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INTRODUCTION

In [5], Kaplansky proved that every ring isomorphism @ from a semi-simple
complex Banach-algebra A onto another provides a decomposition of A into a
direct sum of closed two-sided ideals A = A; ® A, ® A5 such that A; has finite-
dimension, ¢ is complex-linear on A,, and ® is conjugate-linear on As. The
aim of this paper is to translate to noncommutative Jordan-Banach algebras
the above-mentioned result of Kaplansky. To this end we follow the pattern
established in [5] although some difficulties have to be overcome.

We recall that a nonassociative algebra A, over a field K, of characteristic
not two is said to be a noncommutative (in short: n.c) Jordan algebra if it
satisfies:

(ab)a =a(ba); (a’b)a = a®(ba)

for all a,b € A. It is worth pointing out that n.c. Jordan algebras contain
all associative algebras and (commutative) Jordan algebras. We note that for
any n.c Jordan algebra A, the algebra A* obtained by symmetrisation of the
product of A is a Jordan-algebra. A n.c Jordan-Banach algebra is a real or
complex n.c Jordan-algebra whose underlying linear space is endowed with a
complete norm ||-|| satisfying

llabll < l[a]l [|5]

for all a, b € A.

It should be pointed out that there is a well settled spectral theory and
a holomorphic functional calculus for n.c. Jordan-Banach algebras (see [2]).
Furthermore, K. McCrimmon introduced in [6] a judicious notion of radical
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for n.c Jordan algebras and later, L. Hogben and K. McCrimmon [4] showed
that this radical, for a Jordan algebra, may be obtained as the intersection of
all “primitive” ideals in the algebra. Finally A. Ferndndez and A. Rodriguez
[3] extend this result to the noncommutative framework.

In the sequel, A and B denote complex n.c. Jordan-Banach algebras and
® stands for a ring isomorphism from A onto B.

THEOREM 1. If A and B are infinite-dimensional and primitive, then ® is
automatically real-linear (and accordingly either complex-linear or conjugate-
linear).

Proof. 1t is well known that ® provides a ring isomorphism, say o, between
the centroids of A and B which, on account of [7; (Remark 5.7)], equal C.
Accordingly ® becomes a o-linear map and therefore we only need to show that
o is continuous. To obtain a contradiction, suppose that o were discontinuous.

If there exists ¢ € A with an infinite spectrum, then it may be argued as
in [5; Lemma 11] to yield a contradiction.

On the other hand according to [1], if every element a in A has finite
spectrum, then A" and consequently B* are the Jordan-Banach algebras as-
sociated to continuous nondegenerate symmetric bilinear forms f and g on
complex infinite-dimensional Banach spaces X and Y, respectively. From this
we have ‘

9(2(z), 2(y)) = o(f(z,y)) Vz,y € X.

Let {e,} be an infinite orthonormal sequence for f and, for each n € N,
choose A, € C satisfying

Pneall <27 and 2 [@(en)ll < o ()]

The elements a € A and b € B defined by a = > o2, A\se, and b =
Yo, 277 [[@(en)lI 7 ®(en) satisfy

(8(6),8) = 3. grrmsro((0), Blen)) = 3 o)
=2 1
= 2w

which is impossible, since the last series diverges. I
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It is rather obvious that every primitive Q-linear ideal of A is a primitive
ideal of A. Consequently, for every primitive ideal P of A, Q = ®(P) is a
primitive ideal of B and ® drops into a ring isomorphism ®p from A/P onto
B/Q. Since A/P and B/Q are primitive, the preceding results shows that ®p
is real-linear whenever P has infinite codimension.

It is a simple matter to adapt Lemmas 12 and 13 in [5] to n.c. Jordan-
Banach algebras and this gives the following result.

THEOREM 2. There exists only a finite number of primitive ideals P of A
for which ®p is not real-linear. Furthermore, these exceptional ideals have
finite codimension.

Finally, our main result may be proved in much the same way as [5; The-
orem].

THEOREM 3. If A and B are semisimple, then there are closed two-sided
ideals A;, A,, As in A such that A = A, & A, ® As, A, has finite dimension,
® is complex-linear on A, and ® is conjugate-linear on Ajs.
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