$. From the fact that $\rho_y(1) = 0$ it follows that $\rho_h(1) = \rho_{d_1}(1) = d_1$. Finally $\rho_h(1) + d_2y = d_1 + d_2y = d$ and $u(h, d_2) = (c, d)$. Consequently u is surjective.

 $u \in M(A)$ and is bijective, so u is invertible in $\mathcal{L}_K(A)$ and $u^{-1} \in FM(A)$. On the other hand u(1,0) = (0,1) thus $u^{-1}((0,1)(1,0)) = u^{-1}(0,1) = (1,0)$. This implies that $u^{-1} \circ L_{(0,1)}$ is not quasi-invertible in FM(A). Hence $(0,1) \notin W-Rad(A)$. But $(0,1) \in J$, thus W-Rad(A) is strictly contained in J. Then the minimality of J implies that W-Rad(A) = 0.

To conclude, A is a non semiprime associative algebra with DCC on ideals and whose weak radical is zero.

Remark. Let \mathcal{A} be the class of all associative algebras and $\mathcal{S} = \{A \in \mathcal{A} : W - Rad(A) = 0\}$ then \mathcal{S} is not a semisimple class relative to a radical property. For, if \mathcal{S} were a semisimple class, then every ideal of an element of \mathcal{S} would be an element of \mathcal{S} (see [7]). But if we consider the algebra A of our example then $A \in \mathcal{S}$ whereas the ideal $J \notin \mathcal{S}$.

4. Weak radical of finite dimensional Jordan algebras

- (i) Let A be a finite dimensional nonassociative algebra over a field K. Then M(A) is finite dimensional and therfore a full subalgebra of $\mathcal{L}_K(A)$, so FM(A) = M(A) and W-Rad(A) is equal to the largest ideal contained in $\{a \in A : L_a, R_a \in J(M(A))\}$. The subalgebra $W-Rad(A)^*$ of M(A) generated by the set $\{L_a, R_a : a \in W-Rad(A)\}$ is contained in J(M(A)) and is therfore a nilpotent algebra, so W-Rad(A) is a nilpotent ideal. (See [6, Theorem 2.4]).
- (ii) Recall that a Jordan algebra A, over a field of characteristic not two, is a commutative algebra satisfying the Jordan identity:

$$(x^2y)x = x^2(yx) \quad \forall x, y \in A \tag{J}$$

Linearization of (J) yields the identity:

$$[a, b, cd] + [c, b, ad] + [d, b, ac] = 0 \quad \forall a, b, c, d \in A$$
 (J')

where [x, y, z] denotes the associator (xy)z - x(yz). If a = c then the preceding identity becomes $2[a, b, ad] + [d, b, a^2] = 0$. Since $char(K) \neq 2$, we have:

$$a(b(ad)) = (ab)(ad) + \frac{1}{2}[d, b, a^2]$$
 (J")

(iii) If I and J are two ideals of a Jordan algebra A, then the sets $I(IJ) + I^2J$ and A(IJ) + IJ are also ideals of A, where MN denotes the subspace of

A generated by the set $\{xy \in A : x \in M, y \in N\}$, for every subspaces M and N of A. (Use (J') or see [8, Lemma 4.3.3]).

(iv) Let I be an ideal of a Jordan algebra A. Consider the sequence $(I_k)_{k\geq 1}$ defined by:

$$I_1 = I, \qquad I_{k+1} = A(II_k) + II_k$$

By (iii), $(I_k)_{k\geq 1}$ is a decreasing sequence of ideals, and we have the following:

PROPOSITION 2. Let A be a finite dimensional Jordan algebra and I a nilpotent ideal of A. Then there exists k such that $I_k = 0$.

To prove this result, we need the following lemmas:

LEMMA 1. Let A be a Jordan algebra, I and J two ideals of $A, a_1, a_2, ..., a_n$ (n > 1) a sequence of elements of A and $b_1, b_2, ..., b_n$ a sequence of elements of I. Suppose that $a_1 = a_n$. Then:

$$(\prod_{i=1}^n L_{a_i} L_{b_i}) J \subset IJ.$$

Proof. We proceed by induction on n. If n=2, then $a_1=a_2$. For every $c \in J$, by the identity (J"), $(\prod_{i=1}^n L_{a_i} L_{b_i})(c) = a_1(b_1(a_1(b_2c))) = (a_1b_1)(a_1(b_2c)) + \frac{1}{2}[b_2c, b_1, a_1^2]$. We have $(a_1b_1)(a_1(b_2c)) \in IJ$. On the other hand, $[b_2c, b_1, a_1^2] = ((b_2c)b_1)a_1^2 - (b_2c)(b_1a_1^2)$ with $(b_2c)(b_1a_1^2) \in IJ$ and $((b_2c)b_1)a_1^2 \in A(I(IJ))$. Since

$$A(I(IJ)) \subset A(I(IJ) + I^2J) \subset I(IJ) + I^2J \subset IJ, \tag{3}$$

we have $((b_2c)b_1)a_1^2 \in IJ$, so $a_1(b_1(a_1(b_2c))) \in IJ$.

Suppose that the lemma is true for n-1, and put $(\prod_{i=1}^n L_{a_i} L_{b_i})(c) = a_1(b_1(a_2(b_2m)))$ where $m = (\prod_{i=3}^n L_{a_i} L_{b_i})(c) \in J$. The identity (J') yields:

$$a_1(b_1(a_2(b_2m))) = (a_1b_1)(a_2(b_2m)) + [a_2, b_1, a_1(b_2m)] + [b_2m, b_1, a_2a_1]$$

with $(a_1b_1)(a_2(b_2m)) \in IJ$ and $[b_2m, b_1, a_2a_1] \in A(I(IJ) + I^2J) \subset IJ$ by (3).

We have $[a_2,b_1,a_1(b_2m)]=(a_2b_1)(a_1(b_2m))-a_2(b_1(a_1(b_2m)))$ and $(a_2b_1)(a_1(b_2m))\in IJ$. It remains to show that $a_2(b_1(a_1(b_2m)))\in IJ$. If we apply the induction hypothesis to the sequences: $a_1,a_3,\ldots,a_n=a_1\in A$ and $b_2,\ldots,b_n\in I$, we obtain $a_1(b_2m)\in IJ$ thus $a_2(b_1(a_1(b_2m)))\in A(I(IJ))\subset IJ$ again by (3). Hence $a_2(b_1(a_1(b_2m)))\in IJ$.

COROLLARY 1. Let A be a Jordan algebra, I and J are two ideals of A, a_1, \ldots, a_n a sequence of elements of A and b_1, \ldots, b_n a sequence of elements of I. Suppose further that $a_j = a_k$ for some j, k with $j \neq k$. Then $(\prod_{i=1}^n L_{a_i} L_{b_i}) J \subset IJ$.

Proof. This is a consequence of Lemma 1 and the fact that

$$(\prod_{i=1}^m L_{x_i} L_{y_i}) IJ \subset IJ$$

for any finite sequences x_1, \ldots, x_m in A and y_1, \ldots, y_m in I (proved by induction on m using (3)).

LEMMA 2. Let A be a finite dimensional Jordan algebra and I,J be ideals of A. Consider the sequence of subspaces $I_{[k]}$ defined by $I_{[1]} = J$ and $I_{[k+1]} = A(II_{[k]})$. Then there exists $k \in N$ such that $I_{[k]} \subset IJ$.

Proof. The subspace $I_{[k]}$ is generated by the set $\{(\prod_{i=1}^k L_{a_i} L_{b_i})(c) : a_i \in A, b_i \in J, c \in J\}$. Let (e_1, \ldots, e_n) be a basis of A. Then $I_{[k]}$ is generated by the set $\{(\prod_{q=1}^k L_{e_{i_q}} L_{b_q})(c)\}$. If we take k > n then there exist q and q' such that $q \neq q'$ and $i_q = i_{q'}$. By Corollary 1 we have $(\prod_{q=1}^k L_{e_{i_q}} L_{b_q})(c) \in IJ$. Thus, for k > dim(A), a generating set of $I_{[k]}$ is contained in IJ. Hence $I_{[k]} \subset IJ$.

Proof of Proposition 2. Let I be a nilpotent ideal. Since the sequence $(I_k)_{k\geq 1}$ is decreasing and the algebra A is finite dimensional, there exists k such that $I_k=I_{k+1}$. Write $J=I_k$. Then A(IJ)+IJ=J. Our aim is to prove that J=0. First we prove that $J\subset I_{[k]}+IJ$ for every k. This is true for k=1 and by induction: $J\subset A(IJ)+IJ\subset A(I(I_{[k]}+IJ))+IJ\subset I_{[k+1]}+A(I(IJ))+IJ$ by (3). Then $J\subset I_{[k+1]}+IJ$. Now by Lemma 2, there exists k such that $I_{[k]}\subset IJ$. This implies that $J\subset IJ$ and thus J=IJ. By induction we obtain $J\subset I^k$ for every k. But I is nilpotent, hence J=0.

PROPOSITION 3. Let A be a finite dimensional Jordan algebra, then W-Rad(A) is the largest nilpotent ideal of A.

Proof. We have already seen, in general finite dimensional case, that W-Rad(A) is a nilpotent ideal. For the reverse inclusion, let I be a nilpotent ideal of A. Consider the set $A = \{u \in \mathcal{L}_K(A) : u \circ L_a(I_k) \subset I_{k+1} \ \forall a \in I\}$. This is clearly a subalgebra of $\mathcal{L}_K(A)$ and contains the set $\{L_x : x \in A\}$. Thus $M(A) \subset A$. Hence for every $u \in M(A)$ and $a \in I$ $u \circ L_a(I_k) \subset I_{k+1}$. By

induction we have $(u \circ L_a)^k(A) \subset I_k$. By Proposition 2, there exists k such that $I_k = 0$ and hence $(u \circ L_a)^k = 0$. It follows that for every $u \in M(A)$ and $a \in I$ $u \circ L_a$ is nilpotent. Thus for every $a \in I$ $L_a \in J(M(A))$. Consequently $I \subset W-Rad(A)$.

ACKNOWLEDGEMENTS

The author would like to acknowledge Prof. El Amin Kaidi, who directed this work, and Prof. Angel Rodríguez Palacios for their helpful suggestions and useful remarks.

REFERENCES

- [1] FAITH, C., "Algebra 1, Rings, Modules and Categories", Springer-Verlag, Berlin-New York, 1981.
- [2] FERNÁNDEZ, A., RODRÍGUEZ, A., A Wedderburn theorem for nonassociative complete normed algebras, J. London Math. Soc., 33 (1986), 328-338.
- [3] Rodríguez, A., The uniqueness of the complete norm topology in complete normed nonassociative algebras, J. Funct. Anal., 60 (1985), 1-15.
- [4] RODRÍGUEZ, A., An approach to Jordan-Banach algebras from the theory of nonassociative complete normed algebras, in "Algèbres de Jordan et algèbres normées non associatives", Annales scientifiques de l'Université "Blaise Pascal", Clermont-Ferrand II, Sér.Math., Fasc.27ème, 1991, 1–57.
- [5] ROWEN, L.H., "Ring Theory, Vol. 1", Pure Appl. Math., Vol. 127, Academic Press, Boston, 1988.
- [6] SCHAFER, R.D., "An Introduction to Nonassociative Algebras", Pure Appl. Math., Vol. 22, Academic Press, New York-London, 1966.
- [7] Szász, F.A., "Radicals of Rings", John Wiley & Sons, Chichester, 1981.
 [8] ZHEVLAKOV, K.A., SLIN'KO, A.M., SHESTAKOV, I.P., SHIRSHOV, A.I., "Rings that are Nearly Associative", Pure Appl. Math., Vol. 104, Academic Press, New York-London, 1982.