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1. INTRODUCTION

Liquid crystals consist of formanisotropic molecules. We assume here that
the molecules are rotationally symmetric. Liquid crystals are distinguished
from isotropic liquids by the fact that they exhibit a long range orientational
ordering. In contrast to crystals there is no (three dimensional) positional
ordering of the centers of mass of molecules present in liquid crystals.

There are important experimental examples of liquid crystals, which can
be considered as two dimensional (see figure 1): Over a hole in a metal plate
a free standing liquid crystalline film can be produced, which is only a few
molecular layers thick. Another example is the phase boundary between the
nematic phase and the isotropic phase. Other examples are boundary layers at
a glass surface or lyotropic double layers. These double layers are biologically
important as cell-membranes. The aim of the present work is a continuum
thermodynamical description of such two dimensional liquid crystals.

physical system Gt G~ material
flux through S
phase boundary nematic isotropic phase #0
lyotropic membrane | solution of | amphiphilic comp. | # 0
in water
free standing film air air 0

Table 1: The physical meaning of the bulk regions for the different examples.
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Figure 1: Free standing liquid crystalline films, phase boundaries and bound-
ary layers are examples of two dimensional liquid crystals.
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Figure 2: Geometry of the curved surface.
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The liquid crystal is idealized as a surface, i. e. the thickness of a mem-
brane, a free standing film and so on is not taken into account. The liquid
crystal is a two dimensional submanifold, embedded in R3.The surface devides
the bulk into the regions + and —. The physical meaning of the bulk regions
for the different examples is summarized in table 1. Gauss’ basis of the tan-
gential space to the surface is denoted with 1! and 12, the unit normal vector
(pointing towards the +-region) with e (see figure 2).
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symmetric
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Figure 3: The orientational order of the uniaxial particles is described by an
orientation distribution function.

1.1. DESCRIPTION OF THE LIQUID CRYSTALLINE ORDER: ALIGNMENT
TENSORS. The liquid crystalline order is described by an orientation distri-
bution function (ODF) f(x,,n,t)

f: M xR - R ((x,n) €N tER) (1)
J flxgm, t)d2n = 1 (2)
s2

f(x,n,t) is the probability density of particles having orientation n at
position x, and time t. In the domain of the ODF 91 denotes the nematic
space (& x S?) [3].

The ODF can be expanded with respect to a basis of Cartesian tensors [3],

[2] m...n, — denoting the symmetric traceless part of a tensor:
1 - v ——
fpnt) = {1+ > @-1law m (1) T, o | - (3)
1=2, 1 even

The coefficients al are called alignment tensors. They describe the liquid
crystalline order.
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Figure 4: The nematic space. It can be formulated in terms of a fibre bundle.

2. DEFINITION OF SURFACE DENSITIES

Let ¢ be a bulk density, for which we have an equation of motion

.
20 = Fryl (@

with some functional 13[11)]. In the +-region and in the —-region of the bulk
(see figure 2) we have

i. e. YT and P~ are solutions of the differential equation (4), if no surface &
is present. Now we define fields {5 as

Ps(r,t) = (1, 1) — Y (1, 1)0 (1, t) — T (1, 1)OT (1, 1) (6)

P(r,t) is the field in the presence of the surface, whereas 1™ and {~ are the
extrapolated bulk solutions. @1 and @~ are the characteristic functions of the
+- and —-region, respectively. The surface density s is the integral of the

volume density s, integrated perpendicular to the surface over the surface
region:

xs+d -
b, =j eds | (7)
d

Xs—
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The definition of the surface quantities is sketched in figure 5.

The physical surface densities are defined on the surface G, but the vectorial
quantities are not elements of the tangential space Ty &. Their footpoint is
an element of &, but they are elements of a three dimensional vector space.
For example the velocity w has a component normal to the surface G.

singular surface

| 1 7 )
Xs-d G - Xs G + Xg+d X
Figure 5: Definition of the surface fields: Pt and 1~ are the extrapolated
bulk solutions, 1 is the solution in the presence of the surface (located at xs).

The difference between J* and 1, integrated over the surface region, defines
the surface density .

3. BALANCE EQUATIONS FOR SURFACE DENSITIES

The balance equation for an additive quantity W within the time depen-
dent subregion G(t) of the surface is [1], [6], [7]:

d 0

Ly - 2 «
dat s ot JG(t)¢S(£ ,t)da

= ‘J Qs'hdS—J [$+ (v—w)]- eda (8)
C(s) G(t)
+I (7[5 + 0‘5) da )
G(t)

P is the corresponding surface density (quantity per unit area), Qs is the
flux through the boundary curve C(s), 75 and o5 are surface production and
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supply density. h is the outward unit normal vector to the curve C(s) within
the tangential plane to the surface & (see figure 2). ¢ is the nonconvective
bulk flux of the density 1 defined in the bulk. The brackets [ ] denote the
difference between the limiting values ¢ and ¢_ of the bulk fields on both
sides of the surface:

[d]:= by — b . (9)

The discontinuity of bulk fluxes contributes to the production of surface den-
sities.

It is assumed that all surface densities are smoothly differentiable with
respect to surface coordinates and with respect to time. Gauss’ theorem is
applied to the first expression on the left hand side.

A transport theorem has been derived [1] analogously to the derivation in
R3, mapping the surface regions to the reference configuration and taking into
account the time dependence of the mapping and of the surface volume form.
The result is

o wte = | (5 o) - 2kt ) da . (10)
dt G(t) G(t) ot

w is the mapping velocity, w' is the component of w normal to the surface
and WV denotes the covariant derivative of the Levi-Civita-connection.

The third term on the right hand side of equation (10) arises from the time
differentiation of the volume form in the actual configuration. As the resulting
balance equation is valid for arbitrary surface regions we conclude the local
form of the balance:

0
ot

— 2K + V- (&, + bew) =~ + b (L —w)l- e+ 7o+ 0, .
(1)

The balance equation (11) reduces to the Rankine-Hugoniot condition, if
the surface is immaterial (ps = 0 = {s = 0) and there are no surface fluxes
Qs’ productions 7t; and supplies 0s. Then the singular surface is a surface of
discontinuity of the bulk quantities and the Rankine-Hugoniot jump conditions
can be derived from the weak formulation of the balance equations in the bulk
(5]. _

Now the quantities in the general balance equation (11) have to be identi-
fied with physical quantities. This is done in table 2 and in table 3. \
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(et [ [&  [wloe [¥ 5]
mass Ps 0 010 P 0
momentum || psw -t 0 | psf, pv —t
angular ps(xs X w | —x;xt | 0 | ps(xsx | plxxv+s) | —xxt—0
momen- +s, —gs fo+m,)
tum
energy ps(es + q,— 0 | pslfs-w|ple+1/2v- g —v- ¢t

1w - wiw - Es +9:ff§5. v+ 2_9]ef_f§ —e:ff’s‘.g
TS | —giosy mg) s
55) I

Table 2: Identification of the quantities in the abstract balance with physical
quantities.

symbol physical quantity
- surface mass density
material velocity in the bulk
surface stress tensor
stress tensor defined in the bulk
acceleration due to external fields
spin per unit mass defined on the surface
surface couple stress tensor
surface couple forces
spin density in the bulk
bulk couple stress tensor
surface specific internal energy
specific internal energy in the bulk
surface heat flux
q bulk heat flux
Octf effective moment of inertia of the particles

alf o &|dw LE I el e @

Table 3: List of symbols used in the balance equations.
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Figure 6: Balance equation and interpretation of the terms.
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Because of the internal structure of the medium (the needle shape of the
particles) there exists an internal angular momentum (spin), and an antisym-
metric part of the stress tensor, as well as couple stresses and couple forces
acting on the particle orientation.

The velocity w in the balance of momentum is not the material veloc-
ity, but the mapping velocity of the surface. For example in the case of a
phase boundary the surface & is non-material. The balance of momentum
determines the surface position and geometry at time t, having given the ge-
ometry in a reference configuration. Therefore the surface geometry at time t
is not known a priori, but only after having solved the initial-(boundary-)value
problem to the balance equations. This is similar to the situation in general
relativity, where Einstein’s equations for the metric tensor and the balance
equations have to be solved simultaneously [8].

In addition to the mechanical balance equations a coupled system of differ-
ential equations for the alignment tensors of successive order has been derived
[3]. We will consider only the second order alignment tensor a as a wanted field.
The mechanical balance equations are the equations of motion for the wanted
fields of mass density ps, momentum density psw, spin density s, and internal
energy density pses with the domain of the fields being & x Rf. All other
quantities in the balance equations are constitutive quantities. They depend
on the thermodynamical state in a material dependent manner. The thermo-
dynamical state is given by the fields (ps(-),v_v(-),gs(-),es(-),gs(-)) = zs(+).
In general constitutive quantities are functionals of the thermodynamic state.
Here we will assume that constitutive quantities at position x, depend on the
value of the state variables at x, and a limited number of gradients of zs(-) at
position x,. Constitutive quantities are then given by constitutive mappings
defined on the (large) state space 3. This state space includes the state vari-
ables and the relevant gradients. A reasonable assumption of the variables
being relevant to our problem is

3 = {pS) eS) Vpsa VeS)gs) Vgsy vvgsy§sv V§s, VV_V, g) vﬁ) i) vIl)’_r_Z_) VT_Z.} .
(12)

Besides the state variables and their first spatial derivatives, the basis vectors
of the tangential space Ty &, the normal vector e and their derivatives are
included, i. e. constitutive quantities are allowed to depend on surface geom-
etry. The partial space derivatives have been included and not the covariant
derivatives. It is necessary to give up the requirement that all elements of
the state space should transform like (surface-) tensors under changes of the
surface coordinate system, because the surface geometry is not known a priori
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and therefore covariant derivatives cannot be evaluated.

4. RESTRICTIONS ON CONSTITUTIVE FUNCTIONS FROM THE SECOND LAW
OF THERMODYNAMICS

The constitutive mappings are restricted by the Second Law of Thermo-
dynamics: After introducing the constitutive mappings into the balance equa-
tions it results a system of partial differential equations for the wanted fields.
Any solution of the corresponding initial- (boundary-) value problem has to
guarantee a non-negative entropy production. (For a derivation of this state-
ment from a physically motivated axiom see ”W. Muschik: An amendment to
the Second Law of Thermodynamics” in this volume.) As a consequence there
is an algebraic system of constraints on derivatives of constitutive functions
[9], [10]. In the case of two dimensional liquid crystals these constraints can
be summarized as follows:

e The surface free energy does not depend on the highest gradients in-
cluded in the state space, but is not restricted besides.

e For the difference between the entropy flux and the heat flux over tem-
perature one has

ob, 1 99, ofs ags o oIt ofs. (13)
dua T auA - as "dua  — dua osd’
for ua €{Vps,Ves,Va }, (14)

i. e. the difference between the two fluxes does not vanish if the deriva-
tives of the couple stresses do not vanish and the free energy density
depends on the spin density. This shows that in liquid crystals entropy
transport is possible not only by heat transport, but also by transport
of orientational order. ‘

e The constitutive mapping of the surface stress tensor is determined by
the Second Law. The normal stresses, i. e. the part of the surface
stress tensor projected orthogonal and tangential to the surface e - t-P
(P: projector onto the tangential plane to &) do not vanish in contra,st
to simple liquids. They are given by a lengthy expression involving
derivatives of the free energy density with respect to the alignment tensor
and with respect to the surface metric tensor [4]. This means that a
force applied tangential to a liquid crystalline film results in a stress
component normal to the film.
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