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1. INTRODUCTION

I outline ideas which are relevant to the theory of continuous distributions
of defects in solid crystals, and also to the relation of that theory with the
view that a crystal is composed of a collection of atoms with some kind of
translational order.

There are two images that come to mind when one thinks of a solid crystal.
Firstly, there is the idea that a crystal is composed of atoms which arrange
themselves in relatively stable positions at, or close to, the sites of a regu-
lar lattice in JR3. Then, slight modifications of this picture are fairly easy
to visualise; for instance, one may suppose that a ‘half-plane of atoms’ is in-
serted (from infinity) between appropriate lattice planes, and imagine that the
structure of the crystal is modified only in the vicinity of this half-plane, to
accommodate the introduction of these atoms. This is the ‘discrete’ picture
of an edge dislocation, and it is traditional to assert that the number of sin-
gular lines (defined by defects of this, or similar, type) which cross a typical
square centimetre section of metal crystal is of the order of 10%. Also, there
is a very inventive literature which documents methods by which such defects
may interact, usually based on lattice geometry arguments. Moreover, many
theories of plastic deformation take their inspiration from the slip mechanism,
whereby lattice planes (of atoms) translate relative to adjacent planes of the
same family. More specifically, some such theories postulate that the plastic
strain rate can always be represented as the superposition of a finite number
of such slips on specific lattice planes. Thus the discrete structure allows for
a plethora of geometric deformation processes and associated mechanical the-
ories, but none of these theories accounts satisfactorily for the description or
evolution of the intricate and dense network of defects that typically infests a
solid crystal.
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Secondly, there are the geometric theories of smooth vector fields defined
on a region  C IR®. These vector fields are imagined to characterise the
crystal structure in some way which is not made precise. For instance, they
may be thought of as interpolating the position vectors of nearest neighbours
of atoms, though then one would imagine that such interpolations would be
highly oscillatory, or not smooth. On the other hand, they may perhaps be
obtained from such fields by an inexplicit smoothing or averaging procedure.
In any case, there is an act of faith involved in stating that it is sufficient to
consider smooth vector fields in this context. However, with this faith, one
has available the beautiful apparatus of differential geometry and then it is an
issue, whether or not one can recover analogues of the geometric mechanisms
which provide the richness of the discrete theories, with this approach.

The inspirational work of Kondo[6], Kroner [7],[8], Bilby [2] and others in
the 1950’s provides an identification of Cartan’s torsion with the dislocation
density tensor of phenomenological theories, but it does not provide the ana-
logue of slip (for example). Here I outline a geometric framework where the
slips appear as particular kinds of rearrangements of vector fields, and briefly
describe a naive attempt to connect discrete and smooth theories.

2. DAVINI’S MODEL OF A CRYSTAL

In 1986, Davini [3] suggested that the central, primitive quantities in a
continuum theory of the mechanics of solid crystals should be taken as

i. three linearly independent lattice vector fields d,(-), d»(:), ds(-),

ii. a mass density field p(-) ,
each of these fields defined over a region Q (identified as the current place-
ment of the continuum that makes up the crystal), and each of these fields

varying smoothly (say, analytically) over Q. In [4], Davini and I introduced a
corresponding notion of crystal state, 33, defined by these four fields;

y= {(da(')’p(')’ﬂ) ;poa=1, 2 3} > (1)

and addressed what seemed, to us, to be a fundamental issue in the theories
of elasticity and plasticity: “If two crystal states are given, then are they
elastically related to one another or not?”. Here, we take crystal states ¥ and

yr= {(d*('),p*(-),ﬂ*); a = 172’3}7 (2)

a
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to be elastically related to one another if and only if there exists a diffeomor-
phism u : Q = Q* = u(f2) such that

d, (u(z)) = Vu(z)d,(z), a=1, 2, 3;

a
*

p* (u(z)) = [detVu(z)]™ p(z),z € Q. (3)

To restate the issue, how does one decide if there exists a diffeomorphism
u such that (3) holds if the fields d,(-), d.(-), p(:), p*(), a=1, 2, 3,

a

are given over prescribed domains 2 and 2*? To proceed, let us introduce the
dual lattice vector fields d'(-), d*(-), d*(-) which have the property that

d(z) -dy(x) =6y, a,b=1,2,3 z€Q, (4)
define
n(g) = det{d*(z)} =d'(z)- d’(z) Ad’(z),
S(@) = d(z) VAd (D) (5)
and abbreviate the notation introduced in (1) above by writing loosely
2 ={d,, p, Q}. (6)
Then if we notice that (3) implies

d” (w(@) = [Vu(@)] " d(@),
(VAd™) (u(x)) = [det Vu(z)]™' Vu(z)V Ad*(z), (7)
n(u(@) = [det Vu(e)] " n(o),

it follows from (5) and (7) that
5" (u(z) _ 5*(x)
n*(u(z))  n(z)
Equations (7) and (8) are necessarily true, if (3) holds, and one can list in-
finitely many more such necessary conditions that ¥ and ¥* are elastically

related to one another. (See [4], [5] for explicit details).
Now, it is productive to notice, from (8), that

, T€ (8)

Range S°*(y) Range S%(x) (©)
yeQ n(y) =z€Q n(z)’

and that, crucially, the left hand side of (9) can be calculated from knowledge
of the state 2*, the right hand side of (9) can be calculated if one knows .
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(Note that y = u(x) ranges over Q* = u(Q2) as = ranges over €2, since u is
diffeomorphism). The manifold

{(%);a,bzl, 2, 3, xEQ}, (10)

is thus an elastic invariant of the crystal state ¥ in the sense that (9) holds if
(3) holds. In fact, it should now be clear that if one constructs a scalar field
ps () from the primitive field quantities d,(-), p(-) and their derivatives of any
order, so that

p3(@) = 1 (@, do(@), Vdo(@), Vida(@), ..., plx), Vp(x), Vp(@), "i) -)
11

where p is a given real valued function, and psx(-) is such that
pse (u(w)) = px(z), (12)
when (3) holds, then

Range ps.(y) Range ps(x)

y e T zeQ (13)

and the manifold {(ux(z)); x € Q} is an elastic invariant of the crystal state
Y. Note that I show in [11], see also [4], that there is an infinite number of
different choices of scalar fields ps(-).

3. CARTAN’S CLASSIFYING MANIFOLD

Define the fundamental set F of scalar invariants of the crystal state % as
the set of fields

Sab

n

L 520, @ ER0, 20, @) ga b e=1, 2, 3] (1)
’ n ’ c ’ n ) c n [t ’ - ) .
I refer the reader to [12] and to Arnold [1] for a discussion of topological prop-
erties of integrals associated with some of these fields. From this fundamental
set F define Cartan’s classifying manifold T as

T ={v(z), (d, - V)v(z),(dy - V)(d, - V)v(z);a, b=1, 2,3, vEF, z €N}
(15)
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This is (at most) a three dimensional manifold in ROF3*+3°+14+3)(1+3+5%) " anq
one can check that it is an elastic invariant of ¥ by verifying that (d, - V)v(-)
is a scalar if v(-) is a scalar. Later in the work, I shall employ -the following
result of Cartan, taken from lecture notes of Olver[9], given here in a form
which is appropriate to this context.

THEOREM 1. Let X, ¥*(c.f. definitions (1), (2)) have classifying manifolds
T, T*. Suppose that T and T* overlap, in the sense that
ps(To) = ps-(z5),
for some (xy,xy) € Q x Q*, and for all

ps() € {v(), (do-V)v(), (dy-V)(ds - VIv(-);a,b=1, 2, 3, v € F}.

Then for any such (xzq, x), there exists a diffeomorphism ug, defined on a
neighbourhood Ng, of x, in §2 such that

d: (Umo(m)) = VU;BO (:c)da(:z:), HAS Nmov
and -
Ux, (wO) = :l':;
NOTES

1. For the purposes of this theorem, the hypotheses regarding the field p(-)
are spurious.

2. The theorem provides sufficient conditions that ¥, £* are such that (3);
holds locally, and we shall be vitally concerned in the sequel with the
mechanism that obstructs a global definition of the field u(-) in (3);.

4. NEUTRAL DEFORMATIONS

There are other objects, apart from the scalars considered above, which
provide natural elastic invariants of ¥. For example, there are the ‘Burger’s
numbers’ § d*(x) - de, where ( is any closed circuit in 2 - it is an easy calcu-

¢

lation to show that

d*(y) - dy = § d'(e) - de, (16)
¢r=U(¢) ¢
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when (3);, and hence (7);, hold. In the same way, one finds that

f v(@)d*(z) - da, / v(@)n(@)dVp, vEF, VCQ, (17)
¢ v
are elastic invariants, in the obvious sense. Also, one could construct an
infinite number of other, different, invariants of each of the two types given
in (17). Now ask the following question; if the finite list of elastic invariants

of type (17) match in X, ¥*, in the sense that there exists a diffeomorphism
0 =Q — 0(Q) = Q* such that

fy(x)d“(m)-dm _ }[ v (0(@))d" (z) - dO(z), etc., v € F,  (18)
¢ 0«

are the two states X, X* elastically related to one another, in the sense that
(3) holds ? Davini and I show in [4] that if the invariants (18) match, then all
(the infinite number of) such invariants match. Moreover let &' = {d,,, p', 0}
be defined as the ‘elastic pre-image’ or ‘pull-back’ of ¥*, so that

4, (07 @w) = (VO )(w)d:(y),

' 19
o (07w) — [swo @) o). veo@=a.

Then (18) holds if and only if
}4 v(@)d (@) - dz = }{ V(@)d® (z) - dx, etc., v € F, (20)

¢ ¢
and it follows, since ( and V are arbitrary, that
[Va(vd®)] (z) = [V A (V'd")] (z), (v'n')(x) = (vn)(z), v € F, z €.
(21)

One deduces from this last set of equations, (21), by taking v = 1 to begin
with, that

VAd'=VAd, n'=n, V' =v, VuA(d"—d") =0, veEF. (22)

Given 3, call the set of states X'(# X) which solves (22) the states neutrally
related to ¥. Thus the question asked earlier in this section may be rephrased
as follows; if ¥ and ¥’ are neutrally related to one another, is it true that
there exists a diffeomorphism u : © — u(Q2) = Q such that (3) holds (with
*replaced by ')?
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EXAMPLE. Let ¥ = {e,, 1, Q}, with e;, e,, e; a canonical basis of IR3.
Then ¥’ solves (22) if and only if

d¥ =Vr®, detVr=1, p =1, (23)

for some potential function T = (7°) : @ — 7(2), arbitrary except for (23),.
If one assumes, in addition, that 7 is 1 - 1, then we have that

vol Q = vol 7(9). (24)
REMARKS

1. The set of states neutrally related to an arbitrary state ¥ is completely
characterised in [4].

2. In the example above, ¥’ is not generally an elastic deformation of X.
To see this, assume the contrary and suppose that there exists a diffeo-
morphism 7 such that

Ve (n(z)) = (Vr) Te?, det(Vr®) =1 (25)

and importantly w(2) = Q. Then from (25);, 7-w = identity + constant,
and so 7(2) = Q + constant. But this conclusion, that 7(2) is a trans-
lation of 2, is not ensured by (23). It follows that ¥, ¥’ are elastically
related if and only if 7(2) is a translation of 2, and that generally, 3 and
3’ are related by elastic deformation composed with a rearrangement of
the set Q2 (to form 7(2)). See [4], [5], [12] for more details regarding this
point, and for some remarks regarding the slip mechanism of plasticity.

3. A computation given in [4] shows that equations (22) ensure that the
classifying manifolds of ¥, %' are identical. Thus, given xy, € Q) there is
a diffeomorphism ug,(-) of a neighbourhood Nz, of z, in © such that

d, (uz,(x)) = Vug,(2)d:(z), = € Na,, (26)

and u(xy) = xy. Moreover, it is shown in [4] that when (22) holds, (3).
also holds. Hence, neutrally related states are locally elastically related,
in the sense that (3) holds locally. But neutrally related states are not
(globally) elastically related by virtue of remark 2 above.
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5. STRUCTURE OF CRYSTAL STATES WHERE EACH OF THE SCALARS
ab
2 4, b=1, 2, 3 IS CONSTANT

n ?

Firstly, when all of the fields §Z—b are constant, those constants may not be
prescribed arbitrarily, for

0 = V- (VAd)=V-{(d VArd)d.}

= V. (S;b nda) =152V (carsd" A d’) = €ars S: STs (27)
Then, if one puts
G = 5ijp%i’ (28)
it turns out that (28) can be rewritten as
CiCry +CRCr + ChCri =0, (29)

which is the Jacobi identity for a three-dimensional Lie algebra. Now, let us
ab .
aim to find lattice vector fields which are such that each S—n— is constant. Notice

to begin with that the STab are scalars, so if ¥ has each —S—;i constant, then so
does any state elastically related to . There is then a basic indeterminacy
which we may exploit by constructing what Pontryagin [13] calls a canonical
system of coordinates of the first kind - in our terminology this amounts to
finding a particular state ¥™¢ which has the structure of a Lie group in the
following sense; suppose ¥™¢ = {D,, P, 2™}, then

D, (u(z)) = Vu(z) D (), (30)

where u(z) = &(x, y), with £(-,-) the composition function for the Lie group
which has structure constants Ci’“j, and y chosen arbitrarily, subject to domain
requirements. The lattice vectors D, behave as if they are embedded in the
elastic deformation defined by the mapping u(-) = &(-,y) (so £™ is locally
elastically related to itself, as one might forsee by an application of the theorem
of Section 3 to copies of X™¢). I refer the reader to [10], [11] for the explicit

. . ab
construction of ¥ in some cases. If, for example, (%T) =a®a, ac R},

it turns out that £(-,-) is affine in both arguments and that one can then show
that

£(eq, @) = @ + D,(). (31)
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It seems to me that this relation is important, for it connects continuum and
discrete models of the crystal. On the one hand the fields D,, the structure
constants C’fj and the composition function £ relate to the description of the
crystal as a continuum. On the other hand, the mapping z :— = + D,(x)
represents the idea that if there is an ‘atom’ located at a point & € IR®, then
there is also an atom at the point  + D,(x), a = 1, 2, 3, and so on. It-
erations of this mapping thereby generate sets of points which are consistent
with the continuum description. One can, in some cases, catalogue these sets
of points explicitly, but T do not have the space to describe the various intrigu-
ing possibilities here. Broadly, following what has become common practice in
nonlinear elasticity, in deciding on material symmetries of constitutive func-
tions, the idea is now to examine the symmetries of this discrete set of atoms
and to assume that these symmetries also apply in the continuum setting,
so to delimit, prudently, a class of functionals appropriate for studying the
mechanics of solid crystals.

Finally, I have not touched upon the subtle connection between continuum
and discrete representations of the mass density function in this context.
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