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1. INTRODUCTION

Consider the system:

' = afy) — B(y)F(z),
y' = —a(t)g(z),

where «, 8, f = [ f(s)ds) are real valued continuous functions on R.
Moreover a is contlnuous on [0,4+00) and g : R — R is continuous such that
zg(z) > 0 for £ > 0. Dots denote the differentiation with respect to ¢. Let us
note that in the case a(y) =y, B(y) = 1 system (1) reduces to the equation
of the second order:

(2) a" + f(z)z' + a(t)g(z) = 0.

(1)

If a =1 and f = A’ then (2) is the well known Liénard’s equation:
'+ h(x)z" + g(z) = 0.

It is known that in the case that a is sufficiently smooth positive, all solu-
tions of (2) can be extended for all t > 0 (see [5]). The case of negative a is
quite different. If a is negative at some point then the equation (2) without
damping, i.e.

2" +a(t)g(z) =0,

has solutions which are not continuable for all ¢ > 0. Moreover for a as above
nothing is known about continuability of solutions of (2). The aim of this
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short note is to study the continuability of solutions of system (1) in the case
of a negative in one point.
Let us note that results presented in this note complete earlier papers

([2-4]).

2. CONTINUABILITY OF SOLUTIONS OF (2)

Let G(z) = [; g(s) ds. Now we state our first result.

THEOREM 1. Suppose a(t;) < 0 for some t; > 0 and F(z) < N for x > 0.
If the following condition is fullfilled:

+o0 1
3) / (1+ G(z)) tdz < oo,
0
then (2) has solution x(t) which is not continuable to +oo.

THEOREM 2. Let a(t) be continuous satisfying a(t) < 0 on an interval
t, <t <t, with a(t;) <0 and there exists N > 0 such that 0 < F(z) < N for
xz > 0. Then (2) has a solution (z(t),y(t)) defined for t = t, satisfying:

@) lim [2(t)] = +oo,
for some T € (t1,1,] if and only if (3) holds

The proofs of Theorems 1 and 2 are based on ideas of proofs presented in
[1]. In proofs of [1] it is considered the system

xl — yl’
y' = —a(t)g(a).

To prove Theorems 1 and 2 we consider, instead of the above system the

following one:
z' = Y- F(‘/I")v

\ y' = —a(t)g(z).
Modifying ideas of [1] we obtain the expected results.

Remark 1. The case z < 0 can be proved in a similar way, using the
condition —N < F(z) <0 for z < 0 and

(5) /0 1+ G(2) tdz > —oo,

thus a similar argument may be given in quadrant III of the Phase Plane.
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3. THE GENERAL SYSTEM (1)

To consider system (1) we assume additionaly: a) « is strictly increasing
and such that ya(y) > 0ify #0, b) B(y) > 0,c) zF(z) >0if z #0, d) g is
a increasing function on (—oo, +oo)T From the Theorem 1 we obtain:

THEOREM 3. Let a(t,) < 0 for some t; > 0. Suppose there exists §; > 0
and K > 0 such that for t; <t <t, + 0 either:

(6) y—F(z) <aly) - By)F(z) forz>K andy > K,
or
(7) y— F(z) > a(y) — By)F(z) forz < —K andy < —K.

If (6) and (3) hold or (7) and (5) hold, then (1) has solutions (z(t), y(¢))
satisfying |z(t)| — oo for some T > ¢;.

Remark 2. The formulation of the comparison result corresponding to
Theorem 2 is easy and we leave it to the reader.
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