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A geometrical framework is discussed for the treatment of a class of La-
grangian systems with non-holonomic constraints. The starting point for the
model is a bundle 7 : E — M, where both £ and M are fibred over IR,
with projections 73 and 7. Linear constraint equations correspond to a con-
nection on m, which can be viewed as defining a section o of J'7; over the
pull-back bundle 7*J'7,. The dynamical system of interest is governed by a
vector field I' on J!, the image of o, and defines in itself a connection on the
bundle p : J! — E. We present an intrinsic procedure by which the correct
reduced dynamics on J! can be constructed out of a given Lagrangian on J'7
and the constraint connection o. We further discuss how the scheme can be
generalized to the case of non-linear non-holonomic constraints.

1. INTRODUCTION: THE CLASSICAL APPROACH TO
NoN-HorLoNoMIC CONSTRAINTS

Consider a mechanical system described by a Lagrangian L(t,q", %)
(where the index A runs from 1 to n = k + m), which is subject to linear
non-holonomic constraints, expressed in a solved form with respect to m of
the velocities ¢* in terms of the k remaining ¢*:

¢* = By(t,q")¢" + B*(t,¢"), a=1,..,m

Combining ideas coming from the notion of virtual velocities and d’Alembert’s
principle, with techniques borrowed from the calculus of variations, the clas-
sical way of arriving at what are believed to be the right equations of motion
(see e.g. [10]) consists in introducing Lagrange multipliers for expressing the
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NON-HOLONOMIC LAGRANGIAN SYSTEMS 203

non-independence of the variations §g# in Hamilton’s integral principle. For
the type of constraints under consideration — which might be described as
characterizing “generalized éaplygin systems” in the terminology of [7] — one
obtains the following equations for the unknown ¢ (¢) and multipliers A, (t):

d (0L oL
M _——— = — e = ]_ e k
dt (aqa) aqa Aa Ba, « ] ) vy
d (0L oL
_ —_— = - 1 . e .
dt (aq-a) aqa )\07 a ) 7m

Elimination of the multipliers is very easy here, and results in second-order
equations for the ¢%, which can be written in the following form:

d (af) _ X.(I)+C oL

dt \ 9¢~ * 9’
where
L(t,q*,¢*) = L(t,q* ¢*, Bsi® + B
0 0
X, = —+B®
8q"+ * g

C: = B2 - X.(B3i®+B*).

Assuming regularity in the sense that det (a2f/aqaaqﬂ) # 0, the ultimate
result is a mixed system of the form

§* = fa(tanaqﬁ)7 a=1,...,k
qa = Bg(tqu)qa—i_Ba(tqu), a=1,...,m.

The question we want to address here is: “How can we model these equa-
tions geometrically?”, or more precisely “Can one give a direct geometrical
(coordinate free) construction of this reduced system, without needing the
intermediate process of introducing and eliminating multipliers?”

The answer to this question is contained in joint work with Frans Cantrijn
and David Saunders, recently reported in [8]. We will briefly outline this
construction and give a sketch of the generalization to the case of non-linear
non-holonomic constraints.
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2. THE CONSTRAINT SUBMANIFOLD AND ITS INTRINSIC STRUCTURES

The immediate suggestion coming from the way the constraints are ex-
pressed is that the configuration space should be regarded as a bundle 7 :
E — M, with both E and M fibred over IR:

(t,q%q") E M (tq%)

P

id
IR — IR
Coordinates on the first jet extension J'm could then be denoted as (¢, %,
q*,q?,q%). An Ehresmann connectionon 7 : E — M is a section ¢ of J'm — E,
i.e. an assignment of the form ¢ = B%(t,q%), ¢@ = B%(t,q"). Alternatively,
it can be interpreted as a splitting o of the sequence below,

a

0 V’T'l JlTl W*JITO
(t,q*,4*)  (t,¢*,4¢%,¢*)  (t,¢*,4%)

so that o has a coordinate representation of the form:
o (t,q*,¢%) — (¢,¢%,¢% ¢ = B3¢’ + B%).

Solution curves of our reduced system will be curves ¢*(¢) in E satisfying the
constraints, i.e. whose prolongation to J'7; lies in the image of 0. We are
thus led to define the constraint manifold as being J! = o(n*J'7g), and our
problem is reduced to constructing the reduced dynamics as an appropriate
vector field on J}.

The manifold J! is equipped with two interesting type (1,1) tensor fields.
One is inherited from the so-called canonical “vertical endomorphism” on J'7,:

S=0°0-0  with 0°=dg — ¢odt.
0q™

The other one comes from the connection and has coordinate expression

N=n"® with n* =dq" — B, dqg* — B* dt.

9
dqe’
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Originally, N is the “vertical projector” of the connection on 7 and as such
lives on the space E. It is, however, well defined also on 7*J'7, (and there-
fore also on J!), because 5 : E — J'm has a canonical lift to a connection
Gy mJiry = Jim (where m : m*J 19 — J'7y), defined, in the coordinates
(t,q%, 4%, q% qf,q%,q2) of J'my, as follows:

q; = B*, 7, = Bg, q; =0.

A diagram of all spaces and maps involved in this discussion is presented
below:

JlTl DJ;
o
Jimy —fl—> m*Jirg i Jrry
a T
Jirx —/——— E M
T To

B M

Remark. The geometry of non-holonomic mechanics is a rather popular
subject nowadays (see e.g. [6] and references therein); the idea of modelling
non-holonomic constraints via a connection can be found also in other ap-
proaches, see e.g. [2, 1]. We wish, however, to arrive in addition at a model
for the dynamical vector field directly living on J!. To that end, we now first
introduce the class of vector fields to which our model will belong and discuss
the additional structure which is entailed by such vector fields.

3. SECOND-ORDER VECTOR FIELDS ON J!

A second-order vector field I' (SODE for shorthand) on J! is a vector field
characterized by the following properties:

(', dty =1, (r',6%) =0, (I',n*) =0.
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In coordinates, such a I is of the form

0

I=—
ot

¥ 0 a a a « A . 8
+q aqa+(Bﬂq + B )aqa+f (t’q g )a(ja,

for some f* € C=(J}), so that the corresponding differential equations do
indeed constitute a system of the mixed form introduced before.

I' € X(J}) comes with its own connection on the bundle p: J! — E. One
way to discover it, is to observe that

(LrS)? =T-T ®dt— N,
from which it follows that

1
P, = 5(I—LrS+T®dt+N),

P, = %(I+£FS—P®dt—N),

are two complementary projectors. The associated “horizontal lift” operation,
which displays the corresponding connection coefficients, reads

0 0 e gy O
5 T ot td Fﬂ)aqa

o o ;0 . s 19f°
aqa — aqa —I‘aa—q'ﬁ’ Wlth Fa = 2 8qa
0 . 0

0q°® 0q*

An interesting tensor field associated to a connection is its curvature tensor.
The two connections which are at our disposal now will each give rise to an
important type (1,1) tensor field along p : J! — E, coming from a component
of their curvature. In order to introduce these tensors, let us first observe that
there exists a canonical vector field along p, given by

0 0 0

T=— +{*— + (B%* + B%)—.
8t+q8qa+(°‘q+ )aqa

Consider then the Nijenhuis tensor Ny of the projector N on E, which is
precisely the curvature of 6. It is a vector-valued 2-form on E, and as such
can be regarded also as a vector-valued 2-form along p. The curvature tensor
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R of the SODE connection on the other hand, can directly be defined as being
a vector-valued 2-form along p. For background on tensor fields along a pro-
jection, in the context of standard second-order equations, see [4, 5, 9]. Define
now:

U =ipNy = C§0ﬁ®-68?
® = ipR = —PL0°® X4 ng n* ® Xp
whereby,
Cs = T(Bj) — Xp(Bag” + BY),

% = X,(f%)+ T2 +T(T9).

We will in fact not need the tensor ® in this survey, but it is an important tool,
to name only one of its applications, in the study of symmetry properties of the
system (see [8]). Concerning the tensor ¥, we need one further manipulation
before we can proceed to construct the vector field we want. The point is that
W has a “lift” to a tensor field ¥ on J?, given by

0

U = 9> )
[o7 ®aq-a

4. DIRECT CONSTRUCTION OF THE REDUCED
NoN-HoLoNOMIC DYNAMICS

For a Lagrangian system with given non-holonomic constraints, we have
seen that the data are: a function L € C~(J'1;) and a connection o on .
From these data, we introduce new objects, according to the following steps:

e Put L=4i*L, with i:J!— J'7; (injection).
e Define two 1-forms on J}!:
6 = Ldt+ S(dL),
Y. = i (¥(dL)) — N(dL).
e Define the “fundamental 2-form of non-holonomic Lagrangian mechan-

ics” to be: .
Q = def + ¢(L,a’) A dt
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Finally then, define the dynamics of the reduced non-holonomic Lagrangian
system to be governed by the unique SODE I', for which

i) = 0.

It is clear that such a construction may look like playing a game of magic,
which is justified only by the fact that it produces the correct equations! The
benefit is, however, that this game has revealed interesting tensorial objects,
which may well turn out to add substantially to our knowledge and under-
standing of non-holonomic mechanics in the future. For example, a topic which
looks worthwhile being investigated now is the study of the role of symmetries
of the fundamental 2-form 2. Also, having obtained a geometrical model for
the basic situation of non-holonomic Lagrangian systems, this model may well
be fruitful for exploring possible generalizations. As a matter of fact, there
is still some controversy in the classical literature about the way the theory
should be generalized for the case of non-linear constraints. Needless to say,
the ultimate test for the validity of a more general model will always come
from physics, more specifically from experiments. But the structure of the
geometry behind the model can be a very useful guide for detecting appropri-
ate candidates for the generalization. This is exactly what we propose to do
in the next section. More precisely, assuming for a moment that attempts to
generalize the theory to non-linear constraints would never have been made
before, we will simply explore where a direct imitation of the simple model
will bring us. '

5. GENERALIZATION: NON-LINEAR CONSTRAINTS

Suppose now that we are thinking of a Lagrangian system subject to non-
linear non-holonomic constraints, still in a solved form with respect to m of the
velocities. Assume that it will again be possible, under some regularity condi-
tion as yet to be detected, to obtain a reduced dynamics on some constraint
submanifold. This will then lead to a mixed system of first- and second-order
equations of the form

ija = fa(t7qA7q.ﬂ)7 01:1,...,]{}
¢ = ga(t7qA,qﬁ)7 a=1,...,m.

Geometrically, the first-order equations clearly correspond to a general section
o of Ji1, = 7 Jl7,.
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This time, the section o is not coming from a connection on 7 : E — M.
It does define, however, a connection &; on m; : m*J'1y — J'7y, determined
by the following horizontal lift construction from X (J'7y) to X (7*J'7p):

LN 2+<a_.aaga> 9
at ot " \9 T 94 ) aga

9 ., 9 9% 9
dg° g " 8¢~ 9’
9 ., 9
Bg° g=

As before, we set J! = o(n*J17y). It turns out that, puttin
- g
B® = ga _ QQB:L

many of the previous constructions formally remain unaltered. For example,
with 7* = dg¢* — B%dq* — B®dt, a SODE I' € X(J}) is defined, as before, to
satisfy:

(T',dt) =1, (T,6%) =0, (T',n*)=0,

which in coordinates means that I" will be of the form

r= % +4° 5% +9°(t, 9%, %) aiqa + f2(t,q",d") ;9%-

Formulas such as those which determine the projectors P, and P, of the
SODE connection remain the same. Note, however, that N is now a tensor
field living on 7* J' 7y or J} (via the diffeomorphism o) and so is the curvature
of 7;, namely N. We cannot contract such a tensor field with the canonical
vector field T along p : J: — E. Therefore, for any given SODE T, we are led
to introduce the following I'-dependent type (1,1) tensor field on J}:

. a 0
\I/p IZFNN = Cﬁ9ﬁ®a_qa
with
C5 =T(B}) — Xs(g°)-
As before, there is a corresponding lifted tensor field on J'7:

9
g

Up=C0°®
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These are constructions which very closely resemble the ones we had in Sec-
tion 3. So, we dare push the analogy further by imitating as follows the direct
construction of Section 4.

Let there be given a function L € C=(J'7;) and a section o of J'r, —
7*J'79, the image of which determines the constraint submanifold J! C J'7;.

e Put L=4*L, with i:J!— Jir.

e Define two 1-forms on J}:

6 = Ldt+ S(dL),
’(/)(I‘,L,a) = i*(‘i’r(dL))_N(df)'

where I' € X(J}) is, for the time being, any SODE, to be determined
later.

e Define for each such I' the 2-form
which of course (as in the previous section) also depends on L and o.

Under some appropriate regularity assumption, to be discovered in a mo-
ment, our game of magic now gives rise to the following prediction.

DEFINITION. The reduced dynamics on J! of the non-holonomic Lagran-
gian system is governed by the unique SODE I, determined by: irQr = 0.

Fixing a SODE I' on J} boils down, in coordinates, to give a prescription
for fixing the functions f(t,q¢*,¢?). A coordinate calculation reveals that the
condition ¢r2r = 0 requires that we have

oL\ . ~+ . OL . .
r (a_(;a) = Xo(L) + (Z aqa) [T(B3) — Xa(g")]-

The idea that our prescription should fix I' clearly means that we should be
able to solve the above relations unequivocally for the functions f¢. This will
be the case, if and only if the following regularity condition holds:

0*L L OL\ 0d%*¢"
i (5~ (57) o) #°
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Let us finally see how our conclusions relate to whatever differential equa-
tions might be obtained from classical procedures after elimination of auxiliary
functions such as Lagrange multipliers. To that end, we first make the fol-
lowing observation: the fact that the above identities (under the indicated
regularity assumption) uniquely define the f¢ is the same as saying that the
reduced differential equations G* = f*(t, ¢*, ¢°) are equivalent to the equations

4 (%) = X0+ (22 ) [ 58 ~ Xa(o"

These are exactly the equations which would follow from the classical proce-
dure (introducing and subsequently eliminating Lagrangian multipliers), pro-
vided one adopts the generally accepted point of view that the ‘variations’ (or
‘virtual velocities’) dg” must satisfy

0g" = === g%,

0q~
which are often referred to as Cetaev’s conditions.

Details and proofs of the statements of this section will be published else-
where, in the context of a general approach to the geometrical description
of mixed systems of first- and second-order differential equations. As a final
remark, an interesting topic for further research would be to investigate the
possibility of transition to a reduced Hamiltonian dynamics under the regu-
larity condition which our approach has revealed. Usually, the transition to a
Hamiltonian picture is discussed at the level of the original description of the
system on J'7; and requires the regularity of the free Lagrangian L (see e.g.

3]).
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