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1. INTRODUCTION

The weak radical, W—Rad(A) of a non-associative algebra A, has been in-
troduced by A. Rodriguez Palacios in [3] in order to generalize the Johnson’s
uniqueness of norm theorem to general complete normed non-associative al-
gebras. (See also [2] for another application of this notion). In [4], he showed
that if A is a semiprime non-associative algebra with DCC on ideals, then
W—Rad(A) = 0. In the first part of this paper we give an example of a non-
semiprime associative algebra A with DCC on ideals and W—Rad(A) = 0.
As a consequence, we shall see that, in the class of all associative algebras,
the subclass S = {A : W—Rad(A) = 0} is not a semisimple class relative to
a radical in the sense of Amitsur-Kurosh. In the second part of this paper,
we shall establish the coincidence between the weak radical and the maximal
nilpotent ideal in a finite dimensional Jordan algebra.

2. PRELIMINARIES AND NOTATIONS

(¢) Let A be an associative algebra, we say that an element a of A is quasi-
invertible (q.i.) in A if there exists an element b in A such that a+b = ab = ba.
A subalgebra B of A is said to be full in A if every element of B q.i. in A is
q.i. in B.

(77) Let A be a non-associative algebra over a field K and Lg(A) the

(associative) K-algebra of the endomorphisms of the vector space A. For
every a € A, we denote by L, and R, the elements of Lx(A) defined by :
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L,: A— A R,: A— A
T — azx, T — za,

called respectively the left and the right multiplication by a. The multiplica-
tion algebra, M(A) of A is defined to be the subalgebra of Lx(A) generated
by the set {L,, R, : a € A}. The full multiplication algebra, FM(A), of A is
the smallest full subalgebra of Lx(A) containing the set {L,, R, : a € A}.

(73¢) The weak radical, W—Rad(A), of a non-associative algebra A, is the
largest F'M (A)-invariant subspace of {a € A : L,,R, € J(FM(A))}, where
J(FM(A)) denotes the Jacobson radical of FM(A). Clearly W—Rad(A) is
an ideal of A and, when A is a non-commutative Jordan algebra, W—Rad(A)
is contained in the Jacobson-McCrimmon radical of A [3], but even in the
associative case, this inclusion may be strict (see [4]).

In what follows the term ideal will always mean a two-sided ideal. An
algebra is said to be having DCC (Descending Chain Condition) on ideals if
every non empty set of ideals has a minimal element. An algebra A is said to
be semiprime if for every nonzero ideal I of A we have I? # 0.

3. COUNTER-EXAMPLE IN THE CASE OF ASSOCIATIVE ALGEBRAS WITH
DCC ON IDEALS

The starting point of our counter-example is the Weyl algebra B over a field
K, generated by two elements x and y such that yz — xy = 1. Every element
f of B can be written f = 3__, ax(z)y*, where the a;(z) are polynomials in
K|[z], moreover fzr —zf = %5, where %5 denotes the partial differentiation of
f with respect to y. It can be shown that if the characteristic of K is zero,
then B is a simple algebra [5, Corollary 1.6.34].

We are now going to define a homomorphism p : B — Lx(B) and an
antihomomorphism 6 : B — Lg(B) such that Va,b € B, p,00, = 0,0p,. For
this, it suffices to define p,, p,, 0, and 6, in Lx(B) such that the following
equalities (1) and (2) hold:

[Pyhoz] = [ezvgy] = 1g, (1)

(where 1p denotes the identity operator on B), and:

(02, 02) = [z, 0] = [py,02] = [Py, 0,] =0, (2)
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where [u,v] denotes the commutator uov —vowu in Lk (B). If we take the
values:

Pz = L, 0, =L, + R,
py=L,—R,+L,—R, 8, =—R, — R,

then using the fact that [L,,L,] = [R;,R,] = 1p and [L,, Ry] = 0 for all
a,b € B, one can easily show that the equalities (1) and (2) are satisfied.

PrOPOSITION 1. With the same notations as above and K of characteristic
zero, let A be the vector space given by A = B x B and the multiplication
defined in A by the rule:

(a,b)(c,d) = (ac, pa(d) + 0.(b)).
Then:

(i) A is an associative algebra and J = {O} x B is the unique ideal of A
other than {0} and A. J is also the Jacobson radical of A and is nilpotent
of index two.

(ii) There exists u € M(A) and a € J such that u is invertible in L (A) and
u™! o L, is not quasi-invertible in Ly (A).

In particular A is a non semiprime associative algebra with DCC on ideals
and whose weak radical is zero.

Proof. (i) The fact that A is an associative algebra is easily proved since
we have defined a B-B-bimodule structure over the vector space M = B by
aom = p,(m) and moa = 6,(m) for every a € B and m € M. Thus the
multiplication

(a,m)(b,n) = (ab,aon +mob)

defines an associative algebra structure in A (see[1]).

The subspace J = {0} x B is an ideal of A and J? = 0. We are now going
to show that J is the unique proper and nonzero ideal of A. First, let I be a
nonzero ideal contained in J, then I = {0} x L where L is a nonzero subspace
of B. For every b € L we have:

(2) (z,0)(0,b) = (0, ps (b)) = (0,zb) € I, i.e. zbe L.
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(b) (0,b)(z,0) = (0,0,(b)) = (0,zb+by) € I, ie. b+ by € L and thus
by € L.

(c) (0,6)(y,0) = (0,0,(b)) = (0,—bz —by) € I, i.e. —bz —by € L and thus
-bx € L.

(d) (y,0)(0,b) = (0, py (b)) = (0, zb—bz+yb—by) € I, i.e zb—bzr+yb—by € L
and thus yb € L.

Consequently zb,yb,bz,by € L. Thus L is invariant under left and right
multiplication by the generators of B and is therfore a nonzero ideal of B.
Since B is simple, we obtain L = B, i.e. I = J. This implies that J is
minimal. On the other hand the algebra isomorphism A/J = B and the
simplicity of B imply that J is a maximal ideal. Now let I be a proper and
nonzero ideal of A. By the minimality of J either INJ =0or INJ = J. The
first possibility cannot happen since it implies [ & J = A (by the maximality
of J), and then, writing (1,0) =4+ j, with ¢ in I and 7 in J, § would be a
non-zero idempotent in J contradicting that J2 =0. So INJ = J and J C I.
Now, again by the maximality of J, we have finally that I = J. Now it is clear
that J is the Jacobson radical of A.
(#) Let u = Rz 1) — L(3,0) € M(A). Then for all (a,d) € A:

u(a,b) = (a,b)(z,1)— (z,0)(a,b)

= (az,pa(l) + 0z(b)) - (.’L’a, pz(b))
(
(

az, p.(1) + zb + by) — (za, zb)
ar — za, by + pa(l))

We are now going to show that u is bijective.

Injectivity: Let (a,b) € A such that u(a,b) = (0,0). Then ax — za = 0
and by + p,(1) = 0. The first equation implies that da/dy =0, so a = f(z) =
Y r_o arz® € K|z]. Therefore p, = 3" 4_, ar L.+, hence p,(1) = a. The equality
by + p.(1) = 0 implies that by + a = 0 which is impossible unless a = b = 0.

Surjectivity: Let (c,d) € A. Since the mapping 0/dy : B — B is surjec-
tive, there exists a € B such that da/0y = az —za = c. On the other hand we
have B = K|[z]® By as vector spaces. So a = a; +a,y and d = d, +d,y, where
a1,d; € Klz]. Let h = dy + apy and compute u(h,ds) = (hz — zh, pp(1) + d2y).
We have h —a = d; — a; € K|[z], so hx — zh = -?,—Z = g—; = c. Since p is a
homomorphism, we have p, = pg, +pq,y and pa,y = pa, 0py- From the fact that
py(1) = 0t follows that p,,(1) = pa, (1) = d;. Finally ps(1)+dey = di+doy = d
and u(h,d,) = (c,d). Consequently u is surjective.
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u € M(A) and is bijective, so u is invertible in Lx(A) and u™' € FM(A).
On the other hand u(1,0) = (0,1) thus »~*((0,1)(1,0)) = »~(0,1) = (1,0).
This implies that u™' o L(g 1) is not quasi-invertible in FM(A). Hence (0,1) ¢
W—Rad(A). But (0,1) € J, thus W—Rad(A) is strictly contained in J. Then
the minimality of J implies that W—Rad(A) = 0.

To conclude, A is a non semiprime associative algebra with DCC on ideals
and whose weak radical is zero.

Remark. Let A be the class of all associative algebras and § = {4 €
A : W — Rad(A) = 0} then S is not a semisimple class relative to a radical
property. For, if S were a semisimple class, then every ideal of an element of
S would be an element of S (see [7]). But if we consider the algebra A of our
example then A € § whereas the ideal J ¢ S.

4. WEAK RADICAL OF FINITE DIMENSIONAL JORDAN ALGEBRAS

(¢) Let A be a finite dimensional nonassociative algebra over a field K.
Then M (A) is finite dimensional and therfore a full subalgebra of Lx(A), so
FM(A) = M(A) and W—Rad(A) is equal to the largest ideal contained in
{a€A:L,, R, € J(M(A))}. The subalgebra W—Rad(A)* of M(A) generated
by the set {L,, R, : a € W—Rad(A)} is contained in J(M(A)) and is therfore
a nilpotent algebra, so W—Rad(A) is a nilpotent ideal. (See [6, Theorem 2.4]).

(71) Recall that a Jordan algebra A, over a field of characteristic not two,
is a commutative algebra satisfying the Jordan identity:

(z’y)z = 2’(yz) Vz,y€ A ()
Linearization of (J) yields the identity:
[a, b, cd] + [c,b,ad] + [d,b,ac] =0 Va,b,c,d € A (I

where [z, y, 2] denotes the associator (zy)z—z(yz). If a = c then the preceding
identity becomes 2[a, b, ad] + [d, b, a®] = 0. Since char(K) # 2, we have:

a(b(ad)) = (ab)(ad) + %[d, b, a?] (77)

(#1) If I and J are two ideals of a Jordan algebra A, then the sets I(1J) +
I*J and A(IJ) + 1J are also ideals of A, where M N denotes the subspace of
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A generated by the set {zy € A:z € M, y € N}, for every subspaces M and
N of A. (Use (J’) or see [8, Lemma 4.3.3)).

(iv) Let I be an ideal of a Jordan algebra A. Consider the sequence (I;)x>1
defined by:
Il =I, Ik+1 =A(IIk)+IIk

By (i1), (Ix)r>1 is a decreasing sequence of ideals, and we have the the fol-
lowing:

PROPOSITION 2. Let A be a finite dimensional Jordan algebra and I a
nilpotent ideal of A. Then there exists k such that I, = 0.

To prove this result, we need the following lemmas:

LEMMA 1. Let A be a Jordan algebra, I and J two ideals of A, ay, as,...,a,
(n > 1) a sequence of elements of A and by,b,, ... ,b, a sequence of elements
of I. Suppose that a; = a,. Then:

(II Za.Lo.)J C 1J.

=1

Proof. We proceed by induction on n. If n = 2, then a; = a,. For every c €
J, by the identity (J”), (ITiZ; La:Le, ) (c) = a1(bi(a1(bzc))) = (a1b1)(ar(b2c)) +
2[bac, by, a?]. We have (a1b1)(aq(bac)) € IJ. On the other hand, [bc, by, a}] =
((by€)br)ad — (bac)(bya?) with (bye)(bra?) € IJ and ((b2c)by)a? € A(I(1J)).
Since

A(I(IJ)) C A(I(LJ) + I*J) C I(1J) + I*J C 1J, (3)

we have ((bac)by)a? € IJ, s0 ay(by(a;(bac))) € IJ.
Suppose that the lemma is true for n — 1, and put ([]; Ls, Ls,)(c) =
a; (by (a2 (bym))) where m = ([1;_3 Lo, Ly, )(c) € J. The identity (J') yields:

a1 (b1 (az(bam))) = (a1b1)(az(bam)) + [az, by, a1 (bam)] + [bamn, by, aza,]

with (a,b;)(az(bym)) € IJ and [bam, by, a2a,] € A(I(IJ) + I*J) C 1J by (3).

We have [az, b1, a;1(bam)] = (a2b1)(ai(bam)) — az(bi(a;(bam))) and (a2b;)
(a1(bam)) € IJ. It remains to show that ay(b;(a;(bam))) € IJ. If we ap-
ply the induction hypothesis to the sequences: a,as,...,a, = a; € A and
ba,... ,b, € I, we obtain a;(bym) € IJ thus az(b;(a;(bam))) € A(I(1J)) C IJ
again by (3). Hence ay(b;(a;(bym))) € IJ.
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COROLLARY 1. Let A be a Jordan algebra, I and J are two ideals of
A, ay,...,a, a sequence of elements of A and by,... ,b, a sequence of ele-
ments of I. Suppose further that a; = a), for some j,k with j # k. Then
(ITi; Lo, Le,)J C 1J.

Proof. This is a consequence of Lemma 1 and the fact that

(Il LaiLy)TT C 1T

i=1

for any finite sequences z;,... ,Z,, in A and yi,... ,y, in I (proved by induc-
tion on m using (3)). i

LEMMA 2. Let A be a finite dimensional Jordan algebra and I,J be ideals
of A. Consider the sequence of subspaces I}y defined by Iy = J and Ijp4q) =
A(II). Then there exists k € N such that I C IJ.

Proof. The subspace Ij is generated by the set {(TT~., Lo, Ly,)(c) : a; €
A, b, € J ce J}. Let (e,...,e,) be a basis of A. Then I is generated by
the set {(I—[f=l L., Ly,)(c)}. If we take k > n then there exist ¢ and ¢' such
that ¢ # ¢’ and i, = i,. By Corollary 1 we have (1_[';=1 L, Ls,)(c) € IJ. Thus,
for k > dim(A), a generating set of Ij is contained in I.J. Hence Iy C I1J. i

Proof of Proposition 2. Let I be a nilpotent ideal. Since the sequence
(Ix)k>1 is decreasing and the algebra A is finite dimensional, there exists k such
that I, = I ;. Write J = I;. Then A(IJ)+IJ = J. Our aim is to prove that
J = 0. First we prove that J C Iy +1J for every k. This is true for kK = 1 and
by induction : J C A(IJ)+1J C A(I(Ljy+1J))+1J C Iy +AI(ILJT))+1J
by (3). Then J C Ijg4y + IJ. Now by Lemma 2, there exists k& such that
Ity C IJ. This implies that J C IJ and thus J = IJ. By induction we obtain
J C I* for every k. But I is nilpotent, hence J = 0. I

PROPOSITION 3. Let A be a finite dimensional Jordan aigebra, then W-
Rad(A) is the largest nilpotent ideal of A.

Proof. We have already seen, in general finite dimensional case, that W—
Rad(A) is a nilpotent ideal. For the reverse inclusion, let I be a nilpotent
ideal of A. Consider the set A = {u € Lk(A) : wo L,(I;) C Ij41 Ya € I}
This is clearly a subalgebra of Lx(A) and contains the set {L, : z € A}. Thus
M(A) Cc A. Hence for every u € M(A) and a € I wo L,(I;) C Iy;.- By
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induction we have (u o L,)*(A) C I,. By Proposition 2, there exists k such
that I = 0 and hence (u o L,)* = 0. It follows that for every u € M(A) and
a € I uo L, is nilpotent. Thus for every a € I L, € J(M(A)). Consequently
I C W—Rad(A). 1
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