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1. INTRODUCTION

The weak (homological) bidimension, w.db A, of a Banach algebra A is
a number that measures how much this algebra is “homologically worse”
than amenable; it is equal to zero precisely when A is amenable. The class
of amenable Banach algebras was introduced by Johnson [10]. He selected
these algebras by the condition H!(A4, X*) = 0 for all Banach A-bimodules
X. Here X* is the Banach A-bimodule dual to X, in which the module
multiplications are given by (a-f)(z) = f(z-a), (f-a)(z) = f(a-z)(a € A,
fe Xz e X),H (A, X") is the (continuous) one-dimensional cohomology
group of A with coefficients in X*. The motivation for the term “amenable
algebra” was [10, Theorem 2.5]. This theorem goes as follows: the algebra
L'(G) is amenable if and only if the locally compact group G is amenable in
the traditional meaning of harmonic analysis (see [3]).

The concept of a biflat Banach algebra is due to Helemskii [6]. A Banach
algebra A is said to be biflat if it is a flat Banach A-bimodule or, equivalenty, if
A* is an injective Banach A-bimodule. If A has a bounded approximate iden-
tity (b.a.i. for short), then the above property is equivalent to the amenability
of A (see [9, Theorem 1]). At the same time, the class of biflat Banach alge-
bras, not necessarily with b.a.i., is wider. All the algebras N (F) of nuclear
operators on E, where F is an infinite-dimensional Banach space with the
approximation property, provide examples of biflat non-amenable Banach al-
gebras (see [15, Corollaries 2 and 6]).

tThis work was supported in part by Grant 93-01-00156 from the Russian Foundation of
Fundamental Investigations and Grant M95000 from the International Science Foundation.
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The purpose of the present paper is to compute the weak bidimension
for an arbitrary biflat Banach algebra and, in particular, to find the set of
values taken by this dimension in the class of all such algebras. It turns
out that a biflat Banach algebra A has always w.dbA < 2 (Theorem 2),
and it has w.db A < 1 if and only if it has a “one-sided” (left or right) b.a.1.
(Corollary 4). Thus we see that the weak bidimension of biflat Banach algebras
can only take the values 0, 1 or 2 (in detail see Theorem 6). For example, if
E is an arbitrary infinite-dimensional Banach space with the approximation
property, then w.db A (E) = 2 (Corollary 5).

Effros and Kishimoto [2] raised the question of whether there exist non-
amenable Banach algebras A such that H?(A, X*) = 0 for all dual bimodules
X*. The same question was posed earlier in [10] by Johnson. If we are talking
about all Banach algebras, then the answer is positive. In fact, it was shown
in [12, Theorem 1] by the present author that for any Banach space E # C
there exists a biprojective (and, in particular, biflat) Banach algebra A = A(E)
with underlying space E, which has a left, but no two-sided, identity; hence
w.db A(E) = 1, and so H?(A(E),X*) = 0 for all dual X*. On the other
hand, the answer to this question is negative in the class of commutative biflat

Banach algebras, since w.db A = 2 for each non-amenable algebra in this class
(Corollary 6).

2. THE WEAK BIDIMENSION OF BANACH ALGEBRAS AND ITS RELATION
WITH THE BIDIMENSION

Let A be a Banach algebra, not necessarily with an identity, and let A,
be its unitization. The categories of left Banach A-modules, right Banach A-
modules and Banach A-bimodules will be denoted respectively by A-mod,
mod-A and A-mod-A; the corresponding sets of (continuous) morphisms
from X to Y will be denoted by 4h(X,Y), ha(X,Y) and sh4(X,Y). The
fundamental homological concepts for the categories A-mod, mod-A and A-
mod-A (projectivity, flatness, resolutions, the groups “Ext” and “Tor”, the
(co)homology groups of A and others) are assumed to be known; they are set
out in detail in Helemskii’s book [7]. We recall only that, historically, the
cohomology groups H™(A,X) (respectively, the homology groups H,(A, X)),
X € A-mod-A, n = 0,1,..., were defined in terms of the so-called stan-
dard cohomology (respectively, homology) complex. At the same time, both
of these homology invariants (which are complete seminormed spaces) can be
defined as a particular case of the Ext or Tor functors for bimodules. The
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corresponding formulae (which are valid up to a topological isomorphism of
seminormed spaces) are

(1) H™(A, X) = Ext?_, (A4, X) = Extun (A4, X)

and

Ha(A, X) = Tort (X, A) = Tor?™ (X, Ay),
where A°" is the enveloping Banach algebra of A (see [7, Theorems I11.4.9
and I11.4.24]).

We now recall that Johnson [10, Corollary 1.3] (see also [7, Proposition
I1.5.29]) observed the following connection between questions about the triv-
iality of homology and cohomology groups. Namely, let X be a Banach A-
bimodule, and let n > 0 be an integer. Then H,,(A, X) = 0 for m > n and
H,—1(A, X) is Hausdorff if and only if H™(A, X*) = 0 for m > n.

DEFINITION 1. The weak homological bidimension (later simply the weak
bidimension) of the Banach algebra A is the smallest integer n such that
H™(A,X*) =0 for all X € A-mod-A and m > n, or oo if there are no such
n.

The above number is denoted by w.db A. The following proposition follows
inmediately from the observation just mentioned.

PROPOSITION 1. For each integer n > 0, the following conditions are
equivalent:

(i) w.dbA <m;
(i) H™(A,X*) =0 for all X € A-mod-A and m > n;

(iii) H,n(A,X) = 0 and H,(A, X) is Hausdorff for all X € A-mod-A and
m > n.

Algebras A for which w.db A = 0 are of special interest. This condition is
equivalent to the condition that H'(A4, X*) = 0 for all X € A-mod-A (see, for
example, [7, Theorem VII.2.19]), that is, to the amenability of A. For example,
w.db Cy(Q2) = 0 for any locally compact space 2, and w.db L'(G) = 0 for any
amenable locally compact group G.

THEOREM 1. For each integer n > 0, the following conditions are equiva-
lent:
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(i) w.dbA <mn;
(if) H™(A,X*) =0 for all X € A-mod-4;
(iit) if
R:0+— AL +— Xpé— - — X1 —Y 0
is a resolution of the A-bimodule A, in which all the (Banach) A-
bimodules X; are flat, then so is Y ;

(iv) the A-bimodule A, has a flat resolution of length n

0 A +— Xop— Xy — X, 0.

Proof. Trivially, (i) implies (ii). To show that (ii) implies (iii), suppose
(ii) holds. Decompose the resolution R into the product of short admissible
complexes

0+— K, +— X;+—Ki+—0 (6=0,1,...,n—1),

where K_; = A, and K,,_; =Y. Each of these short complexes defines, for
any X € A-mod-A, the exact sequence of groups

Ext’y_ (X, X*) = Ext}_,(K;, X™) — Extﬁﬂ,(Ki_l,X*) - Extf{fz(X,-,X*)

(see [7, Theorem I11.4.4]). Since all the X; € A-mod-4 (i =0....,n — 1) are
flat, we have '

Ext}y_4(Xi, X*) = Ext34}(X;, X*) =0 form >0
(see [8, Theorem VII.3.25]). Thus we obtain a chain of algebraic isomorphisms

Exth (Y, X*) 2 Ext} ,(Kn_s, X*) ...
2 Exth (Ko, X*) =2 Extit (44, X7).

Since in view of (1), Ext;t', (A, X*) = H (A, X*), (ii) implies that
Exty ,(Y,X*) = 0 for all X € A-mod-A. By [8, Theorem VII.3.25], the
A-bimodule Y is flat, and so (iii) holds.

Since, A-bimodule A, has at least one projective (and consequently flat)
resolution in A-mod-A (see, for example, [8, Ch. VII, §3.1]), (iii) easily implies
(iv). And if there is a resolution of the form (iv), then, for any X € A-mod-
A, the groups M, (A, X) = Tora *(X, A,) computed by using this resolution
(see [7, Theorem II1.3.15 and Proposition VII.1.2]) vanish for m > n and are
Hausdorff for m = n. By Proposition 1, the latter implies (i). N
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Thus the weak bidimension, w. db A, of A can be defined as the least length
of a flat resolution of A, € A-mod-A. For example, the A-bimodule A, is
flat if and only if w.db A =0, that is, A is amenable (see [9, Theorem 1]).

We recall now that the (homological) bidimension, db A, of A is the ho-
mological dimension of A, € A-mod-A, that is, the least n such that the
A-bimodule A, has a projective resolution of length n. The same number is
the smallest integer n such that H™(A4,X) = 0 for all X € A-mod-A and
m > n. From here we see that w.db A < db A for every Banach algebra A.

It is known that db A < 2 for any biprojective A (see [7, Theorem V.
2.28]). On the contrary, the bound db A > 2 holds for all commutative Banach
algebras with infinite spectrum (see [5, §9]) and also for a wide class of non-
commutative biprojective Banach algebras (see [13, Theorem 5]). For example,
db Cy(2) > 2 for any infinite, locally compact space 2, and db Cy(Q2) = 2 with
Q discrete. We recall that
2 if G is compact and infinite (see [4, Theorem 9]),

dbL'(G) = s
oo if G is non-compact and amenable (see [17]),

and that (see [15, Corollary 5])

2 if E has the approximation property and
dbN(E) = is infinite-dimensional,
oo if E does not have the approximation property.

Tt is not known whether the condition db A = 1 holds for some semisimple
Banach algebra A. However (we shall show in Theorem 7), this condition is
valid for every non-unital biprojective Banach algebra with a “one-sided” (left
or right) identity, which is certainly nonsemisimple. In the same theorem, we

shall compute the bidimension of any biprojective Banach algebra without a
b.a.i.

3. THE TENSOR PRODUCT OF BANACH BIMODULES; BIFLAT BANACH
ALGEBRAS

Let A and B be Banach algebras, and let B{® be the Banach algebra
opposite to B,, the unitization of B. We recall that the projective tensor

product C = A, ® B}® is a Banach algebra, in which the multiplication is
well-defined by

(0,1 ® bl)(az ® b2) = a1a9 ® b2b1 (al,aQ S A+,b1,b2 S B+)
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Each X € B-mod-A (that is, a Banach B-A-bimodule) can be identified with
an object in mod-C (z-(a ® b) = b-z-a), and each ¥ € A-mod-B can be
identified with an object in C-mod ((a ® b)-y = a-y-b). This identification
evidently extends to morphisms (in particular, ghs(X,X) = h (X, X) and
4hp(Y,Y) = ch(Y,Y)), and we can define the tensor product of X € B-mod-
Aand Y € A-mod-B by using the explicit construction for the tensor product
of the given modules over the algebra C. Namely, the bimodule tensor product
X®Y=XQY
A= c

B

is the quotient (Banach) space of the projective tensor product X ® Y by the
closed linear span of the set of elements of the form

(2) bza®y—zQ®ayb (acA,beB,zeX,yeyY).

It is easily seen that X A®BY has the universal property with respect to

continuous bilinear operators R from X X Y, such that
R(z-a,y) = R(z,a-y) (“inner A-associativity”)

and
R(b-z,y) = R(z,y-b) (“outer B-associativity”),

foralla€ A,be B,z € X, yeY.

Using the universal property just mentioned, it is easy to prove that,
for bimodules X, X' € B-mod-A, Y,Y' € A-mod-B and morphisms ¢ €
sha(X, X') and ¥ € 4hp(Y,Y’), there exists a unique continuous linear op-
erator, wAQ:Z)Bt/J, from X A@BY to X ’A<§:§>BY’ such that

(p & D)@ @ y)=¢) ® Ply) (z€X, yeY)

It also follows from the universal property that there is a natural isometric
isomorphism

3) shA(XY) % (X & V)"

(cf. [7, Theorem II.5.21]), under which the continuous linear functional ¢ on

X A®BY corresponds to the morphism T € gh,(X,Y™*) such that

(Tz)(y) = t(= A®B Y) (ze X, yey).
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Furthermore, there is a natural isometric isomorphism
(4) X ®YRY R X
A-B B—A
which carries z ® ytoy ® z.
A-B B=4A
We now consider an important example.
PROPOSITION 2. Let U € A-mod and V € mod-B, and let Y = UQ®V

be the A-B-bimodule obtained from U and V by the tensor product bifunctor
(see [7, Ch. II, §5.3]). Then for any X € B-mod-A

XQY=ZVRXQU,
A-B B A
the isomorphism being natural and isometric.

Proof. For x € X, u € U and v € V we put R(z,u,v) = v%m%u.
Obviously the operator

R:XxeV—)V%X(%U

is trilinear and ||R|| < 1. If we apply the universal property of the tensor
product X ® U® V with respect to continuous trilinear operators (see [7, Ch.
I, §2.3] ) we get a continuous linear operator

p: XOY =XOUSV — VOXSU

with |||l < 1. It is easily seen that the kernel of ¢ contains the set of elements
of the form (2). Consequently, ¢ generates a continuous linear operator

MX®Y —=VRIXRU
A-B B A
with [|A] < 1.
On the other hand, let

S:VxXxU—XQ®Y
A-B

be the trilinear operator given by S(v,z,u) = z A®B (u® v), where v € V,
z € X, u € U; it is easily verified that S is balanced (that is, S(v-b,z,u) =
S(v,bz,u) and S(v,z-a,u) = S(v,z,au) for any b € B, a € A). The operator
from V % X % U into X A®BY associated with S is denoted by p. It is obvious
that ||u|| <1, and that p is the inverse operator to A. Thus A is an isometric
isomorphism of Banach spaces. 1
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If Y € A-mod-B, then X — X A®BY is a functor from B-mod-A to

Ban, the category of Banach spaces (the action of this functor on morphisms
is given by ¢ — <pA®Bly). The A-B-bimodule Y is said to be flat if the left

A, ® B$P-module identified with it (see above) is also flat or, equivalently, if
the functor
?7® Y:Bmod-A—Ban: X +— X QY
A-B A-B

is exact (see [7, Definition III.3.6]).

PROPOSITION 3. (cf. [8, Proposition VIL.1.57]) IfY is flat in A-mod-B,
then, for any Z € B-mod, Y (% Z is flat in A-mod.

Proof. Let X € mod-A. Proposition 2 gives us the isometric isomorphism

XY R®Z)2Y ® (ZRX)2(Z&X) B Y
A B B—A A

-B

(the last two spaces are isomorphic in view of (4)). Considering this isomor-
phism for all X, we can establish the isomorphism between the functors

? t%) 0% t% Z): mod-A — Ban and (?A®BY) 0 (Z®17),

where Z ® ? maps mod-A into B-mod-A4, and ?A®BY maps B-mod-A into

Ban. Since obviously the functor Z ® ? preserves the admissibility of short
right Banach A-module complexes, the exactness of the functor ?A®BY implies

the exactness of the functor ? % (Y % Z). 1

In the case A = B, every Banach A-bimodule may be considered as a left as
well as a right module over (the same) A*™ = A, ® A". We recall (see [6] or
[7, Ch. VII]) that the Banach algebra A is said to be biflat, if the A-bimodule
A is flat, that is, if the functor

?7® A: Amod-4A — Ban: X — X ® A
AZA AZA

is exact.

Note that every biprojective Banach algebra (see [14]) is biflat. The con-
verse is false: for example, the algebra Cy(2) is biflat for any locally compact
space 2, but it is not biprojective if © is nondiscrete (see [8, Ch. VII, §1.5]).
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We now recall that the canonical morphism for X € A-mod means the
morphism 7 € 4h(A® X, X) defined by m(a ® ) = a-z, where the module
operation A® X € A-mod is well-defined by a-(b®z) = ab®z (a,b € A,z €
X). The closure of the image of the morphism 7 is denoted by A-X. In
particular, for any closed left ideal I in A, we denote by A-I the closure of
the linear span of elements of the form ab (a € A, b € I). A is said to be
idempotent if A*> = A, where A? denotes A-A.

The next proposition is similar to [14, Lemma 1.1].

PROPOSITION 4. Let A be a biflat Banach algebra. Then, for each closed
left ideal I in A, the left Banach A-module A/A is flat, and the right Banach
A-module (A/A-I)* is injective.

Proof. The left A-module A/A-I is topologically isomorphic to the A-
module A(%(A+ /I) (see [7, Theorem II.3.17]), which is flat, by Proposition

3. Now [7, Theorem VII.1.14] ensures that the right A-module (A/A-I)* is
injective. 1

COROLLARY 1. A biflat Banach algebra is idempotent.

Proof. Taking A = I, we deduce from Proposition 4 that the annihilator
right A-module (A4/A?)* is injective. If A is not idempotent then (4/A?)* # 0,
and consequently the one-dimensional annihilator right A-module C can be
represented as a modular direct summand (A/A?)*, and is therefore injective
(see [7, Proposition I11.1.16]). This implies that the short exact sequence of
right A-modules

0—C—(4)" — A" —0

splits, and hence that A has a right b.a.i. (see [7, Theorem VIIL.1.20]). But
the latter is impossible provided that A is not idempotent, and so we have a
contradiction.

The latter result was established earlier by another method by Helemskii
(see [7, Proposition VIL.2.6]). In addition, he gave the following characteriza-
tion of biflatness (see [7, Theorem VII.2.7]): a Banach algebra A is biflat if
and only if 7*: A* — (A® A)* has a left inverse morphism of A-bimodules,
where T: AQA — A is the canonical morphism.

The next proposition is similar to [14, Lemma 1.3].

PROPOSITION 5. Let A be a biflat Banach algebra, and I a closed bi-ideal
of A. Then the Banach algebra A/A-I is biflat.
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Proof. Let B = A/A-I, and let 0: A — B be quotient map. If p €
Ah ((A® A)*, A*) is a left inverse to 7*, then we put p, = p(c®c)*. It is
clear that p;: (B® B)* — A* is a morphism of A-bimodules while for any
a€ A, deland f € (B®B)* we have

p1(f)(ad) = (d-p1(f))(a) = p1(d-f)(a) =0,

since (d-f)(b®¢) = f(b® cd) = 0 for all b,c € B. This implies that p,(f)
is zero on A-I for any f € (B&® B)*. The latter means that there exists a
unique morphism p, € shu((B® B)*,B*) = ghp((B® B)*, B*) defined by
the formula

p2(f)(0(a)) = pi(f)(a) (f €(BR®B)", a€ A).

Let np: B& B — B be the canonical morphism for the B-module B.
Obviously m5(0 ® 0) = o and hence (0 ® 0)*(n)* = 7*¢*. Then

pi(1B)* = p(o ®0)*(1p)" = pr*o” = 07,

since p is a left inverse to 7*. But p; = 0*p,, and Kero* = 0. Hence p, is a
left inverse to (7p)*, and therefore (see the result cited above ) B is biflat. 1

4. THE WEAK BIDIMENSION OF BIFLAT ALGEBRAS AND THE
BIDIMENSION OF BIPROJECTIVE ALGEBRAS

It is well known (see [7, Theorem VII.2.20]) that a biflat Banach algebra
A is amenable (that is, w.db A = 0) if and only if it has a b.a.i. The next
theorem is similar to [7, Theorem V.2.28].

THEOREM 2. Let A be a biflat Banach algebra. Then w.db A < 2.

Proof. Consider the following diagram of A-bimodules and morphisms:

A4, 1914, 84\
0 —Ay ARA — 0
USt
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here 7 is the natural embedding of A in A, and 7, m;, 7, are given by a ® b —
ab. Weput P, = (A, QA.)® A, P, = (A, ® A)® (A& A,) and we introduce
the morphisms d_;: Py — A,, do: P, — Py, and d;: AQ A — P, given
“componentwise” with the help of the morphisms indicated on the diagram.
The complex

(5) 0+ A, &2 P P <3 A®A+— 0

is the so-called entwining resolution (see [7, Theorem V.2.1]) associated with
the left A-module A,. Obviously, all the morphisms of this resolution are
morphisms of A-bimodules. Furthermore, the A-bimodules P,, P, and A® A
are flat, by [7, Propositions VII.2.2 and VII.2.4]. Consequently, this complex
is a flat resolution of length 2 for A-bimodule A,. By Theorem 1, we have
w.dbA<2. 1

COROLLARY 2. Let A be a biflat Banach algebra, and let X € A-mod-A.
Then:

(i) H*(A,X*) =0 for alln > 3;
(ii) Hn(A,X) =0 for all n > 3 and Hs(A, X) is Hausdorff.

PROPOSITION 6. Let A be a biflat Banach algebra, and let X € A-mod-A.
Consider the operator

Ax: ARX®A— (AR X) @ (X R A)
A A A A

defined by
Ax(a @ 2 ®b)=(a ® z-ba-z @ b) (a,b€ A, z € X).
A A A A

Then the following conditions are equivalent:
(l) 7'l2(A7)(*) =0;
(ii) Ho(A,X) =0 and H,(A, X) is Hausdorft;
(iii) the operator Ax is topologically injective.
Proof. Since A is biflat, Corollary 2 and [10, Corollary 1.3] imply that

conditions (i) and (ii) are equivalent. It remains for us to prove that (ii)
is equivalent to (iii). By [7, Theorem II1.3.15 and Proposition VII.1.2], the
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spaces H,(A, X) = Tor?~*(X, A,) can be computed by using the resolution
(5); consequently, they are the homology groups of the complex

0+ X®P& XoP X (A0A) + 0,
A—A A—-A A—-A

where dy = 1 XA®Ad0 and §; = 1 XA®Ad1. In particular, we have H,(A4, X) =

Kerd;, and H;(A, X) = Kerdy/ Im d,. Thus the condition (ii) is equivalent to
the operator §; being topologically injective. It remains only to note that, by
Proposition 2,

X® (ARA) =ARX®A, X QP =(AX)®(XQA)
A=A A A A=A A A
and §; = Ay, up to an isometric isomorphism of Banach spaces. 1
Before giving the next result about the weak bidimension of biflat algebras,

we touch on the question of the structure of the space I ® X, where X is a left

A
Banach A-module, and I is a closed right ideal in the algebra A,. We consider
the operator o x: I(%X — X defined by a; x(a®z) =az (a €1, z € X).

Obviously, Im ay x is dense in I-X, where I-Xis the closure of the linear span of
elements of the form a-z (a € I, z € X), and if a; x is a topologically injective
operator (that is, an injective operator with closed image), then I (%) X=IX.

We recall the well-known result (cf. [8, Theorem VI.3.24]): if I has, as a
Banach algebra, a left b.a.i., then the operator oy x is topologically injective.
As it is mentioned in [6], this theorem was proved, in essence, by Rieffel [11,
Theorem 4.4], who considered the case I = A. The following result shows that
the converse theorem is true.

THEOREM 3. Let A be a Banach algebra, and let I be a closed right ideal
in A,. Then the following conditions are equivalent:
(i) for each left Banach A-module X, the operator oy x: I(%)X — X is
topologically injective;
(ii) for the left Banach A-module I'* dual to I, the operator oy y«: I % Irr—
I* is topologically injective;
(iii) I has a left b.a.i.

Proof. We consider the short exact complex

(6) 0¢— A )T+ A, ¢~ T+«—0
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in mod-A (i and j are the natural embedding and the natural projection
respectively), and its dual complex

ok

(7) 0— (A /D) L5 (A 51— 0,

which is also exact (see [7, Theorem 0.5.2]). Let X be an arbitrary left Banach
A-module. Using the isomorphism between X and A, (%X (see [8, Corollary
VI.3.25]), we see that the operator aj x: I%X — X = A+<%X can be
obtained by applying the functor ? (%) X to the morphism ¢: I — A, . There-
fore, in view of (3), the operator aj xy: X* — (IC%X)* dual to oy x may be
identified with the operator

A= Ah(-Xai*): Ah(X7 (A-i-)*) — Ah(Xa I*)

If the operator ay x is topologically injective, then aj x and X are surjective
(see [7, Theorem 0.5.2 or Exercise 0.5.3]).

Now set X = I'* and consider the identity morphism on I* as an element of
the space 4h(I*,I*). If the operator \ is surjective, then this element belongs
to Im A, and so there exists a morphism of left Banach modules p: I* — (A4,)*
such that A(p) = i*p = 1,.. In this case, the complex (7) splits in A-mod, and
hence I has a left b.a.i. (cf. [7, Theorem VII.1.20]). In this way, (i) implies
(ii), and (ii) implies (iii). The deduction of (i) from (iii) is obviously provided
by [8, Theorem VI.3.24]. 1

We single out particularly the case I = A.

COROLLARY 3. Let A be a Banach algebra. Then the following conditions
are equivalent:
(i) for each left Banach A-module X, the operator &x: A (% X — X given

by a % T — a-x is topologically injective;

(ii) for the left Banach A-module A* dual to A, the operator 4. : A (% A —
A* is topologically injective;
(iii) A has a left b.a.i.
Remark 1. For right modules we have of course similar theorem and corol-

lary, which give us criteria for a closed left ideal in A, or for A to have a right
b.a.i.
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LEMMA 1. Let Ey, E, Fy, and F be Banach spaces and let 7: Ey — E
and v: F; — F be continuous linear operators that are not topologically
injective. Then the operator §: E,® Fy, — (E,®F) ® (E® F,, given by
z®y— (z®v(y),7(z) ®y) is not topologically injective either.

Proof. Since the operator 7 (respectively, v) is not topologically injective,
there exists a sequence {z,}3,, z, € E, (respectively, {y,}52,, yn € Fo), such
that for all n ||z,|| = 1, and ||7(z,)|| = @n, where lim,,_,, &, = 0 (respectively,

ly=ll = 1, and ||[v(yn)|| = Bn, where lim,_,, B, = 02.
For each n we put z, = z, ® y,; then 2z, € Ey® Fy, and ||z,|| = 1. At the
same time, for each n

160Gzl < Nlznll 1 (ya)ll + 17 (@) [HYn]l < Bn + o,

and so lim,,_, [|#(2,)]| = 0. It follows that the operator € is not topologically
injective. N

THEOREM 4. Let A be a Banach algebra. Then the following conditions
are equivalent:

(i) for each X € A-mod-A, the operator Ax: A(%X(%A — (A%)X) )

(X (% A) given by a % z (%) b— (a §> z-b,a-x (% b) is topologically injective;

(ii) for X = A* ® A* € A-mod-A, the operator Ax is topologically injective;
(iii) A has a left or right b.a.i.

Proof. The implication (i) = (ii) is trivial. To prove the implication (ii)
= (iii), suppose (ii) holds. This means that the operator

O=Dupr: (ADA)B(AGA) — (AGANGAT) @ (4" & (4@ 4)

givenby z ® y — (z Q@ v(y),7(z) @) (z € A(%A*, y € A* (%A) is topologi-
cally injective; here 7: A(%A* — A* (respectively, v: A* (%A — A*) is the
operator defined by 7(a %) u) = a-u (respectively, v(u (§) a) = u-a). Then, by
Lemma 1, at least one of the operators 7 and v is topologically injective. In
view of Corollary 3 and Remark 1, (iii) holds.

We now assume that (iii) holds. Let, for example, A have a left b.a.i., and
let X € A-mod-A. Then, by [8, Theorem VI.3.24],

ARX®A=AR(X®A) XA (X ®A).
A A A A A
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Since the latter space is a closed subspace of X %) A, we obtain that the oper-

ator Ay is topologically injective, that is, (i) holds. NI

By combining Proposition 6 with Theorem 4 we get the following theorem.

THEOREM 5. Let A be a biflat Banach algebra. Then the following con-
ditions are equivalent:
(i) H*(A,X*) =0 for all X € A-mod-A4;
(i) H2(4,(A* ® A*)*) = 0;
(ii) H2(A,X) =0 and H,(A, X) is Hausdorff for all X € A-mod-A;
(i) Ho(A, A*® A*) = 0 and H,(A, A* ® A*) is Hausdorff;
(iii) A has a left or right b.a.i.

Corollary 2 and Theorem 5 yield the following corollary.

COROLLARY 4. Let A be a biflat Banach algebra. Thenw.db A <1 if and
only if A has a left or right b.a.i.

The following theorem is the main result of the paper. It is a consequence
of Theorem 2, Corollary 4 and [7, Theorem VII.2.20].

THEOREM 6. Let A be a biflat Banach algebra. Then

0 if A has a b.a.i.,
w.dbA = ({1 ifA has a left or right, but no two-sided, b.a.i.,
2 if A has neither a left nor a right b.a.i.

COROLLARY 5. Let E be an infinite-dimensional Banach space with the
approximation property, and set A = N(E). Then w.dbA = 2 (and so
w.db A = db A4, see [15, Corollary 5]).

Proof. Since our algebra is biflat (see [15, Corollary 2]), it is sufficient to
note that it has neither a left nor a right b.a.i. (cf. [15, Corollary 6]). §

Remark 2. By analogy with the proof of [15, Theorem 1 and Corollary 5],
one can prove the following: if a Banach space E does not have the approzi-
mation property, then w.db N (E) = oco. Thus w.dbN'(E) = db N (E) for any
Banach space E.
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COROLLARY 6. Let A be a commutative biflat Banach algebra. Then

0 if A has a b.a.i.,

w.db A =
2 if A does not have a b.a.i.

For example, if A = ¢; with coordinatewise multiplication, then w.db A =

One of the applications of Theorem 6 is that it enables one to establish a
lower bound for the bidimension of certain biflat algebras.

COROLLARY 7. Let A be a biflat Banach algebra and suppose that A has
neither a left nor a right b.a.i. Then db A > 2.

Concerning biprojective algebras, the following turns out to be true.
THEOREM 7. Let A be a biprojective Banach algebra. Then

0 if A has an identity,

dbA — 1 if A has a left or right, but no two-sided, identity,

2 if A has neither a left nor a right identity

and does not have a b.a.l.

Proof. The case “A has an identity” is trivial. If A is non-unital, but has
a “one-sided” identity, then the result follows from the proof of [12, Theorem
1].

Let us now prove the non-trivial part. We assume that A has neither a left
nor a right identity and does not have a b.a.i. either. The bound dbA < 2
follows from [7, Theorem V.2.28]. To obtain a contradiction, suppose that
db A < 2. Then, for each X € A-mod, the homological dimension, dhy X, of
X is less than 2 (see [7, Corollary I11.5.16]). Since A does not have a right
identity, [16, Corollary 1] and Corollary 3 imply that A has a left b.a.i. Since
A does not have a left identity, we obtain, by the concepts of symmetry, that
A has a right b.a.i. Consequently, the Banach algebra A has a left as well as
a right b.a.i. and hence (see [1]) also a two-sided b.a.i. But we have assumed
that A is an algebra without a b.a.i., and so we have a contradiction. The
theorem is proved. H

COROLLARY 8. Let A be a biprojective, non-amenable Banach algebra
without “one-sided” identities. Then H*(A,A® A) # 0.
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Proof. If the groups H*(A4,A® A) = Ext}_,(A,, A® A), computed by
using the (projective) resolution (5),vanish, then obviously there exists a mor-
phism of A-bimodules ¢£: P, —s A® A that is left inverse to d;. But then the
homological dimension of A, € A-mod-A (that is, db A) is less than 2. We
now only have to apply Theorem 7. |

Remark 3. Most likely, H?>(A, A® A) # 0 and db A = 2 for any biprojec-
tive A without “one-sided” identities; however, as yet, there is no complete
proof of this conjecture. (See [13, Theorem 5] or [7, Assertion V.2.30(II)] for
the special case in which A is semisimple and has the approximation property.)

Remark 4. Recall the known question (see [7, Postscript, §7]), which was
also posed by A.L.T. Patersen in his preprint “Virtual diagonals and n-ame-
nability for Banach algebras”, kindly sent to us. For which classes of (unital)
Banach algebras is it true that db A® B = db A + db B or is the analogous
“additivity formula” true when db is replaced by a certain other homological
characteristic of Banach algebras (for example, by w.db)? Using the results
of the present paper, we shall prove in subsequent article that the formula

w.dbA® B =w.dbA+w.dbB

is valid for any Banach algebras A and B, having b.a.i.
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