Report on Twisted Sums of Banach Spaces

FÉLIX CABELLO AND JESÚS M.F. CASTILLO

Dpto. de Matemáticas, Univ. de Extremadura, 06071-Badajoz, Spain e-mail: castillo@ba.unex.es

AMS Subject Class. (1991): 46B20

Received October 14, 1996

1. Introduction

This note is to report some of the advances obtained as a follow-up of the book [2] on the topic of twisted sums of Banach spaces. Since this announcement is not longer enough to contain the theory being developed, we submit the interested reader to [2] and to [1], where full details and proofs shall appear.

2. Basics on Twisted sums

A twisted sum of Banach spaces Y, Z is a short exact sequence

$$0 \to Y \to X \to Z \to 0.$$

The open mapping theorem implies that Y is then a closed subspace of X and X/Y = Z.

The classical theory of Kalton-Peck [5] describes twisted sums in terms of homogeneous maps $F: Z \to Y$ satisfying

$$||F(x+y) - F(x) - F(y)|| \le K(||x|| + ||y||),$$

which are called quasi-linear maps.

Given a twisted sum, the quasi-linear map that defines it can be obtained as the difference B-L between a bounded homogeneous and a linear selection for the quotient map. Conversely, if $F: Z \to Y$ is a quasi-linear map, the product space $Y \times Z$ endowed with the quasi-norm

$$||(y,z)|| = ||y - F(z)|| + ||z||$$

is denoted $Y \oplus_F Z$ and provides a twisted sum

$$0 \to Y \to Y \oplus_F Z \to Z \to 0.$$

For instance, the direct sum $Y \oplus Z$ is the twisted sum space provided by any linear map $Z \to Y$. When a twisted sum is equivalent to the direct sum (i.e. when Y is complemented in X) we also say that the twisted sum splits. Kalton and Peck [5] showed that two twisted sums $Y \oplus_F Z$ and $Y \oplus_G Z$ are equivalent if and only if for some linear map $L: Z \to Y$

$$\operatorname{dist}(F - G, L) < +\infty.$$

In particular, the twisted sum defined by F splits if and only if $\operatorname{dist}(F, L) < +\infty$ for some linear map $L: Z \to Y$.

Observe that the twisted sum space $Y \oplus_F Z$ is not necessarily locally convex: in fact, the expression $\|(y,z)\| = \|y-F(z)\| + \|z\|$ is just a quasi-norm. Kalton [4] proved that when Y and Z are B-convex Banach spaces then $Y \oplus_F Z$ is a Banach space too.

3. News on twisted sums

The problem of when $Y \oplus_F Z$ is a Banach space can be completely solved (see [2]). Let us call a homogeneous map $F: Z \to Y$ 0-linear if whenever $\sum_{i=1}^n x_i = 0$ then

$$\left\| \sum_{i=1}^n F(x_i) \right\| \leq K \sum_{i=1}^n \|x_i\|$$

for some constant K > 0 independent of the points x_i .

THEOREM. The expression ||(y,z)|| = ||y - F(z)|| + ||z|| is equivalent to a norm if and only if F is 0-linear.

(To this, one should add the following result of D. Yost: the expression ||(y,z)|| = ||y - F(z)|| + ||z|| is itself a norm if and only if F is pseudo-linear in the sense that $||F(x+y) - F(x) - F(y)|| \le ||x|| + ||y|| - ||x+y||$).

4. The nonlinear Hahn-Banach Theorem

Therefore, by the Hahn-Banach theorem, if $F: Z \to \mathbb{R}$ is a 0-linear map, the twisted sum it defines splits and then, by the criterium of Kalton and Peck, for some linear map $L: Z \to \mathbb{R}$

$$\operatorname{dist}(F, L) < +\infty$$
.

THEOREM. An explicit construction of a linear map at finite distance of a 0-linear given map $F: Z \to \mathbb{R}$.

5. Sobczyk's theorem Kalton's way

Sobczyk's theorem asserts that c_0 is complemented in any separable Banach space containing it. In our language, this means that every 0-linear map $F:Z\to c_0$ with Z separable admits a linear map $L:Z\to c_0$ at finite distance.

THEOREM. An explicit construction of a linear map $L: Z \to c_0(I)$ at finite distance of a 0-linear given map $F: Z \to c_0(I)$, when Z is separable.

6. Nonlinear duality

It is well-known that if $0 \to Y \to X \to Z \to 0$ is an exact sequence then $0 \to Z^* \to X^* \to Y^* \to 0$ is also exact. This means that if $F: Z \to Y$ is a 0-linear map there should be

Theorem. An explicit method to construct the adjoint 0-linear map F^* : $Y^* \to Z^*$.

Knowing the form of $F^{*'}$ one can prove that the space Z_2 of Kalton-Peck [5] is isomorphic to its dual.

Derived from this we consider two related

7. Three-space problems on duality

It is an open problem to know if "being a dual space" is a three-space property, in the sense that given an exact sequence $0 \to Y^* \to X \to Z^* \to 0$ the space X must be a dual space. We construct

THEOREM. An exact sequence $0 \to Y^* \to X \to Z^* \to 0$ that is not a dual sequence,

which solves a question that goes back to Vogt [7]. Moreover,

THEOREM. If $0 \to Y^* \to X \to R \to 0$ is an exact sequence, where R is reflexive, then it is a dual sequence.

Related to this is the question: is the property of being complemented in its bidual a three-space property? This question is also open. A simplification of the preceding argument shows:

THEOREM. If $0 \to Y \to X \to R \to 0$ is an exact sequence where Y is complemented in its bidual and R is reflexive then X is complemented in its bidual (see also [3]).

In some cases, there is a positive answer:

THEOREM. If $0 \to Y \to X \to Z \to 0$ is an exact sequence where Y is complemented in some dual space and Z is an \mathcal{L}_1 -space then the sequence splits.

This contains an old result of Lindenstrauss [6].

REFERENCES

- [1] CABELLO, F. AND CASTILLO, J.M.F., Twisted sums of Banach spaces, preprint.
- [2] CASTILLO, J.M.F. AND GONZÁLEZ, M., "Three-space problems in Banach space theory," monograph submitted.
- [3] DÍAZ, J.C., DIEROLF, S., DOMANSKI, P. AND FERNÁNDEZ, C., On the three-space problem for dual Fréchet spaces, *Bull. Acad. Polon. Sci.*, **40** (1992), 221–224.
- [4] Kalton, N., The three-space problem for locally bounded F-spaces, Comp. Math., 37 (1978), 243–276.
- [5] KALTON, N. AND PECK, N.T., Twisted sums of sequence spaces and the three-space problem, Trans. Amer. Math. Soc., 255 (1979) 1-30.
- [6] LINDENSTRAUSS, J., On a certain subspace of l_1 , Bull. Acad. Polon. Sci., 12 (1964), 539–542.
- [7] Vogt, D., Lectures on projective spectra of (DF)-spaces, preprint.